Predicting the Tensile Behaviour of Cast Alloys by a Pattern Recognition Analysis on Experimental Data

The ability to accurately predict the mechanical properties of metals is essential for their correct use in the design of structures and components. This is even more important in the presence of materials, such as metal cast alloys, whose properties can vary significantly in relation to their const...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) Vol. 9; no. 5; p. 557
Main Authors: Fragassa, Cristiano, Babic, Matej, Bergmann, Carlos Perez, Minak, Giangiacomo
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-05-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability to accurately predict the mechanical properties of metals is essential for their correct use in the design of structures and components. This is even more important in the presence of materials, such as metal cast alloys, whose properties can vary significantly in relation to their constituent elements, microstructures, process parameters or treatments. This study shows how a machine learning approach, based on pattern recognition analysis on experimental data, is able to offer acceptable precision predictions with respect to the main mechanical properties of metals, as in the case of ductile cast iron and compact graphite cast iron. The metallographic properties, such as graphite, ferrite and perlite content, extrapolated through macro indicators from micrographs by image analysis, are used as inputs for the machine learning algorithms, while the mechanical properties, such as yield strength, ultimate strength, ultimate strain and Young’s modulus, are derived as output. In particular, 3 different machine learning algorithms are trained starting from a dataset of 20–30 data for each material and the results offer high accuracy, often better than other predictive techniques. Concerns regarding the applicability of these predictive techniques in material design and product/process quality control are also discussed.
ISSN:2075-4701
2075-4701
DOI:10.3390/met9050557