Prediction by statistical overlap theory of fraction of baseline occupied by chromatographic peaks

•A probability equation is derived for the fraction of baseline occupied by peaks.•The fraction is a means for measuring the saturation (chromatographic crowdedness).•The analysis of synthetic chromatograms relates the fraction to resolution.•The value of resolution does not change with different ch...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Chromatography A Vol. 1640; p. 461931
Main Author: Davis, Joe M.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 15-03-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A probability equation is derived for the fraction of baseline occupied by peaks.•The fraction is a means for measuring the saturation (chromatographic crowdedness).•The analysis of synthetic chromatograms relates the fraction to resolution.•The value of resolution does not change with different chromatographic conditions. The average minimum resolution required for separating adjacent single-component peaks (SCPs) in one-dimensional chromatograms is an important metric in statistical overlap theory (SOT). However, its value changes with changing chromatographic conditions in non-intuitive ways, when SOT predicts the average number of peaks (maxima). A more stable and easily understood value of resolution is obtained on making a different prediction. A general equation is derived for the sum of all separated and superposed widths of SCPs in a chromatogram. The equation is a function of the saturation α, a metric of chromatographic crowdedness, and is expressed in dimensionless form by dividing by the duration of the chromatogram. This dimensionless function, f(α), is also the cumulative distribution function of the probability of separating adjacent SCPs. Simulations based on the clustering of line segments representing SCPs verify expressions for f(α) calculated from five functions for the distribution of intervals between adjacent SCPs. Synthetic chromatograms are computed with different saturations, distributions of intervals, and distribution of SCP amplitudes. The chromatograms are analyzed by calculating the sum of the widths of peaks at different relative responses, dividing the sum by the duration of the chromatograms, and graphing the reduced sum against relative response. For small values of relative response, the reduced sum approaches the fraction of baseline that is occupied by chromatographic peaks. This fraction can be identified with f(α), if the saturation α is defined with the average minimum resolution equaling 1.5. The identification is general and is independent of the saturation, the interval distribution, or the amplitude distribution. This constant value of resolution corresponds to baseline resolution, which simplifies the interpretation of SOT.
AbstractList •A probability equation is derived for the fraction of baseline occupied by peaks.•The fraction is a means for measuring the saturation (chromatographic crowdedness).•The analysis of synthetic chromatograms relates the fraction to resolution.•The value of resolution does not change with different chromatographic conditions. The average minimum resolution required for separating adjacent single-component peaks (SCPs) in one-dimensional chromatograms is an important metric in statistical overlap theory (SOT). However, its value changes with changing chromatographic conditions in non-intuitive ways, when SOT predicts the average number of peaks (maxima). A more stable and easily understood value of resolution is obtained on making a different prediction. A general equation is derived for the sum of all separated and superposed widths of SCPs in a chromatogram. The equation is a function of the saturation α, a metric of chromatographic crowdedness, and is expressed in dimensionless form by dividing by the duration of the chromatogram. This dimensionless function, f(α), is also the cumulative distribution function of the probability of separating adjacent SCPs. Simulations based on the clustering of line segments representing SCPs verify expressions for f(α) calculated from five functions for the distribution of intervals between adjacent SCPs. Synthetic chromatograms are computed with different saturations, distributions of intervals, and distribution of SCP amplitudes. The chromatograms are analyzed by calculating the sum of the widths of peaks at different relative responses, dividing the sum by the duration of the chromatograms, and graphing the reduced sum against relative response. For small values of relative response, the reduced sum approaches the fraction of baseline that is occupied by chromatographic peaks. This fraction can be identified with f(α), if the saturation α is defined with the average minimum resolution equaling 1.5. The identification is general and is independent of the saturation, the interval distribution, or the amplitude distribution. This constant value of resolution corresponds to baseline resolution, which simplifies the interpretation of SOT.
The average minimum resolution required for separating adjacent single-component peaks (SCPs) in one-dimensional chromatograms is an important metric in statistical overlap theory (SOT). However, its value changes with changing chromatographic conditions in non-intuitive ways, when SOT predicts the average number of peaks (maxima). A more stable and easily understood value of resolution is obtained on making a different prediction. A general equation is derived for the sum of all separated and superposed widths of SCPs in a chromatogram. The equation is a function of the saturation α, a metric of chromatographic crowdedness, and is expressed in dimensionless form by dividing by the duration of the chromatogram. This dimensionless function, f(α), is also the cumulative distribution function of the probability of separating adjacent SCPs. Simulations based on the clustering of line segments representing SCPs verify expressions for f(α) calculated from five functions for the distribution of intervals between adjacent SCPs. Synthetic chromatograms are computed with different saturations, distributions of intervals, and distribution of SCP amplitudes. The chromatograms are analyzed by calculating the sum of the widths of peaks at different relative responses, dividing the sum by the duration of the chromatograms, and graphing the reduced sum against relative response. For small values of relative response, the reduced sum approaches the fraction of baseline that is occupied by chromatographic peaks. This fraction can be identified with f(α), if the saturation α is defined with the average minimum resolution equaling 1.5. The identification is general and is independent of the saturation, the interval distribution, or the amplitude distribution. This constant value of resolution corresponds to baseline resolution, which simplifies the interpretation of SOT.
ArticleNumber 461931
Author Davis, Joe M.
Author_xml – sequence: 1
  givenname: Joe M.
  surname: Davis
  fullname: Davis, Joe M.
  email: chimicajmd@gmail.com
  organization: Department of Chemistry and Biochemistry, Southern Illinois University at Carbondale, Carbondale, IL 62901-4409, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33581675$$D View this record in MEDLINE/PubMed
BookMark eNp9kF1LwzAUhoNM3If-A5H-gdakaZPuRpDhFwz0Qq9DPk5cZteUJBvs39tR9dKrHMj7nPPyzNGk8x0gdE1wQTBht9tCb4LfyaLEJSkqRpaUnKEZaTjNKefNBM3w8JMvGadTNI9xizHhmJcXaEpp3RDG6xlSbwGM08n5LlPHLCaZXExOyzbzBwit7LO0AR-OmbeZDXJMDrOSEVrXQea13vcOzAkfGyX_GWS_cTrrQX7FS3RuZRvh6uddoI_Hh_fVc75-fXpZ3a9zTVmZ8hpbomktmWGgSrXUmFWs1rSRdY0Nb1hZg26UtBoMbiyurLVLw80QM4oRRheoGvfq4GMMYEUf3E6GoyBYnJSJrRgLipMyMSobsJsR6_dqB-YP-nU0BO7GAAzlDw6CiNpBN9RwAXQSxrv_L3wDC72DAA
CitedBy_id crossref_primary_10_56530_lcgc_int_ht5184j6
Cites_doi 10.1016/j.chroma.2016.05.074
10.1021/ac9705430
10.1021/ac00270a030
10.1021/ac00290a061
10.1021/ac00254a003
10.1021/ac012531r
10.1021/acs.analchem.0c02136
10.1021/ac9701391
10.1515/REVAC.2000.19.2.123
10.1021/ac970241y
10.1016/S0003-2670(00)86313-8
10.1016/S0169-7439(97)00053-1
10.1016/0169-7439(95)80061-D
10.1021/ac00253a012
10.1016/j.chroma.2011.08.078
10.1021/ac00109a029
10.1021/ac00216a022
10.1021/ac00042a024
10.1021/ac102818a
10.1021/ac000613u
10.1016/j.chroma.2011.10.013
10.1016/j.chroma.2011.06.086
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1016/j.chroma.2021.461931
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3778
ExternalDocumentID 10_1016_j_chroma_2021_461931
33581675
S0021967321000558
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
YK3
ZMT
~02
~G-
~KM
CGR
CUY
CVF
ECM
EIF
NPM
.GJ
29K
AAHBH
AAXKI
AAYJJ
AAYXX
ABDPE
ABXDB
ACNNM
AFJKZ
AI.
AJQLL
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
D-I
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
OHT
RIG
SCB
SEW
UQL
VH1
WUQ
ZGI
ZKB
ZXP
ID FETCH-LOGICAL-c362t-50f1c35a6d6eb2b9c06465c38a550d78625ec8bafced08f04fff9d7d064db6163
ISSN 0021-9673
IngestDate Thu Nov 21 21:07:40 EST 2024
Sat Sep 18 02:47:09 EDT 2021
Fri Feb 23 02:44:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Probability density function
Peak width
Saturation
Statistical overlap theory
Cumulative distribution function
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-50f1c35a6d6eb2b9c06465c38a550d78625ec8bafced08f04fff9d7d064db6163
PMID 33581675
ParticipantIDs crossref_primary_10_1016_j_chroma_2021_461931
pubmed_primary_33581675
elsevier_sciencedirect_doi_10_1016_j_chroma_2021_461931
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of Chromatography A
PublicationTitleAlternate J Chromatogr A
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Herman, Gonnord, Guiochon (bib0013) 1984; 56
Cain, Schöneich, Synovec (bib0030) 2020; 92
Davis, Giddings (bib0007) 1983; 55
Pietrogrande, Dondi, Felinger, Davis (bib0018) 1995; 28
bib0029
Davis, Pompe, Samuel (bib0028) 2000; 72
Felinger (bib0027) 1995; 67
Davis, Schure (bib0011) 2018; 55
Davis (bib0001) 1994; 34
Felinger (bib0003) 1998
Ross (bib0015) 2010
Felinger, Pasti, Dondi (bib0016) 1990; 62
Felinger (bib0002) 1998; 39
Enke, Nagels (bib0025) 2011; 83
Felinger, Pietrogrande (bib0005) 2001; 73
Davis, Rutan, Carr (bib0014) 2011; 1218
Rowe, Davis (bib0019) 1997; 38
Davis (bib0010) 1997; 69
Pietrogrande, Cavazzini, Dondi (bib0004) 2000; 19
Schure, Davis (bib0006) 2015; 33
Felinger (bib0008) 1997; 69
Davis (bib0009) 2011; 1218
Ennis, Foley (bib0012) 2016; 1455
Dondi, Bassi, Cavazzini, Pietrogrande (bib0024) 1998; 70
Schure, Davis (bib0026) 2011; 1218
Felinger, Pasti, Dondi (bib0017) 1992; 64
bib0020
Dondi, Kahie, Lodi, Remelli, Reschiglian, Bighi (bib0023) 1986; 191
Nagels, Creten, Vanpeperstraete (bib0021) 1983; 55
Nagels, Creten (bib0022) 1985; 57
Davis (10.1016/j.chroma.2021.461931_bib0001) 1994; 34
Nagels (10.1016/j.chroma.2021.461931_bib0022) 1985; 57
Felinger (10.1016/j.chroma.2021.461931_bib0008) 1997; 69
Ennis (10.1016/j.chroma.2021.461931_bib0012) 2016; 1455
Pietrogrande (10.1016/j.chroma.2021.461931_bib0018) 1995; 28
10.1016/j.chroma.2021.461931_bib0020
Schure (10.1016/j.chroma.2021.461931_bib0026) 2011; 1218
Rowe (10.1016/j.chroma.2021.461931_bib0019) 1997; 38
Davis (10.1016/j.chroma.2021.461931_bib0007) 1983; 55
Cain (10.1016/j.chroma.2021.461931_bib0030) 2020; 92
Davis (10.1016/j.chroma.2021.461931_bib0009) 2011; 1218
Davis (10.1016/j.chroma.2021.461931_bib0011) 2018; 55
Felinger (10.1016/j.chroma.2021.461931_bib0005) 2001; 73
Enke (10.1016/j.chroma.2021.461931_bib0025) 2011; 83
Davis (10.1016/j.chroma.2021.461931_bib0028) 2000; 72
Felinger (10.1016/j.chroma.2021.461931_bib0003) 1998
Dondi (10.1016/j.chroma.2021.461931_bib0024) 1998; 70
Felinger (10.1016/j.chroma.2021.461931_bib0017) 1992; 64
Felinger (10.1016/j.chroma.2021.461931_bib0002) 1998; 39
Pietrogrande (10.1016/j.chroma.2021.461931_bib0004) 2000; 19
Herman (10.1016/j.chroma.2021.461931_bib0013) 1984; 56
Davis (10.1016/j.chroma.2021.461931_bib0010) 1997; 69
Dondi (10.1016/j.chroma.2021.461931_bib0023) 1986; 191
Felinger (10.1016/j.chroma.2021.461931_bib0016) 1990; 62
Nagels (10.1016/j.chroma.2021.461931_bib0021) 1983; 55
Davis (10.1016/j.chroma.2021.461931_bib0014) 2011; 1218
Ross (10.1016/j.chroma.2021.461931_bib0015) 2010
Felinger (10.1016/j.chroma.2021.461931_bib0027) 1995; 67
10.1016/j.chroma.2021.461931_bib0029
Schure (10.1016/j.chroma.2021.461931_bib0006) 2015; 33
References_xml – volume: 69
  start-page: 3796
  year: 1997
  end-page: 3805
  ident: bib0010
  article-title: Extension of statistical-overlap theory to poorly resolved separations
  publication-title: Anal. Chem.
  contributor:
    fullname: Davis
– volume: 1218
  start-page: 9297
  year: 2011
  end-page: 9306
  ident: bib0026
  article-title: The statistical overlap theory of chromatography using power law (fractal) statistics
  publication-title: J. Chromatogr. A
  contributor:
    fullname: Davis
– volume: 67
  start-page: 2078
  year: 1995
  end-page: 2087
  ident: bib0027
  article-title: Superposition of chromatographic retention patterns
  publication-title: Anal. Chem.
  contributor:
    fullname: Felinger
– ident: bib0029
– volume: 33
  start-page: 14
  year: 2015
  end-page: 18
  ident: bib0006
  article-title: The simple use of statistical overlap theory in chromatography
  publication-title: LC-GC
  contributor:
    fullname: Davis
– start-page: 331
  year: 1998
  end-page: 409
  ident: bib0003
  article-title: Chapter 15: Statistical theory of peak overlap; Chapter 16: Fourier analysis of multicomponent chromatograms
  publication-title: (Data Handling in Science and Technology, vol. 21)
  contributor:
    fullname: Felinger
– volume: 19
  start-page: 123
  year: 2000
  end-page: 155
  ident: bib0004
  article-title: Quantitative theory of the statistical degree of peak overlapping in chromatography
  publication-title: Rev. Anal. Chem.
  contributor:
    fullname: Dondi
– volume: 191
  start-page: 261
  year: 1986
  end-page: 273
  ident: bib0023
  article-title: Evaluation of the number of components in multi-component liquid chromatograms of plant extracts
  publication-title: Anal. Chim. Acta
  contributor:
    fullname: Bighi
– volume: 34
  start-page: 109
  year: 1994
  end-page: 176
  ident: bib0001
  article-title: Statistical theories of peak overlap in chromatography
  publication-title: Advances in Chromatography
  contributor:
    fullname: Davis
– volume: 57
  start-page: 2706
  year: 1985
  end-page: 2711
  ident: bib0022
  article-title: Evaluation of the glassy carbon electrochemical detector selectivity in high-performance liquid chromatographic analysis of plant material
  publication-title: Anal. Chem.
  contributor:
    fullname: Creten
– volume: 55
  start-page: 87
  year: 2018
  end-page: 104
  ident: bib0011
  article-title: Is the number of peaks in a chromatogram always less than the peak capacity? A study in memory of Eli Grushka
  publication-title: Advances in Chromatography
  contributor:
    fullname: Schure
– year: 2010
  ident: bib0015
  article-title: Introduction to Probability Models
  contributor:
    fullname: Ross
– volume: 69
  start-page: 2976
  year: 1997
  end-page: 2979
  ident: bib0008
  article-title: Critical peak resolution in multicomponent chromatograms
  publication-title: Anal. Chem.
  contributor:
    fullname: Felinger
– volume: 1218
  start-page: 5819
  year: 2011
  end-page: 5828
  ident: bib0014
  article-title: Relationship between selectivity and average resolution in comprehensive two-dimensional separations with spectroscopic detection
  publication-title: J. Chromatogr. A
  contributor:
    fullname: Carr
– volume: 1455
  start-page: 113
  year: 2016
  end-page: 124
  ident: bib0012
  article-title: Stochastic approach for an unbiased estimation of the probability of a successful separation in conventional chromatography and sequential elution liquid chromatography
  publication-title: J. Chromatogr. A
  contributor:
    fullname: Foley
– volume: 55
  start-page: 216
  year: 1983
  end-page: 220
  ident: bib0021
  article-title: Determination limits and distribution function of ultraviolet absorbing substances in liquid chromatographic analysis of plant extracts
  publication-title: Anal. Chem.
  contributor:
    fullname: Vanpeperstraete
– volume: 62
  start-page: 1846
  year: 1990
  end-page: 1854
  ident: bib0016
  article-title: Fourier analysis of multicomponent chromatograms. Theory and models
  publication-title: Anal. Chem.
  contributor:
    fullname: Dondi
– volume: 70
  start-page: 766
  year: 1998
  end-page: 773
  ident: bib0024
  article-title: A quantitative theory of the statistical degree of peak overlapping in chromatography
  publication-title: Anal. Chem.
  contributor:
    fullname: Pietrogrande
– volume: 1218
  start-page: 7841
  year: 2011
  end-page: 7849
  ident: bib0009
  article-title: Computation of distribution of minimum resolution for log-normal distribution of chromatographic peak amplitudes
  publication-title: J. Chromatogr. A
  contributor:
    fullname: Davis
– volume: 72
  start-page: 5700
  year: 2000
  end-page: 5713
  ident: bib0028
  article-title: Justification of statistical overlap theory in programmed temperature gas chromatography: thermodynamic origin of random distribution of retention times
  publication-title: Anal. Chem.
  contributor:
    fullname: Samuel
– volume: 92
  start-page: 11365
  year: 2020
  end-page: 11373
  ident: bib0030
  article-title: Development of an enhanced total ion current chromatogram algorithm to improve untargeted peak detection
  publication-title: Anal. Chem.
  contributor:
    fullname: Synovec
– volume: 64
  start-page: 2164
  year: 1992
  end-page: 2174
  ident: bib0017
  article-title: Fourier analysis of multicomponent chromatograms. Recognition of retention patterns
  publication-title: Anal. Chem.
  contributor:
    fullname: Dondi
– ident: bib0020
– volume: 55
  start-page: 418
  year: 1983
  end-page: 424
  ident: bib0007
  article-title: Statistical theory of component overlap in multicomponent chromatograms
  publication-title: Anal. Chem.
  contributor:
    fullname: Giddings
– volume: 28
  start-page: 239
  year: 1995
  end-page: 258
  ident: bib0018
  article-title: Statistical study of peak overlapping in multicomponent chromatograms: importance of the retention pattern
  publication-title: J. Chemometr. Intell. Lab. Syst.
  contributor:
    fullname: Davis
– volume: 83
  start-page: 2539
  year: 2011
  end-page: 2546
  ident: bib0025
  article-title: Undetected components in natural mixtures: How many? What concentrations? Do they account for chemical noise? What is needed to detect them?
  publication-title: Anal. Chem.
  contributor:
    fullname: Nagels
– volume: 73
  start-page: 619A
  year: 2001
  end-page: 626A
  ident: bib0005
  article-title: Decoding complex multicomponent chromatograms
  publication-title: Anal. Chem.
  contributor:
    fullname: Pietrogrande
– volume: 38
  start-page: 109
  year: 1997
  end-page: 126
  ident: bib0019
  article-title: Error analysis of parameters determined with statistical models of overlap from nonhomogeneous separations
  publication-title: J. Chemometr. Intell. Lab. Syst.
  contributor:
    fullname: Davis
– volume: 56
  start-page: 995
  year: 1984
  end-page: 1003
  ident: bib0013
  article-title: Statistical approach for estimating the total number of components in complex mixtures from nontotally resolved chromatograms
  publication-title: Anal. Chem.
  contributor:
    fullname: Guiochon
– volume: 39
  start-page: 201
  year: 1998
  end-page: 238
  ident: bib0002
  article-title: Mathematical analysis of multicomponent chromatograms
  publication-title: Advances in Chromatography
  contributor:
    fullname: Felinger
– volume: 1455
  start-page: 113
  year: 2016
  ident: 10.1016/j.chroma.2021.461931_bib0012
  article-title: Stochastic approach for an unbiased estimation of the probability of a successful separation in conventional chromatography and sequential elution liquid chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.05.074
  contributor:
    fullname: Ennis
– volume: 70
  start-page: 766
  year: 1998
  ident: 10.1016/j.chroma.2021.461931_bib0024
  article-title: A quantitative theory of the statistical degree of peak overlapping in chromatography
  publication-title: Anal. Chem.
  doi: 10.1021/ac9705430
  contributor:
    fullname: Dondi
– volume: 56
  start-page: 995
  year: 1984
  ident: 10.1016/j.chroma.2021.461931_bib0013
  article-title: Statistical approach for estimating the total number of components in complex mixtures from nontotally resolved chromatograms
  publication-title: Anal. Chem.
  doi: 10.1021/ac00270a030
  contributor:
    fullname: Herman
– volume: 57
  start-page: 2706
  year: 1985
  ident: 10.1016/j.chroma.2021.461931_bib0022
  article-title: Evaluation of the glassy carbon electrochemical detector selectivity in high-performance liquid chromatographic analysis of plant material
  publication-title: Anal. Chem.
  doi: 10.1021/ac00290a061
  contributor:
    fullname: Nagels
– start-page: 331
  year: 1998
  ident: 10.1016/j.chroma.2021.461931_bib0003
  article-title: Chapter 15: Statistical theory of peak overlap; Chapter 16: Fourier analysis of multicomponent chromatograms
  contributor:
    fullname: Felinger
– volume: 55
  start-page: 418
  year: 1983
  ident: 10.1016/j.chroma.2021.461931_bib0007
  article-title: Statistical theory of component overlap in multicomponent chromatograms
  publication-title: Anal. Chem.
  doi: 10.1021/ac00254a003
  contributor:
    fullname: Davis
– volume: 73
  start-page: 619A
  year: 2001
  ident: 10.1016/j.chroma.2021.461931_bib0005
  article-title: Decoding complex multicomponent chromatograms
  publication-title: Anal. Chem.
  doi: 10.1021/ac012531r
  contributor:
    fullname: Felinger
– volume: 92
  start-page: 11365
  year: 2020
  ident: 10.1016/j.chroma.2021.461931_bib0030
  article-title: Development of an enhanced total ion current chromatogram algorithm to improve untargeted peak detection
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c02136
  contributor:
    fullname: Cain
– volume: 69
  start-page: 3796
  year: 1997
  ident: 10.1016/j.chroma.2021.461931_bib0010
  article-title: Extension of statistical-overlap theory to poorly resolved separations
  publication-title: Anal. Chem.
  doi: 10.1021/ac9701391
  contributor:
    fullname: Davis
– volume: 39
  start-page: 201
  year: 1998
  ident: 10.1016/j.chroma.2021.461931_bib0002
  article-title: Mathematical analysis of multicomponent chromatograms
  contributor:
    fullname: Felinger
– ident: 10.1016/j.chroma.2021.461931_bib0029
– year: 2010
  ident: 10.1016/j.chroma.2021.461931_bib0015
  contributor:
    fullname: Ross
– volume: 19
  start-page: 123
  year: 2000
  ident: 10.1016/j.chroma.2021.461931_bib0004
  article-title: Quantitative theory of the statistical degree of peak overlapping in chromatography
  publication-title: Rev. Anal. Chem.
  doi: 10.1515/REVAC.2000.19.2.123
  contributor:
    fullname: Pietrogrande
– volume: 69
  start-page: 2976
  year: 1997
  ident: 10.1016/j.chroma.2021.461931_bib0008
  article-title: Critical peak resolution in multicomponent chromatograms
  publication-title: Anal. Chem.
  doi: 10.1021/ac970241y
  contributor:
    fullname: Felinger
– volume: 191
  start-page: 261
  year: 1986
  ident: 10.1016/j.chroma.2021.461931_bib0023
  article-title: Evaluation of the number of components in multi-component liquid chromatograms of plant extracts
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)86313-8
  contributor:
    fullname: Dondi
– volume: 38
  start-page: 109
  year: 1997
  ident: 10.1016/j.chroma.2021.461931_bib0019
  article-title: Error analysis of parameters determined with statistical models of overlap from nonhomogeneous separations
  publication-title: J. Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00053-1
  contributor:
    fullname: Rowe
– volume: 28
  start-page: 239
  year: 1995
  ident: 10.1016/j.chroma.2021.461931_bib0018
  article-title: Statistical study of peak overlapping in multicomponent chromatograms: importance of the retention pattern
  publication-title: J. Chemometr. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(95)80061-D
  contributor:
    fullname: Pietrogrande
– volume: 55
  start-page: 216
  year: 1983
  ident: 10.1016/j.chroma.2021.461931_bib0021
  article-title: Determination limits and distribution function of ultraviolet absorbing substances in liquid chromatographic analysis of plant extracts
  publication-title: Anal. Chem.
  doi: 10.1021/ac00253a012
  contributor:
    fullname: Nagels
– volume: 1218
  start-page: 7841
  year: 2011
  ident: 10.1016/j.chroma.2021.461931_bib0009
  article-title: Computation of distribution of minimum resolution for log-normal distribution of chromatographic peak amplitudes
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2011.08.078
  contributor:
    fullname: Davis
– ident: 10.1016/j.chroma.2021.461931_bib0020
– volume: 33
  start-page: 14
  year: 2015
  ident: 10.1016/j.chroma.2021.461931_bib0006
  article-title: The simple use of statistical overlap theory in chromatography
  publication-title: LC-GC
  contributor:
    fullname: Schure
– volume: 67
  start-page: 2078
  year: 1995
  ident: 10.1016/j.chroma.2021.461931_bib0027
  article-title: Superposition of chromatographic retention patterns
  publication-title: Anal. Chem.
  doi: 10.1021/ac00109a029
  contributor:
    fullname: Felinger
– volume: 62
  start-page: 1846
  year: 1990
  ident: 10.1016/j.chroma.2021.461931_bib0016
  article-title: Fourier analysis of multicomponent chromatograms. Theory and models
  publication-title: Anal. Chem.
  doi: 10.1021/ac00216a022
  contributor:
    fullname: Felinger
– volume: 34
  start-page: 109
  year: 1994
  ident: 10.1016/j.chroma.2021.461931_bib0001
  article-title: Statistical theories of peak overlap in chromatography
  contributor:
    fullname: Davis
– volume: 64
  start-page: 2164
  year: 1992
  ident: 10.1016/j.chroma.2021.461931_bib0017
  article-title: Fourier analysis of multicomponent chromatograms. Recognition of retention patterns
  publication-title: Anal. Chem.
  doi: 10.1021/ac00042a024
  contributor:
    fullname: Felinger
– volume: 83
  start-page: 2539
  year: 2011
  ident: 10.1016/j.chroma.2021.461931_bib0025
  article-title: Undetected components in natural mixtures: How many? What concentrations? Do they account for chemical noise? What is needed to detect them?
  publication-title: Anal. Chem.
  doi: 10.1021/ac102818a
  contributor:
    fullname: Enke
– volume: 55
  start-page: 87
  year: 2018
  ident: 10.1016/j.chroma.2021.461931_bib0011
  article-title: Is the number of peaks in a chromatogram always less than the peak capacity? A study in memory of Eli Grushka
  contributor:
    fullname: Davis
– volume: 72
  start-page: 5700
  year: 2000
  ident: 10.1016/j.chroma.2021.461931_bib0028
  article-title: Justification of statistical overlap theory in programmed temperature gas chromatography: thermodynamic origin of random distribution of retention times
  publication-title: Anal. Chem.
  doi: 10.1021/ac000613u
  contributor:
    fullname: Davis
– volume: 1218
  start-page: 9297
  year: 2011
  ident: 10.1016/j.chroma.2021.461931_bib0026
  article-title: The statistical overlap theory of chromatography using power law (fractal) statistics
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2011.10.013
  contributor:
    fullname: Schure
– volume: 1218
  start-page: 5819
  year: 2011
  ident: 10.1016/j.chroma.2021.461931_bib0014
  article-title: Relationship between selectivity and average resolution in comprehensive two-dimensional separations with spectroscopic detection
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2011.06.086
  contributor:
    fullname: Davis
SSID ssj0017072
ssj0029838
Score 2.3982124
Snippet •A probability equation is derived for the fraction of baseline occupied by peaks.•The fraction is a means for measuring the saturation (chromatographic...
The average minimum resolution required for separating adjacent single-component peaks (SCPs) in one-dimensional chromatograms is an important metric in...
SourceID crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 461931
SubjectTerms Chromatography - methods
Computer Simulation
Cumulative distribution function
Peak width
Probability
Probability density function
Saturation
Statistical overlap theory
Statistics as Topic
Title Prediction by statistical overlap theory of fraction of baseline occupied by chromatographic peaks
URI https://dx.doi.org/10.1016/j.chroma.2021.461931
https://www.ncbi.nlm.nih.gov/pubmed/33581675
Volume 1640
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbJ5pBcSh95t0GH3IoWPyX5uGw3pIGWQBLIzVgv8oD1snlA_n1nLNneZglJCr0YIWxJzCdL32g0M4QcVsCBYuEE4zJKWVaJiBVZ5pjQiSq0KySP0Dn5-Ez8vpQ_Jtmkz7rW1_1XpKEOsEbP2Xeg3TUKFVAGzOEJqMPzTbifztH00qAKzBL9hZpQzMg5H_HsbuZ9FxvDupuHTOFQxu2soZw1xh0OxFRfzWugtD6s9bX-PrPV7d0LfHa8-O5Tf0baxTE4qWEJGS4eMyTNPSvvaOnPvpb8X4IvQMwK7pORdOsp9wGYlhZnf05wM_RjH2IvwwwUuLAN_B32Gq3IMTadoAUiz-UqWUtgMYG1bG30c3J50tmKRCS6iGFJIVO_-YaBtd6SzZW-5Y5fYSMLVOP8I_kQZEpHHtxPZMVOP5P1cZua7wtRPchUPdEFkGkAmXqQae1oCzKWW5BpCzJ-_gxk2oC8SS6OJufjYxaSZTANHOSe5ZGLdZpX3HCr8D8DrslzncoKdFAjQHHNrZaqctqaSLooc84VRhh4zSgOrHyLDKb11O4QmmagBsciNilGAuK5slYBDImTeaSsMLuEtUIrZz4mStleFrwp_aBLFHLphbxLRCvZMvA6z9dKmBmvfLntgej6STFeHyi5e__c5j7Z6Of3VzK4nz_Yb2T1zjwchJl1AErV-Ncfw596vA
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+by+statistical+overlap+theory+of+fraction+of+baseline+occupied+by+chromatographic+peaks&rft.jtitle=Journal+of+Chromatography+A&rft.au=Davis%2C+Joe+M.&rft.date=2021-03-15&rft.pub=Elsevier+B.V&rft.issn=0021-9673&rft.volume=1640&rft_id=info:doi/10.1016%2Fj.chroma.2021.461931&rft.externalDocID=S0021967321000558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon