Compressed Sensing for Efficient Encoding of Dense 3D Meshes Using Model-Based Bayesian Learning

With the growing demand for easy and reliable generation of 3D models representing real-world or synthetic objects, new schemes for acquisition, storage, and transmission of 3D meshes are required. In principle, 3D meshes consist of vertex positions and vertex connectivity. Vertex position encoders...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on multimedia Vol. 19; no. 1; pp. 41 - 53
Main Authors: Lalos, Aris S., Nikolas, Iason, Vlachos, Evangelos, Moustakas, Konstantinos
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-01-2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the growing demand for easy and reliable generation of 3D models representing real-world or synthetic objects, new schemes for acquisition, storage, and transmission of 3D meshes are required. In principle, 3D meshes consist of vertex positions and vertex connectivity. Vertex position encoders are much more resource demanding than connectivity encoders, stressing the need for novel geometry compression schemes. The design of an accurate and efficient geometry compression system can be achieved by increasing the compression ratio without affecting the visual quality of the object and minimizing the computational complexity. In this paper, we present novel compression/reconstruction schemes that enable aggressive compression ratios, without significantly reducing the visual quality. The encoding is performed by simply executing additions/subtractions. The benefits of the proposed method become more apparent as the density of the meshes increases, while it provides a flexible framework to trade efficiency for reconstruction quality. We derive a novel Bayesian learning algorithm that models the most significant graph Fourier transform coefficients of each submesh, as a multivariate Gaussian distribution. Then we evaluate iteratively the distribution parameters using the expectation-maximization approach. To improve the performance of the proposed approach in highly under determined problems, we exploit the local smoothness of the partitioned surfaces. Extensive evaluation studies, carried out using a large collection of different 3D models, show that the proposed schemes, as compared to the state-of-the-art approaches, achieve competitive compression ratios, offering at the same time significantly lower encoding complexity.
AbstractList With the growing demand for easy and reliable generation of 3D models representing real-world or synthetic objects, new schemes for acquisition, storage, and transmission of 3D meshes are required. In principle, 3D meshes consist of vertex positions and vertex connectivity. Vertex position encoders are much more resource demanding than connectivity encoders, stressing the need for novel geometry compression schemes. The design of an accurate and efficient geometry compression system can be achieved by increasing the compression ratio without affecting the visual quality of the object and minimizing the computational complexity. In this paper, we present novel compression/reconstruction schemes that enable aggressive compression ratios, without significantly reducing the visual quality. The encoding is performed by simply executing additions/subtractions. The benefits of the proposed method become more apparent as the density of the meshes increases, while it provides a flexible framework to trade efficiency for reconstruction quality. We derive a novel Bayesian learning algorithm that models the most significant graph Fourier transform coefficients of each submesh, as a multivariate Gaussian distribution. Then we evaluate iteratively the distribution parameters using the expectation-maximization approach. To improve the performance of the proposed approach in highly under determined problems, we exploit the local smoothness of the partitioned surfaces. Extensive evaluation studies, carried out using a large collection of different 3D models, show that the proposed schemes, as compared to the state-of-the-art approaches, achieve competitive compression ratios, offering at the same time significantly lower encoding complexity.
Author Lalos, Aris S.
Moustakas, Konstantinos
Vlachos, Evangelos
Nikolas, Iason
Author_xml – sequence: 1
  givenname: Aris S.
  surname: Lalos
  fullname: Lalos, Aris S.
  email: aris.lalos@ece.upatras.gr
  organization: Electr. & Comput. Eng. Dept., Univ. of Patras, Patras, Greece
– sequence: 2
  givenname: Iason
  surname: Nikolas
  fullname: Nikolas, Iason
  email: iason.nikolas@ece.upatras.gr
  organization: Electr. & Comput. Eng. Dept., Univ. of Patras, Patras, Greece
– sequence: 3
  givenname: Evangelos
  surname: Vlachos
  fullname: Vlachos, Evangelos
  email: vlaxose@ceid.upatras.gr
  organization: Comput. Eng. & Inf. Dept., Univ. of Patras, Patras, Greece
– sequence: 4
  givenname: Konstantinos
  surname: Moustakas
  fullname: Moustakas, Konstantinos
  email: moustakas@ece.upatras.gr
  organization: Electr. & Comput. Eng. Dept., Univ. of Patras, Patras, Greece
BookMark eNo9kEtPwzAQhC1UJErhjsTFEueUtR078ZE-eEiNONCegxNvIFVrF7s99N-T0IrTrHa_mZXmmgycd0jIHYMxY6Afl0Ux5sDUmCuQmmcXZMh0yhKALBt0s-SQaM7gilzHuAZgqYRsSD6nfrsLGCNa-oEutu6LNj7QedO0dYtuT-eu9rZf-4bOOgKpmNEC4zdGuvrjC29xk0xMnzExR4ytcXSBJrjuekMuG7OJeHvWEVk9z5fT12Tx_vI2fVoktVBsn2BjaqnQyhqzNFeVUcpKyTsVwggrra1YmhulpRJpLhRosFbYKq8kF3WVixF5OOXugv85YNyXa38IrntZslwCZ4wr3VFwourgYwzYlLvQbk04lgzKvsey67HseyzPPXaW-5OlRcR_PJNSZ5CLX9O_b5I
CODEN ITMUF8
CitedBy_id crossref_primary_10_1109_TMM_2017_2757759
crossref_primary_10_1109_TMM_2018_2839911
crossref_primary_10_1109_TMM_2019_2957933
crossref_primary_10_1109_TVCG_2018_2802926
crossref_primary_10_1109_LSP_2019_2963793
crossref_primary_10_1007_s44267_023_00022_x
crossref_primary_10_1109_ACCESS_2020_2993613
crossref_primary_10_1109_TMM_2020_2973862
crossref_primary_10_1109_ACCESS_2019_2894533
crossref_primary_10_1109_ACCESS_2020_3024633
crossref_primary_10_1155_2018_8651930
crossref_primary_10_3390_jimaging6060055
Cites_doi 10.1145/344779.344922
10.1016/S0923-5965(02)00147-9
10.1145/1837101.1837109
10.1109/TMM.2012.2229264
10.1109/JPROC.2010.2040551
10.1109/2945.764870
10.1109/CLOUD.2010.76
10.1109/TMM.2014.2331919
10.1109/MC.2010.98
10.1109/ICIP.2009.5414075
10.1145/274363.274365
10.1109/ICECC.2011.6066540
10.1109/TMM.2013.2240674
10.1145/1095878.1095880
10.1111/j.1467-8659.2010.01655.x
10.1109/TIT.1982.1056489
10.1109/TMM.2013.2280245
10.1145/344779.344924
10.1145/218380.218391
10.1109/TMM.2011.2181491
10.1109/TIT.2006.885507
10.1109/ALLERTON.2008.4797641
10.1111/1467-8659.00541
10.1145/280814.280836
10.1145/2693443
10.1109/TIT.2006.871582
10.1137/S1064827595287997
10.1109/MSP.2011.940269
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2016.2605927
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 53
ExternalDocumentID 10_1109_TMM_2016_2605927
7559708
Genre orig-research
GrantInformation_xml – fundername: MyAirCoach
  grantid: 643607
– fundername: Greek Secretariat for Research and Technology Bilateral Collaboration Project MOMIRAS
  grantid: H2020-PHC-2014-2015
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABTAH
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
XFK
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-efac56ed5ce7486ba66d552ba633a3d5ddb148a695634836090dd3db8b523cb83
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Thu Oct 10 16:29:14 EDT 2024
Fri Aug 23 03:43:44 EDT 2024
Wed Jun 26 19:22:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-efac56ed5ce7486ba66d552ba633a3d5ddb148a695634836090dd3db8b523cb83
PQID 1850211269
PQPubID 75737
PageCount 13
ParticipantIDs proquest_journals_1850211269
crossref_primary_10_1109_TMM_2016_2605927
ieee_primary_7559708
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref17
ref19
ref24
ref23
ref25
ref20
ref22
ref21
cai (ref4) 0
sorkine (ref18) 0
abdulghani (ref26) 0
ref28
ref27
ref29
ref8
ref7
ref9
touma (ref16) 1998
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1145/344779.344922
– start-page: 1127
  year: 0
  ident: ref26
  article-title: Compressive sensing: From 'compressing while sampling' to 'compressing and securing while sampling'
  publication-title: Ann Int Conf IEEE Eng Med and Biol Soc
  contributor:
    fullname: abdulghani
– ident: ref28
  doi: 10.1016/S0923-5965(02)00147-9
– ident: ref29
  doi: 10.1145/1837101.1837109
– ident: ref5
  doi: 10.1109/TMM.2012.2229264
– ident: ref31
  doi: 10.1109/JPROC.2010.2040551
– ident: ref15
  doi: 10.1109/2945.764870
– ident: ref2
  doi: 10.1109/CLOUD.2010.76
– start-page: 53
  year: 0
  ident: ref18
  article-title: Laplacian mesh processing
  publication-title: Proc State of the Art Report Eurographics '91
  contributor:
    fullname: sorkine
– ident: ref6
  doi: 10.1109/TMM.2014.2331919
– ident: ref10
  doi: 10.1109/MC.2010.98
– ident: ref17
  doi: 10.1109/ICIP.2009.5414075
– ident: ref13
  doi: 10.1145/274363.274365
– ident: ref27
  doi: 10.1109/ICECC.2011.6066540
– ident: ref3
  doi: 10.1109/TMM.2013.2240674
– ident: ref7
  doi: 10.1145/1095878.1095880
– ident: ref20
  doi: 10.1111/j.1467-8659.2010.01655.x
– ident: ref32
  doi: 10.1109/TIT.1982.1056489
– ident: ref23
  doi: 10.1109/TMM.2013.2280245
– ident: ref19
  doi: 10.1145/344779.344924
– start-page: 551
  year: 0
  ident: ref4
  article-title: Next generation mobile cloud gaming
  publication-title: Proc IEEE 7th Int Symp Serv -Oriented Syst Eng
  contributor:
    fullname: cai
– ident: ref12
  doi: 10.1145/218380.218391
– ident: ref24
  doi: 10.1109/TMM.2011.2181491
– ident: ref22
  doi: 10.1109/TIT.2006.885507
– ident: ref25
  doi: 10.1109/ALLERTON.2008.4797641
– ident: ref9
  doi: 10.1111/1467-8659.00541
– ident: ref14
  doi: 10.1145/280814.280836
– ident: ref11
  doi: 10.1145/2693443
– ident: ref21
  doi: 10.1109/TIT.2006.871582
– ident: ref30
  doi: 10.1137/S1064827595287997
– start-page: 26
  year: 1998
  ident: ref16
  article-title: Triangle mesh compression
  publication-title: Graph Interface
  contributor:
    fullname: touma
– ident: ref1
  doi: 10.1109/MSP.2011.940269
SSID ssj0014507
Score 2.3264284
Snippet With the growing demand for easy and reliable generation of 3D models representing real-world or synthetic objects, new schemes for acquisition, storage, and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 41
SubjectTerms Bayesian analysis
Coders
Coding
Compression ratio
Computational modeling
Encoding
Geometry
Laplace equations
Machine learning
Solid modeling
Three dimensional models
Three-dimensional displays
Visualization
Title Compressed Sensing for Efficient Encoding of Dense 3D Meshes Using Model-Based Bayesian Learning
URI https://ieeexplore.ieee.org/document/7559708
https://www.proquest.com/docview/1850211269
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29T8JAFL8okw6ioBFFc4OLiQe017v2RhEICy5g4lbvqziYYgQG_3vfOwoh0cWpHa7X5r3ee7_3TcgdyHyuCxux2EnBEp8VLEtExoxRJgKBCQgVXdnjafr8mg2G2CbnYVcL470PyWe-g7chlu8Wdo2usm6K8Bcrew9TlW1qtXYRg0SE0mhQRz2mwI7ZhiR7qjubTDCHS3YQuyucH7OngsJMlV-COGiXUf1_33VKTioUSR83bD8jB75skPp2QgOtDmyDHO-1G2ySN1wQmoU7OsXE9XJOAbPSYWgjAa-gw9IuUJnRRUEHsMJTPqATv3z3SxqSCyjOTvtgfY179PW3xxpMWjVpnZ-Tl9Fw9jRm1YQFZrmMVswX2grpnbA-TTJptJROiBiunGvuhHMGzCUtwYjiCZZ7qJ5z3JnMgP1qTcYvSK1clP6SUG2lMNIrDnskVlljZAESLOIFF1qmcYvcb4mef24aaeTBAOmpHBiUI4PyikEt0kQi79ZV9G2R9pZLeXXSljngDYApUSzV1d9PXZOjGFVxcJu0SW31tfY35HDp1rfhD_oB6NLCjw
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6V9FA4kJaASAmwh14qsRB7vWvvEZpEqSBcSKXezL4cDshBTXLov-_MxomQ6IWTfVivrRnvzDdvgG8o84WpXMJTryTPQlHxIpMFt1bbBAUmIlRyZY8f8vvfxWBIbXIutrUwIYSYfBYu6TbG8v3crchVdpUT_KXK3o8yy1W-rtbaxgwyGYujUSH1uUZLZhOU7Our6WRCWVzqktC7pgkyr5RQnKryRhRH_TJqv-_LPsN-gyPZ9ZrxX-BDqA-gvZnRwJojewB7rxoOduCRFsR24Z49UOp6PWOIWtkwNpLAV7Bh7eakzti8YgNcEZgYsElYPIUFi-kFjKanPfMbQ3vcmL-BqjBZ06Z1dgi_RsPpjzFvZixwJ1Sy5KEyTqrgpQt5VihrlPJSpngVwggvvbdoMBmFZpTIqOBD970X3hYWLVhnC3EErXpeh2NgxilpVdAC98icdtaqCmVYIiohjcrTLnzfEL18WbfSKKMJ0tclMqgkBpUNg7rQISJv1zX07UJvw6WyOWuLEhEHApUkVfrr_586h0_j6eSuvPt5f3sCuykp5uhE6UFr-WcVTmFn4Vdn8W_6B1GBxeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressed+Sensing+for+Efficient+Encoding+of+Dense+3D+Meshes+Using+Model-Based+Bayesian+Learning&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Lalos%2C+Aris+S.&rft.au=Nikolas%2C+Iason&rft.au=Vlachos%2C+Evangelos&rft.au=Moustakas%2C+Konstantinos&rft.date=2017-01-01&rft.pub=IEEE&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=19&rft.issue=1&rft.spage=41&rft.epage=53&rft_id=info:doi/10.1109%2FTMM.2016.2605927&rft.externalDocID=7559708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon