Compressed Sensing for Efficient Encoding of Dense 3D Meshes Using Model-Based Bayesian Learning
With the growing demand for easy and reliable generation of 3D models representing real-world or synthetic objects, new schemes for acquisition, storage, and transmission of 3D meshes are required. In principle, 3D meshes consist of vertex positions and vertex connectivity. Vertex position encoders...
Saved in:
Published in: | IEEE transactions on multimedia Vol. 19; no. 1; pp. 41 - 53 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-01-2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | With the growing demand for easy and reliable generation of 3D models representing real-world or synthetic objects, new schemes for acquisition, storage, and transmission of 3D meshes are required. In principle, 3D meshes consist of vertex positions and vertex connectivity. Vertex position encoders are much more resource demanding than connectivity encoders, stressing the need for novel geometry compression schemes. The design of an accurate and efficient geometry compression system can be achieved by increasing the compression ratio without affecting the visual quality of the object and minimizing the computational complexity. In this paper, we present novel compression/reconstruction schemes that enable aggressive compression ratios, without significantly reducing the visual quality. The encoding is performed by simply executing additions/subtractions. The benefits of the proposed method become more apparent as the density of the meshes increases, while it provides a flexible framework to trade efficiency for reconstruction quality. We derive a novel Bayesian learning algorithm that models the most significant graph Fourier transform coefficients of each submesh, as a multivariate Gaussian distribution. Then we evaluate iteratively the distribution parameters using the expectation-maximization approach. To improve the performance of the proposed approach in highly under determined problems, we exploit the local smoothness of the partitioned surfaces. Extensive evaluation studies, carried out using a large collection of different 3D models, show that the proposed schemes, as compared to the state-of-the-art approaches, achieve competitive compression ratios, offering at the same time significantly lower encoding complexity. |
---|---|
AbstractList | With the growing demand for easy and reliable generation of 3D models representing real-world or synthetic objects, new schemes for acquisition, storage, and transmission of 3D meshes are required. In principle, 3D meshes consist of vertex positions and vertex connectivity. Vertex position encoders are much more resource demanding than connectivity encoders, stressing the need for novel geometry compression schemes. The design of an accurate and efficient geometry compression system can be achieved by increasing the compression ratio without affecting the visual quality of the object and minimizing the computational complexity. In this paper, we present novel compression/reconstruction schemes that enable aggressive compression ratios, without significantly reducing the visual quality. The encoding is performed by simply executing additions/subtractions. The benefits of the proposed method become more apparent as the density of the meshes increases, while it provides a flexible framework to trade efficiency for reconstruction quality. We derive a novel Bayesian learning algorithm that models the most significant graph Fourier transform coefficients of each submesh, as a multivariate Gaussian distribution. Then we evaluate iteratively the distribution parameters using the expectation-maximization approach. To improve the performance of the proposed approach in highly under determined problems, we exploit the local smoothness of the partitioned surfaces. Extensive evaluation studies, carried out using a large collection of different 3D models, show that the proposed schemes, as compared to the state-of-the-art approaches, achieve competitive compression ratios, offering at the same time significantly lower encoding complexity. |
Author | Lalos, Aris S. Moustakas, Konstantinos Vlachos, Evangelos Nikolas, Iason |
Author_xml | – sequence: 1 givenname: Aris S. surname: Lalos fullname: Lalos, Aris S. email: aris.lalos@ece.upatras.gr organization: Electr. & Comput. Eng. Dept., Univ. of Patras, Patras, Greece – sequence: 2 givenname: Iason surname: Nikolas fullname: Nikolas, Iason email: iason.nikolas@ece.upatras.gr organization: Electr. & Comput. Eng. Dept., Univ. of Patras, Patras, Greece – sequence: 3 givenname: Evangelos surname: Vlachos fullname: Vlachos, Evangelos email: vlaxose@ceid.upatras.gr organization: Comput. Eng. & Inf. Dept., Univ. of Patras, Patras, Greece – sequence: 4 givenname: Konstantinos surname: Moustakas fullname: Moustakas, Konstantinos email: moustakas@ece.upatras.gr organization: Electr. & Comput. Eng. Dept., Univ. of Patras, Patras, Greece |
BookMark | eNo9kEtPwzAQhC1UJErhjsTFEueUtR078ZE-eEiNONCegxNvIFVrF7s99N-T0IrTrHa_mZXmmgycd0jIHYMxY6Afl0Ux5sDUmCuQmmcXZMh0yhKALBt0s-SQaM7gilzHuAZgqYRsSD6nfrsLGCNa-oEutu6LNj7QedO0dYtuT-eu9rZf-4bOOgKpmNEC4zdGuvrjC29xk0xMnzExR4ytcXSBJrjuekMuG7OJeHvWEVk9z5fT12Tx_vI2fVoktVBsn2BjaqnQyhqzNFeVUcpKyTsVwggrra1YmhulpRJpLhRosFbYKq8kF3WVixF5OOXugv85YNyXa38IrntZslwCZ4wr3VFwourgYwzYlLvQbk04lgzKvsey67HseyzPPXaW-5OlRcR_PJNSZ5CLX9O_b5I |
CODEN | ITMUF8 |
CitedBy_id | crossref_primary_10_1109_TMM_2017_2757759 crossref_primary_10_1109_TMM_2018_2839911 crossref_primary_10_1109_TMM_2019_2957933 crossref_primary_10_1109_TVCG_2018_2802926 crossref_primary_10_1109_LSP_2019_2963793 crossref_primary_10_1007_s44267_023_00022_x crossref_primary_10_1109_ACCESS_2020_2993613 crossref_primary_10_1109_TMM_2020_2973862 crossref_primary_10_1109_ACCESS_2019_2894533 crossref_primary_10_1109_ACCESS_2020_3024633 crossref_primary_10_1155_2018_8651930 crossref_primary_10_3390_jimaging6060055 |
Cites_doi | 10.1145/344779.344922 10.1016/S0923-5965(02)00147-9 10.1145/1837101.1837109 10.1109/TMM.2012.2229264 10.1109/JPROC.2010.2040551 10.1109/2945.764870 10.1109/CLOUD.2010.76 10.1109/TMM.2014.2331919 10.1109/MC.2010.98 10.1109/ICIP.2009.5414075 10.1145/274363.274365 10.1109/ICECC.2011.6066540 10.1109/TMM.2013.2240674 10.1145/1095878.1095880 10.1111/j.1467-8659.2010.01655.x 10.1109/TIT.1982.1056489 10.1109/TMM.2013.2280245 10.1145/344779.344924 10.1145/218380.218391 10.1109/TMM.2011.2181491 10.1109/TIT.2006.885507 10.1109/ALLERTON.2008.4797641 10.1111/1467-8659.00541 10.1145/280814.280836 10.1145/2693443 10.1109/TIT.2006.871582 10.1137/S1064827595287997 10.1109/MSP.2011.940269 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TMM.2016.2605927 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0077 |
EndPage | 53 |
ExternalDocumentID | 10_1109_TMM_2016_2605927 7559708 |
Genre | orig-research |
GrantInformation_xml | – fundername: MyAirCoach grantid: 643607 – fundername: Greek Secretariat for Research and Technology Bilateral Collaboration Project MOMIRAS grantid: H2020-PHC-2014-2015 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ABTAH ABVLG ACGFO ACGFS ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 XFK ZY4 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-efac56ed5ce7486ba66d552ba633a3d5ddb148a695634836090dd3db8b523cb83 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Thu Oct 10 16:29:14 EDT 2024 Fri Aug 23 03:43:44 EDT 2024 Wed Jun 26 19:22:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-efac56ed5ce7486ba66d552ba633a3d5ddb148a695634836090dd3db8b523cb83 |
PQID | 1850211269 |
PQPubID | 75737 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1850211269 crossref_primary_10_1109_TMM_2016_2605927 ieee_primary_7559708 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref17 ref19 ref24 ref23 ref25 ref20 ref22 ref21 cai (ref4) 0 sorkine (ref18) 0 abdulghani (ref26) 0 ref28 ref27 ref29 ref8 ref7 ref9 touma (ref16) 1998 ref3 ref6 ref5 |
References_xml | – ident: ref8 doi: 10.1145/344779.344922 – start-page: 1127 year: 0 ident: ref26 article-title: Compressive sensing: From 'compressing while sampling' to 'compressing and securing while sampling' publication-title: Ann Int Conf IEEE Eng Med and Biol Soc contributor: fullname: abdulghani – ident: ref28 doi: 10.1016/S0923-5965(02)00147-9 – ident: ref29 doi: 10.1145/1837101.1837109 – ident: ref5 doi: 10.1109/TMM.2012.2229264 – ident: ref31 doi: 10.1109/JPROC.2010.2040551 – ident: ref15 doi: 10.1109/2945.764870 – ident: ref2 doi: 10.1109/CLOUD.2010.76 – start-page: 53 year: 0 ident: ref18 article-title: Laplacian mesh processing publication-title: Proc State of the Art Report Eurographics '91 contributor: fullname: sorkine – ident: ref6 doi: 10.1109/TMM.2014.2331919 – ident: ref10 doi: 10.1109/MC.2010.98 – ident: ref17 doi: 10.1109/ICIP.2009.5414075 – ident: ref13 doi: 10.1145/274363.274365 – ident: ref27 doi: 10.1109/ICECC.2011.6066540 – ident: ref3 doi: 10.1109/TMM.2013.2240674 – ident: ref7 doi: 10.1145/1095878.1095880 – ident: ref20 doi: 10.1111/j.1467-8659.2010.01655.x – ident: ref32 doi: 10.1109/TIT.1982.1056489 – ident: ref23 doi: 10.1109/TMM.2013.2280245 – ident: ref19 doi: 10.1145/344779.344924 – start-page: 551 year: 0 ident: ref4 article-title: Next generation mobile cloud gaming publication-title: Proc IEEE 7th Int Symp Serv -Oriented Syst Eng contributor: fullname: cai – ident: ref12 doi: 10.1145/218380.218391 – ident: ref24 doi: 10.1109/TMM.2011.2181491 – ident: ref22 doi: 10.1109/TIT.2006.885507 – ident: ref25 doi: 10.1109/ALLERTON.2008.4797641 – ident: ref9 doi: 10.1111/1467-8659.00541 – ident: ref14 doi: 10.1145/280814.280836 – ident: ref11 doi: 10.1145/2693443 – ident: ref21 doi: 10.1109/TIT.2006.871582 – ident: ref30 doi: 10.1137/S1064827595287997 – start-page: 26 year: 1998 ident: ref16 article-title: Triangle mesh compression publication-title: Graph Interface contributor: fullname: touma – ident: ref1 doi: 10.1109/MSP.2011.940269 |
SSID | ssj0014507 |
Score | 2.3264284 |
Snippet | With the growing demand for easy and reliable generation of 3D models representing real-world or synthetic objects, new schemes for acquisition, storage, and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 41 |
SubjectTerms | Bayesian analysis Coders Coding Compression ratio Computational modeling Encoding Geometry Laplace equations Machine learning Solid modeling Three dimensional models Three-dimensional displays Visualization |
Title | Compressed Sensing for Efficient Encoding of Dense 3D Meshes Using Model-Based Bayesian Learning |
URI | https://ieeexplore.ieee.org/document/7559708 https://www.proquest.com/docview/1850211269 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29T8JAFL8okw6ioBFFc4OLiQe017v2RhEICy5g4lbvqziYYgQG_3vfOwoh0cWpHa7X5r3ee7_3TcgdyHyuCxux2EnBEp8VLEtExoxRJgKBCQgVXdnjafr8mg2G2CbnYVcL470PyWe-g7chlu8Wdo2usm6K8Bcrew9TlW1qtXYRg0SE0mhQRz2mwI7ZhiR7qjubTDCHS3YQuyucH7OngsJMlV-COGiXUf1_33VKTioUSR83bD8jB75skPp2QgOtDmyDHO-1G2ySN1wQmoU7OsXE9XJOAbPSYWgjAa-gw9IuUJnRRUEHsMJTPqATv3z3SxqSCyjOTvtgfY179PW3xxpMWjVpnZ-Tl9Fw9jRm1YQFZrmMVswX2grpnbA-TTJptJROiBiunGvuhHMGzCUtwYjiCZZ7qJ5z3JnMgP1qTcYvSK1clP6SUG2lMNIrDnskVlljZAESLOIFF1qmcYvcb4mef24aaeTBAOmpHBiUI4PyikEt0kQi79ZV9G2R9pZLeXXSljngDYApUSzV1d9PXZOjGFVxcJu0SW31tfY35HDp1rfhD_oB6NLCjw |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6V9FA4kJaASAmwh14qsRB7vWvvEZpEqSBcSKXezL4cDshBTXLov-_MxomQ6IWTfVivrRnvzDdvgG8o84WpXMJTryTPQlHxIpMFt1bbBAUmIlRyZY8f8vvfxWBIbXIutrUwIYSYfBYu6TbG8v3crchVdpUT_KXK3o8yy1W-rtbaxgwyGYujUSH1uUZLZhOU7Our6WRCWVzqktC7pgkyr5RQnKryRhRH_TJqv-_LPsN-gyPZ9ZrxX-BDqA-gvZnRwJojewB7rxoOduCRFsR24Z49UOp6PWOIWtkwNpLAV7Bh7eakzti8YgNcEZgYsElYPIUFi-kFjKanPfMbQ3vcmL-BqjBZ06Z1dgi_RsPpjzFvZixwJ1Sy5KEyTqrgpQt5VihrlPJSpngVwggvvbdoMBmFZpTIqOBD970X3hYWLVhnC3EErXpeh2NgxilpVdAC98icdtaqCmVYIiohjcrTLnzfEL18WbfSKKMJ0tclMqgkBpUNg7rQISJv1zX07UJvw6WyOWuLEhEHApUkVfrr_586h0_j6eSuvPt5f3sCuykp5uhE6UFr-WcVTmFn4Vdn8W_6B1GBxeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressed+Sensing+for+Efficient+Encoding+of+Dense+3D+Meshes+Using+Model-Based+Bayesian+Learning&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Lalos%2C+Aris+S.&rft.au=Nikolas%2C+Iason&rft.au=Vlachos%2C+Evangelos&rft.au=Moustakas%2C+Konstantinos&rft.date=2017-01-01&rft.pub=IEEE&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=19&rft.issue=1&rft.spage=41&rft.epage=53&rft_id=info:doi/10.1109%2FTMM.2016.2605927&rft.externalDocID=7559708 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |