Selection of Temporal Lags for Predicting Riverflow Series from Hydroelectric Plants Using Variable Selection Methods

The forecasting of monthly seasonal streamflow time series is an important issue for countries where hydroelectric plants contribute significantly to electric power generation. The main step in the planning of the electric sector’s operation is to predict such series to anticipate behaviors and issu...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 13; no. 16; p. 4236
Main Authors: Siqueira, Hugo, Macedo, Mariana, Tadano, Yara de Souza, Alves, Thiago Antonini, Stevan, Sergio L., Oliveira, Domingos S., Marinho, Manoel H.N., Neto, Paulo S.G. de Mattos, Oliveira,  João F. L. de, Luna, Ivette, Filho, Marcos de Almeida Leone, Sarubbo, Leonie Asfora, Converti, Attilio
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-08-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The forecasting of monthly seasonal streamflow time series is an important issue for countries where hydroelectric plants contribute significantly to electric power generation. The main step in the planning of the electric sector’s operation is to predict such series to anticipate behaviors and issues. In general, several proposals of the literature focus just on the determination of the best forecasting models. However, the correct selection of input variables is an essential step for the forecasting accuracy, which in a univariate model is given by the lags of the time series to forecast. This task can be solved by variable selection methods since the performance of the predictors is directly related to this stage. In the present study, we investigate the performances of linear and non-linear filters, wrappers, and bio-inspired metaheuristics, totaling ten approaches. The addressed predictors are the extreme learning machine neural networks, representing the non-linear approaches, and the autoregressive linear models, from the Box and Jenkins methodology. The computational results regarding five series from hydroelectric plants indicate that the wrapper methodology is adequate for the non-linear method, and the linear approaches are better adjusted using filters.
AbstractList The forecasting of monthly seasonal streamflow time series is an important issue for countries where hydroelectric plants contribute significantly to electric power generation. The main step in the planning of the electric sector’s operation is to predict such series to anticipate behaviors and issues. In general, several proposals of the literature focus just on the determination of the best forecasting models. However, the correct selection of input variables is an essential step for the forecasting accuracy, which in a univariate model is given by the lags of the time series to forecast. This task can be solved by variable selection methods since the performance of the predictors is directly related to this stage. In the present study, we investigate the performances of linear and non-linear filters, wrappers, and bio-inspired metaheuristics, totaling ten approaches. The addressed predictors are the extreme learning machine neural networks, representing the non-linear approaches, and the autoregressive linear models, from the Box and Jenkins methodology. The computational results regarding five series from hydroelectric plants indicate that the wrapper methodology is adequate for the non-linear method, and the linear approaches are better adjusted using filters.
Author Oliveira, Domingos S.
Sarubbo, Leonie Asfora
Luna, Ivette
Converti, Attilio
Macedo, Mariana
Siqueira, Hugo
Marinho, Manoel H.N.
Tadano, Yara de Souza
Filho, Marcos de Almeida Leone
Oliveira,  João F. L. de
Alves, Thiago Antonini
Stevan, Sergio L.
Neto, Paulo S.G. de Mattos
Author_xml – sequence: 1
  givenname: Hugo
  orcidid: 0000-0002-1278-4602
  surname: Siqueira
  fullname: Siqueira, Hugo
– sequence: 2
  givenname: Mariana
  orcidid: 0000-0002-7071-379X
  surname: Macedo
  fullname: Macedo, Mariana
– sequence: 3
  givenname: Yara de Souza
  orcidid: 0000-0002-3975-3419
  surname: Tadano
  fullname: Tadano, Yara de Souza
– sequence: 4
  givenname: Thiago Antonini
  orcidid: 0000-0003-2950-7377
  surname: Alves
  fullname: Alves, Thiago Antonini
– sequence: 5
  givenname: Sergio L.
  orcidid: 0000-0002-4783-5350
  surname: Stevan
  fullname: Stevan, Sergio L.
– sequence: 6
  givenname: Domingos S.
  surname: Oliveira
  fullname: Oliveira, Domingos S.
– sequence: 7
  givenname: Manoel H.N.
  surname: Marinho
  fullname: Marinho, Manoel H.N.
– sequence: 8
  givenname: Paulo S.G. de Mattos
  orcidid: 0000-0003-3129-0453
  surname: Neto
  fullname: Neto, Paulo S.G. de Mattos
– sequence: 9
  givenname:  João F. L. de
  orcidid: 0000-0002-1150-4904
  surname: Oliveira
  fullname: Oliveira,  João F. L. de
– sequence: 10
  givenname: Ivette
  surname: Luna
  fullname: Luna, Ivette
– sequence: 11
  givenname: Marcos de Almeida Leone
  surname: Filho
  fullname: Filho, Marcos de Almeida Leone
– sequence: 12
  givenname: Leonie Asfora
  orcidid: 0000-0002-4746-0560
  surname: Sarubbo
  fullname: Sarubbo, Leonie Asfora
– sequence: 13
  givenname: Attilio
  orcidid: 0000-0003-2488-6080
  surname: Converti
  fullname: Converti, Attilio
BookMark eNpNUU1LxDAQDaKgrl78BQFvwmqmk7bbo4hfsKL4dQ1pM1mzdJt10lX891ZX1Lm8Yd7MewNvV2x2sSMhDkAdI1bqhDpAKHSGxYbYgaoqxqBK3PzXb4v9lOZqKERAxB2xeqCWmj7ETkYvH2mxjGxbObWzJH1kecfkwsB3M3kf3oh9G9_lA3Gggee4kFcfjuO3BodG3rW265N8Sl8Hz5aDrVuSfx431L9El_bElrdtov0fHImni_PHs6vx9Pby-ux0Om6wgH7cFF5nVOY-Q-UIIG9qcgpqVBrIklZUltp5gGriXV16NSFbVko3Fgi99zgS12tdF-3cLDksLH-YaIP5HkSeGct9aFoyhc_8YIWuAtBYw6RAh_nEVrXOrfZu0Dpcay05vq4o9WYeV9wN75tMY17oKhtwJI7WWw3HlJj8ryso85WS-UsJPwHuc4dQ
CitedBy_id crossref_primary_10_1080_08839514_2023_2185849
crossref_primary_10_1109_ACCESS_2023_3322691
crossref_primary_10_3390_en14123385
crossref_primary_10_1016_j_chaos_2022_112982
crossref_primary_10_1109_ACCESS_2023_3237982
crossref_primary_10_3390_s21238096
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_3390_en16135050
crossref_primary_10_3390_en16072942
crossref_primary_10_3390_ai3010006
crossref_primary_10_1016_j_envpol_2020_115920
crossref_primary_10_3390_en15186788
crossref_primary_10_1016_j_eswa_2024_124219
crossref_primary_10_3390_en15196881
crossref_primary_10_1109_ACCESS_2021_3050437
crossref_primary_10_3390_biomimetics8020231
crossref_primary_10_3390_s23136233
crossref_primary_10_1111_itor_12908
crossref_primary_10_1016_j_aej_2023_08_001
crossref_primary_10_2478_johh_2021_0001
crossref_primary_10_1016_j_asoc_2021_108110
crossref_primary_10_3390_en16041712
crossref_primary_10_3390_su12187310
crossref_primary_10_3390_designs7030063
crossref_primary_10_3390_su151511545
Cites_doi 10.3390/su12072621
10.1142/S0129065714300095
10.7551/mitpress/1090.001.0001
10.1111/j.2517-6161.1949.tb00023.x
10.3233/ICA-200618
10.1109/IJCNN.2007.4371334
10.3390/en10101522
10.5194/hess-23-2735-2019
10.1016/j.neunet.2014.10.001
10.1002/0471221317
10.1016/j.ijforecast.2010.09.006
10.1016/j.jhydrol.2004.06.021
10.1007/s12665-016-5337-7
10.1002/rra.3006
10.1016/j.jhydrol.2015.08.022
10.1016/j.energy.2020.117729
10.1109/ICMLA.2017.0-115
10.1109/72.97934
10.1016/j.infrared.2020.103327
10.1109/DSAA.2019.00068
10.1016/j.aasri.2012.06.058
10.3390/en11081975
10.1002/cem.3226
10.1088/1742-6596/1402/7/077096
10.1016/S0004-3702(97)00043-X
10.3390/e22050543
10.1016/j.jhydrol.2015.08.008
10.1016/j.saa.2019.117208
10.1103/PhysRevE.52.2318
10.3390/en11092208
10.1017/S0269964806060098
10.1109/18.661502
10.1016/j.jfoodeng.2014.06.023
10.1016/B978-0-444-63428-3.50276-9
10.1007/s12355-018-0648-5
10.3390/en12132530
10.21528/LNLM-vol10-no3-art5
10.1016/S0022-1694(00)00346-2
10.1007/s10762-018-0474-6
10.3390/en13071667
10.1016/j.neucom.2010.01.017
10.5176/2251-1938_ORS16.22
10.1016/j.eswa.2019.05.028
10.1214/aos/1176344136
10.1109/TAC.1974.1100705
10.1016/j.advwatres.2011.04.007
10.1007/978-1-4757-3462-1
10.1002/9780470316849
10.3390/rs12050871
10.1111/j.1467-9892.1994.tb00186.x
10.1016/j.jhydrol.2016.09.035
10.1016/j.foodcont.2017.10.037
10.1016/j.future.2019.03.032
10.1016/S0925-2312(02)00518-0
10.1016/j.ins.2017.05.013
10.1016/j.neucom.2005.12.126
10.1016/j.asoc.2018.04.007
10.1080/00401706.1985.10488076
10.1016/j.jhydrol.2020.124975
10.1109/IJCNN.2006.247129
10.1016/j.jtcvs.2016.11.028
10.1016/j.infrared.2020.103259
10.1007/s11269-017-1583-z
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en13164236
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_6f2fe753d91143b1863d358a9b45a4fd
10_3390_en13164236
GeographicLocations Brazil
Canada
United States--US
China
GeographicLocations_xml – name: China
– name: Canada
– name: United States--US
– name: Brazil
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
I-F
IAO
KQ8
L6V
L8X
M7S
MODMG
M~E
OK1
P2P
PATMY
PIMPY
PROAC
PYCSY
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-c6f42e75f230de115cbed01b3041eae40e774df1198fdb7f08ea7904ca1e3fff3
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Tue Oct 22 15:14:14 EDT 2024
Thu Oct 10 16:26:07 EDT 2024
Fri Nov 22 03:13:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-c6f42e75f230de115cbed01b3041eae40e774df1198fdb7f08ea7904ca1e3fff3
ORCID 0000-0002-7071-379X
0000-0002-3975-3419
0000-0002-4746-0560
0000-0002-1150-4904
0000-0002-4783-5350
0000-0003-2488-6080
0000-0003-3129-0453
0000-0003-2950-7377
0000-0002-1278-4602
OpenAccessLink https://doaj.org/article/6f2fe753d91143b1863d358a9b45a4fd
PQID 2435649224
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_6f2fe753d91143b1863d358a9b45a4fd
proquest_journals_2435649224
crossref_primary_10_3390_en13164236
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Kohavi (ref_63) 1997; 97
Wang (ref_18) 2014; 143
Prohaska (ref_7) 2017; 31
Huang (ref_79) 2015; 61
Siqueira (ref_2) 2018; 68
Akaho (ref_56) 2002; 49
ref_54
ref_53
Speiser (ref_25) 2019; 134
ref_52
Quenouille (ref_51) 1949; 11
Maceira (ref_11) 2005; 20
Pochwatka (ref_81) 2020; 202
Bowden (ref_55) 2005; 301
Yu (ref_48) 2004; 5
ref_61
ref_60
Schwarz (ref_65) 1978; 6
Specht (ref_59) 1991; 2
Yin (ref_19) 2019; 221
ref_69
ref_67
ref_22
ref_20
Siqueira (ref_43) 2012; Volume 7664
ref_62
Huang (ref_77) 2006; 70
Fouad (ref_5) 2020; 587
Rendall (ref_26) 2016; 38
ref_27
Bartlett (ref_78) 1998; 44
Cui (ref_41) 2012; 1
Taormina (ref_39) 2015; 529
Guyon (ref_17) 2003; 3
Arsenault (ref_6) 2019; 23
Yaseen (ref_10) 2016; 542
Moon (ref_15) 1995; 52
ref_72
ref_71
ref_70
Siqueira (ref_12) 2014; 24
ref_36
ref_34
Zhu (ref_3) 2016; 75
ref_76
Santi (ref_28) 2019; 1402
ref_31
ref_30
Siqueira (ref_44) 2012; Volume 7435
ref_74
ref_73
Sharma (ref_58) 2000; 239
Taormina (ref_40) 2015; 529
Hailegeorgis (ref_8) 2016; 33
Siqueira (ref_45) 2012; 10
ref_38
ref_37
McLeod (ref_64) 1994; 15
Crone (ref_16) 2010; 73
Siqueira (ref_80) 2019; 10
Santana (ref_68) 2019; 98
Tutkun (ref_32) 2020; 49
Xiong (ref_24) 2020; 105
Bonah (ref_23) 2020; 107
ref_47
Vecchia (ref_75) 1985; 27
ref_46
Karim (ref_29) 2017; 153
Akaike (ref_66) 1974; 19
ref_1
Tsakiris (ref_21) 2011; 34
Munera (ref_13) 2018; 86
Seo (ref_35) 2019; 26
ref_49
ref_9
Mehmood (ref_33) 2020; 34
Luna (ref_57) 2011; 27
ref_4
Yan (ref_14) 2018; 39
Silva (ref_42) 2018; 21
References_xml – ident: ref_46
  doi: 10.3390/su12072621
– volume: 24
  start-page: 1430009
  year: 2014
  ident: ref_12
  article-title: Unorganized machines for seasonal streamflow series forecasting
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065714300095
  contributor:
    fullname: Siqueira
– ident: ref_70
  doi: 10.7551/mitpress/1090.001.0001
– ident: ref_74
– volume: 11
  start-page: 68
  year: 1949
  ident: ref_51
  article-title: Approximate tests of correlation in time-series
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1949.tb00023.x
  contributor:
    fullname: Quenouille
– ident: ref_69
  doi: 10.3233/ICA-200618
– ident: ref_73
  doi: 10.1109/IJCNN.2007.4371334
– ident: ref_38
  doi: 10.3390/en10101522
– volume: 23
  start-page: 2735
  year: 2019
  ident: ref_6
  article-title: Analysis of the effects of biases in ensemble streamflow prediction (ESP) forecasts on electricity production in hydropower reservoir management
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-23-2735-2019
  contributor:
    fullname: Arsenault
– volume: 61
  start-page: 32
  year: 2015
  ident: ref_79
  article-title: Trends in extreme learning machines: A review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.10.001
  contributor:
    fullname: Huang
– ident: ref_49
  doi: 10.1002/0471221317
– volume: 27
  start-page: 708
  year: 2011
  ident: ref_57
  article-title: Top-down strategies based on adaptive fuzzy rule-based systems for daily time series forecasting
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2010.09.006
  contributor:
    fullname: Luna
– ident: ref_1
– volume: 301
  start-page: 75
  year: 2005
  ident: ref_55
  article-title: Input determination for neural network models in water resources applications. Part 1—Background and methodology
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.06.021
  contributor:
    fullname: Bowden
– volume: 75
  start-page: 531
  year: 2016
  ident: ref_3
  article-title: Streamflow estimation by support vector machine coupled with different methods of time series decomposition in the upper reaches of Yangtze River, China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5337-7
  contributor:
    fullname: Zhu
– ident: ref_71
– volume: 33
  start-page: 233
  year: 2016
  ident: ref_8
  article-title: Regional statistical and precipitation-runoff modelling for ecological applications: prediction of hourly streamflow in regulated rivers and ungauged basins
  publication-title: River Res. Appl.
  doi: 10.1002/rra.3006
  contributor:
    fullname: Hailegeorgis
– volume: 529
  start-page: 1617
  year: 2015
  ident: ref_39
  article-title: Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.08.022
  contributor:
    fullname: Taormina
– volume: 5
  start-page: 1205
  year: 2004
  ident: ref_48
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Yu
– volume: 202
  start-page: 117729
  year: 2020
  ident: ref_81
  article-title: Energy value estimation of silages for substrate in biogas plants using an artificial neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117729
  contributor:
    fullname: Pochwatka
– volume: 26
  start-page: 575
  year: 2019
  ident: ref_35
  article-title: Unified methods for variable selection and outlier detection in a linear regression
  publication-title: Commun. Stat. Appl. Methods
  contributor:
    fullname: Seo
– ident: ref_52
– ident: ref_9
  doi: 10.1109/ICMLA.2017.0-115
– volume: 2
  start-page: 568
  year: 1991
  ident: ref_59
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.97934
  contributor:
    fullname: Specht
– volume: 107
  start-page: 103327
  year: 2020
  ident: ref_23
  article-title: Comparison of variable selection algorithms on vis-NIR hyperspectral imaging spectra for quantitative monitoring and visualization of bacterial foodborne pathogens in fresh pork muscles
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103327
  contributor:
    fullname: Bonah
– ident: ref_34
  doi: 10.1109/DSAA.2019.00068
– volume: 1
  start-page: 377
  year: 2012
  ident: ref_41
  article-title: Chaotic time series prediction based on binary particle swarm optimization
  publication-title: AASRI Proc.
  doi: 10.1016/j.aasri.2012.06.058
  contributor:
    fullname: Cui
– ident: ref_36
  doi: 10.3390/en11081975
– volume: 34
  start-page: e3226
  year: 2020
  ident: ref_33
  article-title: Comparison of variable selection methods in partial least squares regression
  publication-title: J. Chemom.
  doi: 10.1002/cem.3226
  contributor:
    fullname: Mehmood
– volume: Volume 7435
  start-page: 226
  year: 2012
  ident: ref_44
  article-title: Echo state networks for seasonal streamflow series forecasting
  publication-title: Computer Vision
  contributor:
    fullname: Siqueira
– volume: 1402
  start-page: 077096
  year: 2019
  ident: ref_28
  article-title: Variable selection methods applied to the mathematics scores of Indonesian students based on convex penalized likelihood
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1402/7/077096
  contributor:
    fullname: Santi
– volume: 97
  start-page: 273
  year: 1997
  ident: ref_63
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
  contributor:
    fullname: Kohavi
– ident: ref_72
– ident: ref_31
  doi: 10.3390/e22050543
– volume: Volume 7664
  start-page: 491
  year: 2012
  ident: ref_43
  article-title: Echo state networks and extreme learning machines: A comparative study on seasonal streamflow series prediction
  publication-title: Computer Vision
  contributor:
    fullname: Siqueira
– ident: ref_53
– volume: 529
  start-page: 1788
  year: 2015
  ident: ref_40
  article-title: Neural network river forecasting through baseflow separation and binary-coded swarm optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.08.008
  contributor:
    fullname: Taormina
– volume: 221
  start-page: 117208
  year: 2019
  ident: ref_19
  article-title: A review of the application of near-infrared spectroscopy to rare traditional Chinese medicine
  publication-title: Spectrochim. Acta Part. A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2019.117208
  contributor:
    fullname: Yin
– ident: ref_76
– volume: 52
  start-page: 2318
  year: 1995
  ident: ref_15
  article-title: Estimation of mutual information using kernel density estimators
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.52.2318
  contributor:
    fullname: Moon
– ident: ref_37
  doi: 10.3390/en11092208
– volume: 20
  start-page: 143
  year: 2005
  ident: ref_11
  article-title: Use of the PAR (p) model in the stochastic dual dynamic programming optimization scheme used in the operation planning of the brazilian hydropower system
  publication-title: Probab. Eng. Inf. Sci.
  doi: 10.1017/S0269964806060098
  contributor:
    fullname: Maceira
– volume: 44
  start-page: 525
  year: 1998
  ident: ref_78
  article-title: The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.661502
  contributor:
    fullname: Bartlett
– volume: 143
  start-page: 17
  year: 2014
  ident: ref_18
  article-title: Technology using near infrared spectroscopic and multivariate analysis to determine the soluble solids content of citrus fruit
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2014.06.023
  contributor:
    fullname: Wang
– ident: ref_67
– volume: 38
  start-page: 1629
  year: 2016
  ident: ref_26
  article-title: An extended comparison study of large scale datadriven prediction methods based on variable selection, latent variables, penalized regression and machine learning
  publication-title: Comput. Aided Chem. Eng.
  doi: 10.1016/B978-0-444-63428-3.50276-9
  contributor:
    fullname: Rendall
– volume: 21
  start-page: 514
  year: 2018
  ident: ref_42
  article-title: Neural networks for predicting prices of sugarcane derivatives
  publication-title: Sugar Tech.
  doi: 10.1007/s12355-018-0648-5
  contributor:
    fullname: Silva
– ident: ref_30
  doi: 10.3390/en12132530
– volume: 10
  start-page: 181
  year: 2012
  ident: ref_45
  article-title: Echo State networks in seasonal streamflow series prediction
  publication-title: Learn. Nonlinear Model
  doi: 10.21528/LNLM-vol10-no3-art5
  contributor:
    fullname: Siqueira
– volume: 239
  start-page: 232
  year: 2000
  ident: ref_58
  article-title: Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1—A strategy for system predictor identification
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(00)00346-2
  contributor:
    fullname: Sharma
– volume: 39
  start-page: 492
  year: 2018
  ident: ref_14
  article-title: Discrimination and measurements of three flavonols with similar structure using terahertz spectroscopy and chemometrics
  publication-title: J. Infrared Millim. Terahertz Waves
  doi: 10.1007/s10762-018-0474-6
  contributor:
    fullname: Yan
– ident: ref_27
  doi: 10.3390/en13071667
– volume: 49
  start-page: 1
  year: 2020
  ident: ref_32
  article-title: Visual research on the trustability of classical variable selection methods in Cox regression
  publication-title: Hacet. J. Math. Stat.
  contributor:
    fullname: Tutkun
– volume: 73
  start-page: 1923
  year: 2010
  ident: ref_16
  article-title: Feature selection for time series prediction—A combined filter and wrapper approach for neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.01.017
  contributor:
    fullname: Crone
– ident: ref_4
  doi: 10.5176/2251-1938_ORS16.22
– volume: 134
  start-page: 93
  year: 2019
  ident: ref_25
  article-title: A comparison of random forest variable selection methods for classification prediction modeling
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.05.028
  contributor:
    fullname: Speiser
– volume: 6
  start-page: 461
  year: 1978
  ident: ref_65
  article-title: Estimating the Dimension of a Model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
  contributor:
    fullname: Schwarz
– volume: 19
  start-page: 716
  year: 1974
  ident: ref_66
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control.
  doi: 10.1109/TAC.1974.1100705
  contributor:
    fullname: Akaike
– volume: 34
  start-page: 865
  year: 2011
  ident: ref_21
  article-title: Regionalization of low flows based on canonical correlation analysis
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.04.007
  contributor:
    fullname: Tsakiris
– ident: ref_20
  doi: 10.1007/978-1-4757-3462-1
– ident: ref_61
  doi: 10.1002/9780470316849
– ident: ref_50
– ident: ref_22
  doi: 10.3390/rs12050871
– ident: ref_54
– volume: 15
  start-page: 221
  year: 1994
  ident: ref_64
  article-title: Diagnostic checking of periodic autoregression models with application
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.1994.tb00186.x
  contributor:
    fullname: McLeod
– volume: 542
  start-page: 603
  year: 2016
  ident: ref_10
  article-title: Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.09.035
  contributor:
    fullname: Yaseen
– volume: 86
  start-page: 1
  year: 2018
  ident: ref_13
  article-title: Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine
  publication-title: Food Control.
  doi: 10.1016/j.foodcont.2017.10.037
  contributor:
    fullname: Munera
– volume: 98
  start-page: 180
  year: 2019
  ident: ref_68
  article-title: A novel binary artificial bee colony algorithm
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.03.032
  contributor:
    fullname: Santana
– volume: 49
  start-page: 139
  year: 2002
  ident: ref_56
  article-title: Conditionally independent component analysis for supervised feature extraction
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00518-0
  contributor:
    fullname: Akaho
– ident: ref_62
  doi: 10.1016/j.ins.2017.05.013
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref_17
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Guyon
– volume: 70
  start-page: 489
  year: 2006
  ident: ref_77
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
  contributor:
    fullname: Huang
– volume: 68
  start-page: 494
  year: 2018
  ident: ref_2
  article-title: Performance analysis of unorganized machines in streamflow forecasting of Brazilian plants
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.007
  contributor:
    fullname: Siqueira
– volume: 27
  start-page: 375
  year: 1985
  ident: ref_75
  article-title: Maximum likelihood estimation for periodic autoregressive moving average models
  publication-title: Technometrics
  doi: 10.1080/00401706.1985.10488076
  contributor:
    fullname: Vecchia
– volume: 587
  start-page: 124975
  year: 2020
  ident: ref_5
  article-title: Independent variable selection for regression modeling of the flow duration curve for ungauged basins in the United States
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124975
  contributor:
    fullname: Fouad
– ident: ref_60
– ident: ref_47
  doi: 10.1109/IJCNN.2006.247129
– volume: 10
  start-page: 41
  year: 2019
  ident: ref_80
  article-title: Performance comparison of feedforward neural networks applied to stream flow series forecasting
  publication-title: Math. Eng. Sci. Aerosp.
  contributor:
    fullname: Siqueira
– volume: 153
  start-page: 1128
  year: 2017
  ident: ref_29
  article-title: Variable selection methods for multiple regressions influence the parsimony of risk prediction models for cardiac surgery
  publication-title: J. Thorac. Cardiovasc. Surg.
  doi: 10.1016/j.jtcvs.2016.11.028
  contributor:
    fullname: Karim
– volume: 105
  start-page: 103259
  year: 2020
  ident: ref_24
  article-title: A spectra partition algorithm based on spectral clustering for interval variable selection
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103259
  contributor:
    fullname: Xiong
– volume: 31
  start-page: 1089
  year: 2017
  ident: ref_7
  article-title: A new approach for trend assessment of annual streamflows: A case study of hydropower plants in Serbia
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1583-z
  contributor:
    fullname: Prohaska
SSID ssj0000331333
Score 2.4202054
Snippet The forecasting of monthly seasonal streamflow time series is an important issue for countries where hydroelectric plants contribute significantly to electric...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 4236
SubjectTerms Accuracy
Alternative energy sources
autoregressive model
Autoregressive models
bio-inspired metaheuristics extreme learning machines neural networks
Computer applications
Electric filters
Electric power
Electric power generation
Electricity distribution
Feature selection
Filters
Fluid filters
Forecasting
Genetic algorithms
Hydroelectric plants
Hydroelectric power
Learning algorithms
Linear filters
Model accuracy
monthly forecasting
Neural networks
Nonlinear filters
Optimization
Power plants
Principal components analysis
River flow
Stream discharge
Stream flow
Time series
Variables
wrapper
Title Selection of Temporal Lags for Predicting Riverflow Series from Hydroelectric Plants Using Variable Selection Methods
URI https://www.proquest.com/docview/2435649224
https://doaj.org/article/6f2fe753d91143b1863d358a9b45a4fd
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3qSQ_iJ66uEtBrsemkbXr0kz2oiF94K2kzI4JuZbuL-O-dpKsrePDitS2kzDST95rJe0Ic2AIQKVWRA8wjnomO6yAlkbdY0IUzUIeN9sFtfvVoTs-8TM631ZfvCevkgbvAHWaUEDKmdjwrNVTKZOAgNbaodGo1uVB94-wHmQo1GIDJF3R6pMC8_hCHCpgaJEGLebYCBaH-X3U4LC7nK2J5igrlUfc2q2IOh2ti6YdW4LqY3AbHGg6jbEjedYpSL_LCPrWSgae8HvktF9_ELG98rwW9NO_S__tCvj9qXuXgw42azvXmuZberGjcytAxIB-YMPsjVHI2xmVwlm43xP352d3JIJp6JkQ1ZGoc1RnphONFTC0cMtyrK3SxqiDWCi3qGBnvOVKqMOSqnGKDNi9iXVuFQESwKRaGzRC3hEyrikxKOSGTSEOxBasqVfuTrWAyiz2x_xXH8q2TxiiZUvhol7No98SxD_H3E17OOlzgJJfTJJd_Jbkn-l8JKqdzrC0TRnqZLhiDbP_HGDtiMfFcOjT39cXCeDTBXTHfusle-LY-AbaZ1RU
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+Temporal+Lags+for+Predicting+Riverflow+Series+from+Hydroelectric+Plants+Using+Variable+Selection+Methods&rft.jtitle=Energies+%28Basel%29&rft.au=Siqueira%2C+Hugo&rft.au=Macedo%2C+Mariana&rft.au=Yara+de+Souza+Tadano&rft.au=Thiago+Antonini+Alves&rft.date=2020-08-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=16&rft.spage=4236&rft_id=info:doi/10.3390%2Fen13164236&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon