Selection of Temporal Lags for Predicting Riverflow Series from Hydroelectric Plants Using Variable Selection Methods
The forecasting of monthly seasonal streamflow time series is an important issue for countries where hydroelectric plants contribute significantly to electric power generation. The main step in the planning of the electric sector’s operation is to predict such series to anticipate behaviors and issu...
Saved in:
Published in: | Energies (Basel) Vol. 13; no. 16; p. 4236 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-08-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The forecasting of monthly seasonal streamflow time series is an important issue for countries where hydroelectric plants contribute significantly to electric power generation. The main step in the planning of the electric sector’s operation is to predict such series to anticipate behaviors and issues. In general, several proposals of the literature focus just on the determination of the best forecasting models. However, the correct selection of input variables is an essential step for the forecasting accuracy, which in a univariate model is given by the lags of the time series to forecast. This task can be solved by variable selection methods since the performance of the predictors is directly related to this stage. In the present study, we investigate the performances of linear and non-linear filters, wrappers, and bio-inspired metaheuristics, totaling ten approaches. The addressed predictors are the extreme learning machine neural networks, representing the non-linear approaches, and the autoregressive linear models, from the Box and Jenkins methodology. The computational results regarding five series from hydroelectric plants indicate that the wrapper methodology is adequate for the non-linear method, and the linear approaches are better adjusted using filters. |
---|---|
AbstractList | The forecasting of monthly seasonal streamflow time series is an important issue for countries where hydroelectric plants contribute significantly to electric power generation. The main step in the planning of the electric sector’s operation is to predict such series to anticipate behaviors and issues. In general, several proposals of the literature focus just on the determination of the best forecasting models. However, the correct selection of input variables is an essential step for the forecasting accuracy, which in a univariate model is given by the lags of the time series to forecast. This task can be solved by variable selection methods since the performance of the predictors is directly related to this stage. In the present study, we investigate the performances of linear and non-linear filters, wrappers, and bio-inspired metaheuristics, totaling ten approaches. The addressed predictors are the extreme learning machine neural networks, representing the non-linear approaches, and the autoregressive linear models, from the Box and Jenkins methodology. The computational results regarding five series from hydroelectric plants indicate that the wrapper methodology is adequate for the non-linear method, and the linear approaches are better adjusted using filters. |
Author | Oliveira, Domingos S. Sarubbo, Leonie Asfora Luna, Ivette Converti, Attilio Macedo, Mariana Siqueira, Hugo Marinho, Manoel H.N. Tadano, Yara de Souza Filho, Marcos de Almeida Leone Oliveira, João F. L. de Alves, Thiago Antonini Stevan, Sergio L. Neto, Paulo S.G. de Mattos |
Author_xml | – sequence: 1 givenname: Hugo orcidid: 0000-0002-1278-4602 surname: Siqueira fullname: Siqueira, Hugo – sequence: 2 givenname: Mariana orcidid: 0000-0002-7071-379X surname: Macedo fullname: Macedo, Mariana – sequence: 3 givenname: Yara de Souza orcidid: 0000-0002-3975-3419 surname: Tadano fullname: Tadano, Yara de Souza – sequence: 4 givenname: Thiago Antonini orcidid: 0000-0003-2950-7377 surname: Alves fullname: Alves, Thiago Antonini – sequence: 5 givenname: Sergio L. orcidid: 0000-0002-4783-5350 surname: Stevan fullname: Stevan, Sergio L. – sequence: 6 givenname: Domingos S. surname: Oliveira fullname: Oliveira, Domingos S. – sequence: 7 givenname: Manoel H.N. surname: Marinho fullname: Marinho, Manoel H.N. – sequence: 8 givenname: Paulo S.G. de Mattos orcidid: 0000-0003-3129-0453 surname: Neto fullname: Neto, Paulo S.G. de Mattos – sequence: 9 givenname: João F. L. de orcidid: 0000-0002-1150-4904 surname: Oliveira fullname: Oliveira, João F. L. de – sequence: 10 givenname: Ivette surname: Luna fullname: Luna, Ivette – sequence: 11 givenname: Marcos de Almeida Leone surname: Filho fullname: Filho, Marcos de Almeida Leone – sequence: 12 givenname: Leonie Asfora orcidid: 0000-0002-4746-0560 surname: Sarubbo fullname: Sarubbo, Leonie Asfora – sequence: 13 givenname: Attilio orcidid: 0000-0003-2488-6080 surname: Converti fullname: Converti, Attilio |
BookMark | eNpNUU1LxDAQDaKgrl78BQFvwmqmk7bbo4hfsKL4dQ1pM1mzdJt10lX891ZX1Lm8Yd7MewNvV2x2sSMhDkAdI1bqhDpAKHSGxYbYgaoqxqBK3PzXb4v9lOZqKERAxB2xeqCWmj7ETkYvH2mxjGxbObWzJH1kecfkwsB3M3kf3oh9G9_lA3Gggee4kFcfjuO3BodG3rW265N8Sl8Hz5aDrVuSfx431L9El_bElrdtov0fHImni_PHs6vx9Pby-ux0Om6wgH7cFF5nVOY-Q-UIIG9qcgpqVBrIklZUltp5gGriXV16NSFbVko3Fgi99zgS12tdF-3cLDksLH-YaIP5HkSeGct9aFoyhc_8YIWuAtBYw6RAh_nEVrXOrfZu0Dpcay05vq4o9WYeV9wN75tMY17oKhtwJI7WWw3HlJj8ryso85WS-UsJPwHuc4dQ |
CitedBy_id | crossref_primary_10_1080_08839514_2023_2185849 crossref_primary_10_1109_ACCESS_2023_3322691 crossref_primary_10_3390_en14123385 crossref_primary_10_1016_j_chaos_2022_112982 crossref_primary_10_1109_ACCESS_2023_3237982 crossref_primary_10_3390_s21238096 crossref_primary_10_1016_j_engappai_2023_107559 crossref_primary_10_3390_en16135050 crossref_primary_10_3390_en16072942 crossref_primary_10_3390_ai3010006 crossref_primary_10_1016_j_envpol_2020_115920 crossref_primary_10_3390_en15186788 crossref_primary_10_1016_j_eswa_2024_124219 crossref_primary_10_3390_en15196881 crossref_primary_10_1109_ACCESS_2021_3050437 crossref_primary_10_3390_biomimetics8020231 crossref_primary_10_3390_s23136233 crossref_primary_10_1111_itor_12908 crossref_primary_10_1016_j_aej_2023_08_001 crossref_primary_10_2478_johh_2021_0001 crossref_primary_10_1016_j_asoc_2021_108110 crossref_primary_10_3390_en16041712 crossref_primary_10_3390_su12187310 crossref_primary_10_3390_designs7030063 crossref_primary_10_3390_su151511545 |
Cites_doi | 10.3390/su12072621 10.1142/S0129065714300095 10.7551/mitpress/1090.001.0001 10.1111/j.2517-6161.1949.tb00023.x 10.3233/ICA-200618 10.1109/IJCNN.2007.4371334 10.3390/en10101522 10.5194/hess-23-2735-2019 10.1016/j.neunet.2014.10.001 10.1002/0471221317 10.1016/j.ijforecast.2010.09.006 10.1016/j.jhydrol.2004.06.021 10.1007/s12665-016-5337-7 10.1002/rra.3006 10.1016/j.jhydrol.2015.08.022 10.1016/j.energy.2020.117729 10.1109/ICMLA.2017.0-115 10.1109/72.97934 10.1016/j.infrared.2020.103327 10.1109/DSAA.2019.00068 10.1016/j.aasri.2012.06.058 10.3390/en11081975 10.1002/cem.3226 10.1088/1742-6596/1402/7/077096 10.1016/S0004-3702(97)00043-X 10.3390/e22050543 10.1016/j.jhydrol.2015.08.008 10.1016/j.saa.2019.117208 10.1103/PhysRevE.52.2318 10.3390/en11092208 10.1017/S0269964806060098 10.1109/18.661502 10.1016/j.jfoodeng.2014.06.023 10.1016/B978-0-444-63428-3.50276-9 10.1007/s12355-018-0648-5 10.3390/en12132530 10.21528/LNLM-vol10-no3-art5 10.1016/S0022-1694(00)00346-2 10.1007/s10762-018-0474-6 10.3390/en13071667 10.1016/j.neucom.2010.01.017 10.5176/2251-1938_ORS16.22 10.1016/j.eswa.2019.05.028 10.1214/aos/1176344136 10.1109/TAC.1974.1100705 10.1016/j.advwatres.2011.04.007 10.1007/978-1-4757-3462-1 10.1002/9780470316849 10.3390/rs12050871 10.1111/j.1467-9892.1994.tb00186.x 10.1016/j.jhydrol.2016.09.035 10.1016/j.foodcont.2017.10.037 10.1016/j.future.2019.03.032 10.1016/S0925-2312(02)00518-0 10.1016/j.ins.2017.05.013 10.1016/j.neucom.2005.12.126 10.1016/j.asoc.2018.04.007 10.1080/00401706.1985.10488076 10.1016/j.jhydrol.2020.124975 10.1109/IJCNN.2006.247129 10.1016/j.jtcvs.2016.11.028 10.1016/j.infrared.2020.103259 10.1007/s11269-017-1583-z |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/en13164236 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_6f2fe753d91143b1863d358a9b45a4fd 10_3390_en13164236 |
GeographicLocations | Brazil Canada United States--US China |
GeographicLocations_xml | – name: China – name: Canada – name: United States--US – name: Brazil |
GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ I-F IAO KQ8 L6V L8X M7S MODMG M~E OK1 P2P PATMY PIMPY PROAC PYCSY RIG TR2 TUS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c361t-c6f42e75f230de115cbed01b3041eae40e774df1198fdb7f08ea7904ca1e3fff3 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Tue Oct 22 15:14:14 EDT 2024 Thu Oct 10 16:26:07 EDT 2024 Fri Nov 22 03:13:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-c6f42e75f230de115cbed01b3041eae40e774df1198fdb7f08ea7904ca1e3fff3 |
ORCID | 0000-0002-7071-379X 0000-0002-3975-3419 0000-0002-4746-0560 0000-0002-1150-4904 0000-0002-4783-5350 0000-0003-2488-6080 0000-0003-3129-0453 0000-0003-2950-7377 0000-0002-1278-4602 |
OpenAccessLink | https://doaj.org/article/6f2fe753d91143b1863d358a9b45a4fd |
PQID | 2435649224 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6f2fe753d91143b1863d358a9b45a4fd proquest_journals_2435649224 crossref_primary_10_3390_en13164236 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Kohavi (ref_63) 1997; 97 Wang (ref_18) 2014; 143 Prohaska (ref_7) 2017; 31 Huang (ref_79) 2015; 61 Siqueira (ref_2) 2018; 68 Akaho (ref_56) 2002; 49 ref_54 ref_53 Speiser (ref_25) 2019; 134 ref_52 Quenouille (ref_51) 1949; 11 Maceira (ref_11) 2005; 20 Pochwatka (ref_81) 2020; 202 Bowden (ref_55) 2005; 301 Yu (ref_48) 2004; 5 ref_61 ref_60 Schwarz (ref_65) 1978; 6 Specht (ref_59) 1991; 2 Yin (ref_19) 2019; 221 ref_69 ref_67 ref_22 ref_20 Siqueira (ref_43) 2012; Volume 7664 ref_62 Huang (ref_77) 2006; 70 Fouad (ref_5) 2020; 587 Rendall (ref_26) 2016; 38 ref_27 Bartlett (ref_78) 1998; 44 Cui (ref_41) 2012; 1 Taormina (ref_39) 2015; 529 Guyon (ref_17) 2003; 3 Arsenault (ref_6) 2019; 23 Yaseen (ref_10) 2016; 542 Moon (ref_15) 1995; 52 ref_72 ref_71 ref_70 Siqueira (ref_12) 2014; 24 ref_36 ref_34 Zhu (ref_3) 2016; 75 ref_76 Santi (ref_28) 2019; 1402 ref_31 ref_30 Siqueira (ref_44) 2012; Volume 7435 ref_74 ref_73 Sharma (ref_58) 2000; 239 Taormina (ref_40) 2015; 529 Hailegeorgis (ref_8) 2016; 33 Siqueira (ref_45) 2012; 10 ref_38 ref_37 McLeod (ref_64) 1994; 15 Crone (ref_16) 2010; 73 Siqueira (ref_80) 2019; 10 Santana (ref_68) 2019; 98 Tutkun (ref_32) 2020; 49 Xiong (ref_24) 2020; 105 Bonah (ref_23) 2020; 107 ref_47 Vecchia (ref_75) 1985; 27 ref_46 Karim (ref_29) 2017; 153 Akaike (ref_66) 1974; 19 ref_1 Tsakiris (ref_21) 2011; 34 Munera (ref_13) 2018; 86 Seo (ref_35) 2019; 26 ref_49 ref_9 Mehmood (ref_33) 2020; 34 Luna (ref_57) 2011; 27 ref_4 Yan (ref_14) 2018; 39 Silva (ref_42) 2018; 21 |
References_xml | – ident: ref_46 doi: 10.3390/su12072621 – volume: 24 start-page: 1430009 year: 2014 ident: ref_12 article-title: Unorganized machines for seasonal streamflow series forecasting publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065714300095 contributor: fullname: Siqueira – ident: ref_70 doi: 10.7551/mitpress/1090.001.0001 – ident: ref_74 – volume: 11 start-page: 68 year: 1949 ident: ref_51 article-title: Approximate tests of correlation in time-series publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1949.tb00023.x contributor: fullname: Quenouille – ident: ref_69 doi: 10.3233/ICA-200618 – ident: ref_73 doi: 10.1109/IJCNN.2007.4371334 – ident: ref_38 doi: 10.3390/en10101522 – volume: 23 start-page: 2735 year: 2019 ident: ref_6 article-title: Analysis of the effects of biases in ensemble streamflow prediction (ESP) forecasts on electricity production in hydropower reservoir management publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-23-2735-2019 contributor: fullname: Arsenault – volume: 61 start-page: 32 year: 2015 ident: ref_79 article-title: Trends in extreme learning machines: A review publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.10.001 contributor: fullname: Huang – ident: ref_49 doi: 10.1002/0471221317 – volume: 27 start-page: 708 year: 2011 ident: ref_57 article-title: Top-down strategies based on adaptive fuzzy rule-based systems for daily time series forecasting publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2010.09.006 contributor: fullname: Luna – ident: ref_1 – volume: 301 start-page: 75 year: 2005 ident: ref_55 article-title: Input determination for neural network models in water resources applications. Part 1—Background and methodology publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.06.021 contributor: fullname: Bowden – volume: 75 start-page: 531 year: 2016 ident: ref_3 article-title: Streamflow estimation by support vector machine coupled with different methods of time series decomposition in the upper reaches of Yangtze River, China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5337-7 contributor: fullname: Zhu – ident: ref_71 – volume: 33 start-page: 233 year: 2016 ident: ref_8 article-title: Regional statistical and precipitation-runoff modelling for ecological applications: prediction of hourly streamflow in regulated rivers and ungauged basins publication-title: River Res. Appl. doi: 10.1002/rra.3006 contributor: fullname: Hailegeorgis – volume: 529 start-page: 1617 year: 2015 ident: ref_39 article-title: Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.08.022 contributor: fullname: Taormina – volume: 5 start-page: 1205 year: 2004 ident: ref_48 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J. Mach. Learn. Res. contributor: fullname: Yu – volume: 202 start-page: 117729 year: 2020 ident: ref_81 article-title: Energy value estimation of silages for substrate in biogas plants using an artificial neural network publication-title: Energy doi: 10.1016/j.energy.2020.117729 contributor: fullname: Pochwatka – volume: 26 start-page: 575 year: 2019 ident: ref_35 article-title: Unified methods for variable selection and outlier detection in a linear regression publication-title: Commun. Stat. Appl. Methods contributor: fullname: Seo – ident: ref_52 – ident: ref_9 doi: 10.1109/ICMLA.2017.0-115 – volume: 2 start-page: 568 year: 1991 ident: ref_59 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.97934 contributor: fullname: Specht – volume: 107 start-page: 103327 year: 2020 ident: ref_23 article-title: Comparison of variable selection algorithms on vis-NIR hyperspectral imaging spectra for quantitative monitoring and visualization of bacterial foodborne pathogens in fresh pork muscles publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2020.103327 contributor: fullname: Bonah – ident: ref_34 doi: 10.1109/DSAA.2019.00068 – volume: 1 start-page: 377 year: 2012 ident: ref_41 article-title: Chaotic time series prediction based on binary particle swarm optimization publication-title: AASRI Proc. doi: 10.1016/j.aasri.2012.06.058 contributor: fullname: Cui – ident: ref_36 doi: 10.3390/en11081975 – volume: 34 start-page: e3226 year: 2020 ident: ref_33 article-title: Comparison of variable selection methods in partial least squares regression publication-title: J. Chemom. doi: 10.1002/cem.3226 contributor: fullname: Mehmood – volume: Volume 7435 start-page: 226 year: 2012 ident: ref_44 article-title: Echo state networks for seasonal streamflow series forecasting publication-title: Computer Vision contributor: fullname: Siqueira – volume: 1402 start-page: 077096 year: 2019 ident: ref_28 article-title: Variable selection methods applied to the mathematics scores of Indonesian students based on convex penalized likelihood publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1402/7/077096 contributor: fullname: Santi – volume: 97 start-page: 273 year: 1997 ident: ref_63 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X contributor: fullname: Kohavi – ident: ref_72 – ident: ref_31 doi: 10.3390/e22050543 – volume: Volume 7664 start-page: 491 year: 2012 ident: ref_43 article-title: Echo state networks and extreme learning machines: A comparative study on seasonal streamflow series prediction publication-title: Computer Vision contributor: fullname: Siqueira – ident: ref_53 – volume: 529 start-page: 1788 year: 2015 ident: ref_40 article-title: Neural network river forecasting through baseflow separation and binary-coded swarm optimization publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.08.008 contributor: fullname: Taormina – volume: 221 start-page: 117208 year: 2019 ident: ref_19 article-title: A review of the application of near-infrared spectroscopy to rare traditional Chinese medicine publication-title: Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2019.117208 contributor: fullname: Yin – ident: ref_76 – volume: 52 start-page: 2318 year: 1995 ident: ref_15 article-title: Estimation of mutual information using kernel density estimators publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.52.2318 contributor: fullname: Moon – ident: ref_37 doi: 10.3390/en11092208 – volume: 20 start-page: 143 year: 2005 ident: ref_11 article-title: Use of the PAR (p) model in the stochastic dual dynamic programming optimization scheme used in the operation planning of the brazilian hydropower system publication-title: Probab. Eng. Inf. Sci. doi: 10.1017/S0269964806060098 contributor: fullname: Maceira – volume: 44 start-page: 525 year: 1998 ident: ref_78 article-title: The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.661502 contributor: fullname: Bartlett – volume: 143 start-page: 17 year: 2014 ident: ref_18 article-title: Technology using near infrared spectroscopic and multivariate analysis to determine the soluble solids content of citrus fruit publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2014.06.023 contributor: fullname: Wang – ident: ref_67 – volume: 38 start-page: 1629 year: 2016 ident: ref_26 article-title: An extended comparison study of large scale datadriven prediction methods based on variable selection, latent variables, penalized regression and machine learning publication-title: Comput. Aided Chem. Eng. doi: 10.1016/B978-0-444-63428-3.50276-9 contributor: fullname: Rendall – volume: 21 start-page: 514 year: 2018 ident: ref_42 article-title: Neural networks for predicting prices of sugarcane derivatives publication-title: Sugar Tech. doi: 10.1007/s12355-018-0648-5 contributor: fullname: Silva – ident: ref_30 doi: 10.3390/en12132530 – volume: 10 start-page: 181 year: 2012 ident: ref_45 article-title: Echo State networks in seasonal streamflow series prediction publication-title: Learn. Nonlinear Model doi: 10.21528/LNLM-vol10-no3-art5 contributor: fullname: Siqueira – volume: 239 start-page: 232 year: 2000 ident: ref_58 article-title: Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1—A strategy for system predictor identification publication-title: J. Hydrol. doi: 10.1016/S0022-1694(00)00346-2 contributor: fullname: Sharma – volume: 39 start-page: 492 year: 2018 ident: ref_14 article-title: Discrimination and measurements of three flavonols with similar structure using terahertz spectroscopy and chemometrics publication-title: J. Infrared Millim. Terahertz Waves doi: 10.1007/s10762-018-0474-6 contributor: fullname: Yan – ident: ref_27 doi: 10.3390/en13071667 – volume: 49 start-page: 1 year: 2020 ident: ref_32 article-title: Visual research on the trustability of classical variable selection methods in Cox regression publication-title: Hacet. J. Math. Stat. contributor: fullname: Tutkun – volume: 73 start-page: 1923 year: 2010 ident: ref_16 article-title: Feature selection for time series prediction—A combined filter and wrapper approach for neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.01.017 contributor: fullname: Crone – ident: ref_4 doi: 10.5176/2251-1938_ORS16.22 – volume: 134 start-page: 93 year: 2019 ident: ref_25 article-title: A comparison of random forest variable selection methods for classification prediction modeling publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.05.028 contributor: fullname: Speiser – volume: 6 start-page: 461 year: 1978 ident: ref_65 article-title: Estimating the Dimension of a Model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 contributor: fullname: Schwarz – volume: 19 start-page: 716 year: 1974 ident: ref_66 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control. doi: 10.1109/TAC.1974.1100705 contributor: fullname: Akaike – volume: 34 start-page: 865 year: 2011 ident: ref_21 article-title: Regionalization of low flows based on canonical correlation analysis publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2011.04.007 contributor: fullname: Tsakiris – ident: ref_20 doi: 10.1007/978-1-4757-3462-1 – ident: ref_61 doi: 10.1002/9780470316849 – ident: ref_50 – ident: ref_22 doi: 10.3390/rs12050871 – ident: ref_54 – volume: 15 start-page: 221 year: 1994 ident: ref_64 article-title: Diagnostic checking of periodic autoregression models with application publication-title: J. Time Ser. Anal. doi: 10.1111/j.1467-9892.1994.tb00186.x contributor: fullname: McLeod – volume: 542 start-page: 603 year: 2016 ident: ref_10 article-title: Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.09.035 contributor: fullname: Yaseen – volume: 86 start-page: 1 year: 2018 ident: ref_13 article-title: Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine publication-title: Food Control. doi: 10.1016/j.foodcont.2017.10.037 contributor: fullname: Munera – volume: 98 start-page: 180 year: 2019 ident: ref_68 article-title: A novel binary artificial bee colony algorithm publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.03.032 contributor: fullname: Santana – volume: 49 start-page: 139 year: 2002 ident: ref_56 article-title: Conditionally independent component analysis for supervised feature extraction publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00518-0 contributor: fullname: Akaho – ident: ref_62 doi: 10.1016/j.ins.2017.05.013 – volume: 3 start-page: 1157 year: 2003 ident: ref_17 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. contributor: fullname: Guyon – volume: 70 start-page: 489 year: 2006 ident: ref_77 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 contributor: fullname: Huang – volume: 68 start-page: 494 year: 2018 ident: ref_2 article-title: Performance analysis of unorganized machines in streamflow forecasting of Brazilian plants publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.007 contributor: fullname: Siqueira – volume: 27 start-page: 375 year: 1985 ident: ref_75 article-title: Maximum likelihood estimation for periodic autoregressive moving average models publication-title: Technometrics doi: 10.1080/00401706.1985.10488076 contributor: fullname: Vecchia – volume: 587 start-page: 124975 year: 2020 ident: ref_5 article-title: Independent variable selection for regression modeling of the flow duration curve for ungauged basins in the United States publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124975 contributor: fullname: Fouad – ident: ref_60 – ident: ref_47 doi: 10.1109/IJCNN.2006.247129 – volume: 10 start-page: 41 year: 2019 ident: ref_80 article-title: Performance comparison of feedforward neural networks applied to stream flow series forecasting publication-title: Math. Eng. Sci. Aerosp. contributor: fullname: Siqueira – volume: 153 start-page: 1128 year: 2017 ident: ref_29 article-title: Variable selection methods for multiple regressions influence the parsimony of risk prediction models for cardiac surgery publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2016.11.028 contributor: fullname: Karim – volume: 105 start-page: 103259 year: 2020 ident: ref_24 article-title: A spectra partition algorithm based on spectral clustering for interval variable selection publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2020.103259 contributor: fullname: Xiong – volume: 31 start-page: 1089 year: 2017 ident: ref_7 article-title: A new approach for trend assessment of annual streamflows: A case study of hydropower plants in Serbia publication-title: Water Resour. Manag. doi: 10.1007/s11269-017-1583-z contributor: fullname: Prohaska |
SSID | ssj0000331333 |
Score | 2.4202054 |
Snippet | The forecasting of monthly seasonal streamflow time series is an important issue for countries where hydroelectric plants contribute significantly to electric... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 4236 |
SubjectTerms | Accuracy Alternative energy sources autoregressive model Autoregressive models bio-inspired metaheuristics extreme learning machines neural networks Computer applications Electric filters Electric power Electric power generation Electricity distribution Feature selection Filters Fluid filters Forecasting Genetic algorithms Hydroelectric plants Hydroelectric power Learning algorithms Linear filters Model accuracy monthly forecasting Neural networks Nonlinear filters Optimization Power plants Principal components analysis River flow Stream discharge Stream flow Time series Variables wrapper |
Title | Selection of Temporal Lags for Predicting Riverflow Series from Hydroelectric Plants Using Variable Selection Methods |
URI | https://www.proquest.com/docview/2435649224 https://doaj.org/article/6f2fe753d91143b1863d358a9b45a4fd |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3qSQ_iJ66uEtBrsemkbXr0kz2oiF94K2kzI4JuZbuL-O-dpKsrePDitS2kzDST95rJe0Ic2AIQKVWRA8wjnomO6yAlkbdY0IUzUIeN9sFtfvVoTs-8TM631ZfvCevkgbvAHWaUEDKmdjwrNVTKZOAgNbaodGo1uVB94-wHmQo1GIDJF3R6pMC8_hCHCpgaJEGLebYCBaH-X3U4LC7nK2J5igrlUfc2q2IOh2ti6YdW4LqY3AbHGg6jbEjedYpSL_LCPrWSgae8HvktF9_ELG98rwW9NO_S__tCvj9qXuXgw42azvXmuZberGjcytAxIB-YMPsjVHI2xmVwlm43xP352d3JIJp6JkQ1ZGoc1RnphONFTC0cMtyrK3SxqiDWCi3qGBnvOVKqMOSqnGKDNi9iXVuFQESwKRaGzRC3hEyrikxKOSGTSEOxBasqVfuTrWAyiz2x_xXH8q2TxiiZUvhol7No98SxD_H3E17OOlzgJJfTJJd_Jbkn-l8JKqdzrC0TRnqZLhiDbP_HGDtiMfFcOjT39cXCeDTBXTHfusle-LY-AbaZ1RU |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+Temporal+Lags+for+Predicting+Riverflow+Series+from+Hydroelectric+Plants+Using+Variable+Selection+Methods&rft.jtitle=Energies+%28Basel%29&rft.au=Siqueira%2C+Hugo&rft.au=Macedo%2C+Mariana&rft.au=Yara+de+Souza+Tadano&rft.au=Thiago+Antonini+Alves&rft.date=2020-08-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=16&rft.spage=4236&rft_id=info:doi/10.3390%2Fen13164236&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |