Forecasting the Risk Factor of Frontier Markets: A Novel Stacking Ensemble of Neural Network Approach
Forecasting the risk factor of the financial frontier markets has always been a very challenging task. Unlike an emerging market, a frontier market has a missing parameter named “volatility”, which indicates the market’s risk and as a result of the absence of this missing parameter and the lack of p...
Saved in:
Published in: | Future internet Vol. 14; no. 9; p. 252 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-09-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Forecasting the risk factor of the financial frontier markets has always been a very challenging task. Unlike an emerging market, a frontier market has a missing parameter named “volatility”, which indicates the market’s risk and as a result of the absence of this missing parameter and the lack of proper prediction, it has almost become difficult for direct customers to invest money in frontier markets. However, the noises, seasonality, random spikes and trends of the time-series datasets make it even more complicated to predict stock prices with high accuracy. In this work, we have developed a novel stacking ensemble of the neural network model that performs best on multiple data patterns. We have compared our model’s performance with the performance results obtained by using some traditional machine learning ensemble models such as Random Forest, AdaBoost, Gradient Boosting Machine and Stacking Ensemble, along with some traditional deep learning models such as Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term (BiLSTM). We have calculated the missing parameter named “volatility” using stock price (Close price) for 20 different companies of the frontier market and then made predictions using the aforementioned machine learning ensemble models, deep learning models and our proposed stacking ensemble of the neural network model. The statistical evaluation metrics RMSE and MAE have been used to evaluate the performance of the models. It has been found that our proposed stacking ensemble neural network model outperforms all other traditional machine learning and deep learning models which have been used for comparison in this paper. The lowest RMSE and MAE values we have received using our proposed model are 0.3626 and 0.3682 percent, respectively, and the highest RMSE and MAE values are 2.5696 and 2.444 percent, respectively. The traditional ensemble learning models give the highest RMSE and MAE error rate of 20.4852 and 20.4260 percent, while the deep learning models give 15.2332 and 15.1668 percent, respectively, which clearly states that our proposed model provides a very low error value compared with the traditional models. |
---|---|
AbstractList | Forecasting the risk factor of the financial frontier markets has always been a very challenging task. Unlike an emerging market, a frontier market has a missing parameter named “volatility”, which indicates the market’s risk and as a result of the absence of this missing parameter and the lack of proper prediction, it has almost become difficult for direct customers to invest money in frontier markets. However, the noises, seasonality, random spikes and trends of the time-series datasets make it even more complicated to predict stock prices with high accuracy. In this work, we have developed a novel stacking ensemble of the neural network model that performs best on multiple data patterns. We have compared our model’s performance with the performance results obtained by using some traditional machine learning ensemble models such as Random Forest, AdaBoost, Gradient Boosting Machine and Stacking Ensemble, along with some traditional deep learning models such as Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term (BiLSTM). We have calculated the missing parameter named “volatility” using stock price (Close price) for 20 different companies of the frontier market and then made predictions using the aforementioned machine learning ensemble models, deep learning models and our proposed stacking ensemble of the neural network model. The statistical evaluation metrics RMSE and MAE have been used to evaluate the performance of the models. It has been found that our proposed stacking ensemble neural network model outperforms all other traditional machine learning and deep learning models which have been used for comparison in this paper. The lowest RMSE and MAE values we have received using our proposed model are 0.3626 and 0.3682 percent, respectively, and the highest RMSE and MAE values are 2.5696 and 2.444 percent, respectively. The traditional ensemble learning models give the highest RMSE and MAE error rate of 20.4852 and 20.4260 percent, while the deep learning models give 15.2332 and 15.1668 percent, respectively, which clearly states that our proposed model provides a very low error value compared with the traditional models. |
Author | Chowdhury, Reaz Shahriar, Hossain Akter, Mst. Shapna Mahdy, M. R. C. |
Author_xml | – sequence: 1 givenname: Mst. Shapna surname: Akter fullname: Akter, Mst. Shapna – sequence: 2 givenname: Hossain surname: Shahriar fullname: Shahriar, Hossain – sequence: 3 givenname: Reaz surname: Chowdhury fullname: Chowdhury, Reaz – sequence: 4 givenname: M. R. C. surname: Mahdy fullname: Mahdy, M. R. C. |
BookMark | eNpNUdtKAzEQDaLg9cUvCPgmVHPfxLdSWi1oBS_PIckmuu12U5NU8e_dWlHn5QzDmTNnZg7Bbhc7D8ApRheUKnQZGsyQQoSTHXCAlVIDrhDd_Zfvg5Oc56gPqogQ1QHwk5i8M7k03Qssrx4-NHkBJ8aVmGAMcJJiVxqf4J1JC1_yFRzCWXz3LXwsxi02XeMu-6Vt_YY-8-tk2h7KR0wLOFytUjTu9RjsBdNmf_KDR-B5Mn4a3Qxu76-no-HtwFGBy8Ay7oQMsuaydtSg3jajjAVja46wRZ54xBGpiWXWSsylFFIIpjhXFFVc0CMw3erW0cz1KjVLkz51NI3-LsT0ok0qjWu9lkEZairsiMNMMKmCDEzVxlbB8pq4Xutsq9Wv8Lb2ueh5XKeut69JhQUn_alxzzrfslyKOScffqdipDdf0X9foV8bVn7p |
CitedBy_id | crossref_primary_10_1007_s10260_024_00746_0 crossref_primary_10_1016_j_jksuci_2023_101743 crossref_primary_10_1007_s10844_023_00804_1 |
Cites_doi | 10.32861/ijefr.67.170.179 10.1002/047084535X 10.3390/en11040914 10.1109/ICIEA.2018.8398183 10.21437/Interspeech.2019-1982 10.1109/TSMCB.2007.914695 10.3390/s19092018 10.2139/ssrn.1973469 10.1109/TIE.2016.2582729 10.1109/HICSS.1991.184055 10.1007/978-1-4419-9326-7_1 10.1109/ACCESS.2018.2880044 10.1109/TIE.2018.2833045 10.1007/978-3-642-24797-2 10.1109/LSP.2017.2657381 10.3390/app11010158 10.3390/en11071636 10.3390/app8071152 10.3390/su122310090 10.3390/a13050121 10.2469/faj.v61.n1.2683 10.1016/j.scitotenv.2019.02.093 10.18653/v1/D16-1058 10.1038/nature14539 10.1109/MLSP.2015.7324337 10.1109/ICNC.2007.780 10.1016/j.neucom.2017.09.069 10.1007/s10489-020-01839-5 10.1109/TBME.2015.2468589 10.1109/AEEICB.2017.7972337 10.1016/j.ejor.2017.11.054 10.1007/978-1-4419-9326-7 10.1016/j.trc.2015.02.019 10.1109/TII.2019.2955540 10.19030/jabr.v30i2.8421 10.3390/jrfm11040061 10.1007/978-3-319-54109-9_6 10.1109/5.726791 10.1007/s10462-020-09896-5 10.1016/j.eneco.2017.05.023 10.1109/BigData47090.2019.9005997 10.1109/EMBC.2015.7318926 10.1109/CIEL.2014.7015739 10.1162/neco.1992.4.2.243 10.1007/978-3-642-41136-6_5 10.1016/j.cam.2019.112395 10.1109/ICASSP40776.2020.9052948 10.1109/GET.2016.7916627 10.1088/1755-1315/440/3/032115 10.1162/neco.1997.9.8.1735 10.1109/ICACCI.2017.8126078 10.1016/j.ymssp.2020.107398 10.1016/j.physa.2020.124444 10.1016/j.physd.2019.132306 10.1002/widm.1249 10.21437/ICSLP.2002-316 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PIMPY PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/fi14090252 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1999-5903 |
ExternalDocumentID | oai_doaj_org_article_8f9a3a71c2c146489f8f49dab7fb5d2c 10_3390_fi14090252 |
GeographicLocations | Romania |
GeographicLocations_xml | – name: Romania |
GroupedDBID | -DT .4I 3V. 5VS 7WY 8FE 8FG 8FL AADQD AAFWJ AAKPC AAYXX ABDBF ABUWG ACIHN ADBBV AEAQA AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z EAP EBS EJD ESX FRNLG GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_DOAJ HCIFZ IAO ITC K60 K6V K6~ K7- KQ8 M0C M0N MODMG M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RIG RNS TR2 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c361t-b45c68f8d58dc3a09994344fabd501b0e2e0502d2b4bb81588686649559307563 |
IEDL.DBID | DOA |
ISSN | 1999-5903 |
IngestDate | Tue Oct 22 15:16:44 EDT 2024 Thu Oct 10 19:25:18 EDT 2024 Fri Nov 22 02:37:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-b45c68f8d58dc3a09994344fabd501b0e2e0502d2b4bb81588686649559307563 |
OpenAccessLink | https://doaj.org/article/8f9a3a71c2c146489f8f49dab7fb5d2c |
PQID | 2716520901 |
PQPubID | 2032396 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8f9a3a71c2c146489f8f49dab7fb5d2c proquest_journals_2716520901 crossref_primary_10_3390_fi14090252 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Future internet |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | (ref_39) 2021; 54 ref_14 ref_58 ref_12 Abdeljaber (ref_51) 2018; 275 ref_56 ref_11 ref_54 ref_52 Schmidhuber (ref_62) 1992; 4 Hu (ref_37) 2008; 38 LeCun (ref_44) 1998; 86 Poon (ref_27) 2005; 61 ref_19 ref_18 Chen (ref_10) 2020; 365 ref_17 Carta (ref_20) 2021; 51 ref_16 ref_15 Kiranyaz (ref_53) 2021; 151 ref_59 Chowdhury (ref_2) 2020; 555 Hochreiter (ref_61) 1997; 9 Du (ref_66) 2020; 440 Fischer (ref_64) 2018; 270 Yoon (ref_8) 1991; Volume 4 Kiranyaz (ref_49) 2018; 66 Selemela (ref_25) 2021; 17 ref_69 ref_24 ref_68 ref_23 ref_67 ref_22 ref_21 ref_65 ref_63 Patel (ref_13) 2014; 3 ref_28 Ince (ref_50) 2016; 63 Kiranyaz (ref_47) 2015; 63 Altan (ref_31) 2019; 4 Garosi (ref_29) 2019; 664 Sagi (ref_41) 2018; 8 ref_36 ref_35 LeCun (ref_45) 2015; 521 ref_34 ref_33 ref_32 Lin (ref_4) 2007; Volume 1 ref_30 Sherstinsky (ref_60) 2020; 404 Anghel (ref_3) 2020; 6 Zhao (ref_9) 2017; 66 Wang (ref_57) 2019; 16 Gomes (ref_1) 2014; 30 Zhang (ref_38) 2015; 58 ref_46 ref_43 ref_42 ref_40 Haidar (ref_55) 2018; 6 Salamon (ref_70) 2017; 24 ref_48 Ederington (ref_26) 2006; 16 ref_5 ref_7 ref_6 |
References_xml | – volume: 6 start-page: 170 year: 2020 ident: ref_3 article-title: Predicting Intraday Prices in the Frontier Stock Market of Romania Using Machine Learning Algorithms publication-title: Int. J. Econ. Financ. Res. doi: 10.32861/ijefr.67.170.179 contributor: fullname: Anghel – volume: 16 start-page: 10 year: 2006 ident: ref_26 article-title: Measuring historical volatility publication-title: J. Appl. Financ. contributor: fullname: Ederington – ident: ref_59 doi: 10.1002/047084535X – ident: ref_32 doi: 10.3390/en11040914 – ident: ref_14 doi: 10.1109/ICIEA.2018.8398183 – ident: ref_68 doi: 10.21437/Interspeech.2019-1982 – volume: 38 start-page: 577 year: 2008 ident: ref_37 article-title: Adaboost-based algorithm for network intrusion detection publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) doi: 10.1109/TSMCB.2007.914695 contributor: fullname: Hu – ident: ref_56 doi: 10.3390/s19092018 – volume: 3 start-page: 13755 year: 2014 ident: ref_13 article-title: Stock price prediction using artificial neural network publication-title: Int. J. Innov. Res. Sci. Eng. Technol. contributor: fullname: Patel – ident: ref_16 – ident: ref_24 doi: 10.2139/ssrn.1973469 – volume: 63 start-page: 7067 year: 2016 ident: ref_50 article-title: Real-time motor fault detection by 1-D convolutional neural networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2582729 contributor: fullname: Ince – volume: Volume 4 start-page: 156 year: 1991 ident: ref_8 article-title: Predicting stock price performance: A neural network approach publication-title: Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences doi: 10.1109/HICSS.1991.184055 contributor: fullname: Yoon – ident: ref_40 doi: 10.1007/978-1-4419-9326-7_1 – ident: ref_35 – volume: 6 start-page: 69053 year: 2018 ident: ref_55 article-title: Monthly rainfall forecasting using one-dimensional deep convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2880044 contributor: fullname: Haidar – volume: 66 start-page: 8760 year: 2018 ident: ref_49 article-title: Real-time fault detection and identification for MMC using 1-D convolutional neural networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2833045 contributor: fullname: Kiranyaz – ident: ref_23 – ident: ref_63 doi: 10.1007/978-3-642-24797-2 – volume: 24 start-page: 279 year: 2017 ident: ref_70 article-title: Deep convolutional neural networks and data augmentation for environmental sound classification publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2017.2657381 contributor: fullname: Salamon – ident: ref_11 doi: 10.3390/app11010158 – ident: ref_30 doi: 10.3390/en11071636 – ident: ref_22 doi: 10.3390/app8071152 – ident: ref_52 – ident: ref_54 doi: 10.3390/su122310090 – ident: ref_21 doi: 10.3390/a13050121 – ident: ref_17 – volume: 61 start-page: 45 year: 2005 ident: ref_27 article-title: Practical issues in forecasting volatility publication-title: Financ. Anal. J. doi: 10.2469/faj.v61.n1.2683 contributor: fullname: Poon – volume: 664 start-page: 1117 year: 2019 ident: ref_29 article-title: Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2019.02.093 contributor: fullname: Garosi – ident: ref_65 doi: 10.18653/v1/D16-1058 – volume: 521 start-page: 436 year: 2015 ident: ref_45 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: LeCun – ident: ref_69 doi: 10.1109/MLSP.2015.7324337 – ident: ref_7 – ident: ref_28 – volume: Volume 1 start-page: 688 year: 2007 ident: ref_4 article-title: Time series prediction based on linear regression and SVR publication-title: Proceedings of the Third International Conference on Natural Computation (ICNC 2007) doi: 10.1109/ICNC.2007.780 contributor: fullname: Lin – volume: 275 start-page: 1308 year: 2018 ident: ref_51 article-title: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.069 contributor: fullname: Abdeljaber – volume: 51 start-page: 889 year: 2021 ident: ref_20 article-title: A multi-layer and multi-ensemble stock trader using deep learning and deep reinforcement learning publication-title: Appl. Intell. doi: 10.1007/s10489-020-01839-5 contributor: fullname: Carta – volume: 63 start-page: 664 year: 2015 ident: ref_47 article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468589 contributor: fullname: Kiranyaz – ident: ref_34 doi: 10.1109/AEEICB.2017.7972337 – volume: 270 start-page: 654 year: 2018 ident: ref_64 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.11.054 contributor: fullname: Fischer – volume: 17 start-page: 229 year: 2021 ident: ref_25 article-title: Analysing Volatility during Extreme Market Events Using the Mid Cap Share Index publication-title: Economica contributor: fullname: Selemela – ident: ref_42 doi: 10.1007/978-1-4419-9326-7 – volume: 4 start-page: 17 year: 2019 ident: ref_31 article-title: The effect of kernel values in support vector machine to forecasting performance of financial time series publication-title: J. Cogn. Syst. contributor: fullname: Altan – volume: 58 start-page: 308 year: 2015 ident: ref_38 article-title: A gradient boosting method to improve travel time prediction publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2015.02.019 contributor: fullname: Zhang – volume: 16 start-page: 5735 year: 2019 ident: ref_57 article-title: Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2955540 contributor: fullname: Wang – volume: 30 start-page: 18 year: 2014 ident: ref_1 article-title: Volatility spillovers between oil prices and stock returns: A focus on frontier markets publication-title: J. Appl. Bus. Res. doi: 10.19030/jabr.v30i2.8421 contributor: fullname: Gomes – ident: ref_18 doi: 10.3390/jrfm11040061 – ident: ref_67 – ident: ref_48 doi: 10.1007/978-3-319-54109-9_6 – volume: 86 start-page: 2278 year: 1998 ident: ref_44 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 contributor: fullname: LeCun – volume: 54 start-page: 1937 year: 2021 ident: ref_39 article-title: A comparative analysis of gradient boosting algorithms publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09896-5 – volume: 66 start-page: 9 year: 2017 ident: ref_9 article-title: A deep learning ensemble approach for crude oil price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.05.023 contributor: fullname: Zhao – ident: ref_15 doi: 10.1109/BigData47090.2019.9005997 – ident: ref_6 – ident: ref_46 doi: 10.1109/EMBC.2015.7318926 – ident: ref_19 doi: 10.1109/CIEL.2014.7015739 – ident: ref_33 – volume: 4 start-page: 243 year: 1992 ident: ref_62 article-title: A fixed size storage O (n 3) time complexity learning algorithm for fully recurrent continually running networks publication-title: Neural Comput. doi: 10.1162/neco.1992.4.2.243 contributor: fullname: Schmidhuber – ident: ref_36 doi: 10.1007/978-3-642-41136-6_5 – volume: 365 start-page: 112395 year: 2020 ident: ref_10 article-title: Bitcoin price prediction using machine learning: An approach to sample dimension engineering publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2019.112395 contributor: fullname: Chen – ident: ref_58 doi: 10.1109/ICASSP40776.2020.9052948 – ident: ref_5 doi: 10.1109/GET.2016.7916627 – volume: 440 start-page: 032115 year: 2020 ident: ref_66 article-title: Power load forecasting using BiLSTM-attention publication-title: Proc. Iop Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/440/3/032115 contributor: fullname: Du – volume: 9 start-page: 1735 year: 1997 ident: ref_61 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 contributor: fullname: Hochreiter – ident: ref_12 doi: 10.1109/ICACCI.2017.8126078 – volume: 151 start-page: 107398 year: 2021 ident: ref_53 article-title: 1D convolutional neural networks and applications: A survey publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107398 contributor: fullname: Kiranyaz – volume: 555 start-page: 124444 year: 2020 ident: ref_2 article-title: Predicting the stock price of frontier markets using machine learning and modified Black–Scholes Option pricing model publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2020.124444 contributor: fullname: Chowdhury – volume: 404 start-page: 132306 year: 2020 ident: ref_60 article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/j.physd.2019.132306 contributor: fullname: Sherstinsky – volume: 8 start-page: e1249 year: 2018 ident: ref_41 article-title: Ensemble learning: A survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1249 contributor: fullname: Sagi – ident: ref_43 doi: 10.21437/ICSLP.2002-316 |
SSID | ssj0000392667 |
Score | 2.335387 |
Snippet | Forecasting the risk factor of the financial frontier markets has always been a very challenging task. Unlike an emerging market, a frontier market has a... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 252 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Datasets Deep learning Discriminant analysis Economic forecasting Emerging markets frontier market Generalized linear models Internet Investigations Machine learning machine learning ensemble Mathematical models Neural networks Parameters Performance evaluation Risk analysis Risk factors Root-mean-square errors Stacking stacking ensemble of neural network Support vector machines Time series Volatility |
Title | Forecasting the Risk Factor of Frontier Markets: A Novel Stacking Ensemble of Neural Network Approach |
URI | https://www.proquest.com/docview/2716520901 https://doaj.org/article/8f9a3a71c2c146489f8f49dab7fb5d2c |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMct6AQD4ikKBVmCNarj2I7DVqBRFzrwkNgiP6WK0iLS8vnxOSkUMbCwRpYc3eV8_4vOv0PosghSyFJqkyA2TMK0YYlOuUqILoimzBqv4b7z6CEfP8vbIWByvkZ9QU9YgwduDNeXvlCZylNDTQhqJgsvPSus0rnX3FITT1-SrxVT8QwOaV-IvOGRZqGu7_sJoJ1Chqc_MlAE9f86h2NyKXfRTqsK8aB5mz204Wb7aHuNFXiAHAzRNKqGNmUcVBu-n9QvuIzjcvDc4xJIBCHH4bt4j7m-wgM8nn-4KQ560sAPcTyc1e5VTx0sByhH2HHcdIHjQYsWP0RP5fDxZpS0MxISk4l0kWjGjZBeWi6tyRToPZYx5pW2nKSaOOoIJ9RSzbSWKZdSSCEYcOdCdHORHaHObD5zxwhr5X2De4GB1CyVXgU9ZmSuRVBledZFFyu7VW8NCqMKJQRYt_q2bhddg0m_VgC-Oj4ITq1ap1Z_ObWLeiuHVG1M1RUNpR007ZD05D_2OEVbFK4yxH6xHuos3pfuDG3Wdnkev6VPnBzNkQ |
link.rule.ids | 315,782,786,866,2107,27934,27935 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+the+Risk+Factor+of+Frontier+Markets%3A+A+Novel+Stacking+Ensemble+of+Neural+Network+Approach&rft.jtitle=Future+internet&rft.au=Akter%2C+Mst+Shapna&rft.au=Hossain+Shahriar&rft.au=Chowdhury%2C+Reaz&rft.au=Mahdy%2C+M+R+C&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=1999-5903&rft.volume=14&rft.issue=9&rft.spage=252&rft_id=info:doi/10.3390%2Ffi14090252&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon |