Forecasting the Risk Factor of Frontier Markets: A Novel Stacking Ensemble of Neural Network Approach

Forecasting the risk factor of the financial frontier markets has always been a very challenging task. Unlike an emerging market, a frontier market has a missing parameter named “volatility”, which indicates the market’s risk and as a result of the absence of this missing parameter and the lack of p...

Full description

Saved in:
Bibliographic Details
Published in:Future internet Vol. 14; no. 9; p. 252
Main Authors: Akter, Mst. Shapna, Shahriar, Hossain, Chowdhury, Reaz, Mahdy, M. R. C.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-09-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Forecasting the risk factor of the financial frontier markets has always been a very challenging task. Unlike an emerging market, a frontier market has a missing parameter named “volatility”, which indicates the market’s risk and as a result of the absence of this missing parameter and the lack of proper prediction, it has almost become difficult for direct customers to invest money in frontier markets. However, the noises, seasonality, random spikes and trends of the time-series datasets make it even more complicated to predict stock prices with high accuracy. In this work, we have developed a novel stacking ensemble of the neural network model that performs best on multiple data patterns. We have compared our model’s performance with the performance results obtained by using some traditional machine learning ensemble models such as Random Forest, AdaBoost, Gradient Boosting Machine and Stacking Ensemble, along with some traditional deep learning models such as Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term (BiLSTM). We have calculated the missing parameter named “volatility” using stock price (Close price) for 20 different companies of the frontier market and then made predictions using the aforementioned machine learning ensemble models, deep learning models and our proposed stacking ensemble of the neural network model. The statistical evaluation metrics RMSE and MAE have been used to evaluate the performance of the models. It has been found that our proposed stacking ensemble neural network model outperforms all other traditional machine learning and deep learning models which have been used for comparison in this paper. The lowest RMSE and MAE values we have received using our proposed model are 0.3626 and 0.3682 percent, respectively, and the highest RMSE and MAE values are 2.5696 and 2.444 percent, respectively. The traditional ensemble learning models give the highest RMSE and MAE error rate of 20.4852 and 20.4260 percent, while the deep learning models give 15.2332 and 15.1668 percent, respectively, which clearly states that our proposed model provides a very low error value compared with the traditional models.
AbstractList Forecasting the risk factor of the financial frontier markets has always been a very challenging task. Unlike an emerging market, a frontier market has a missing parameter named “volatility”, which indicates the market’s risk and as a result of the absence of this missing parameter and the lack of proper prediction, it has almost become difficult for direct customers to invest money in frontier markets. However, the noises, seasonality, random spikes and trends of the time-series datasets make it even more complicated to predict stock prices with high accuracy. In this work, we have developed a novel stacking ensemble of the neural network model that performs best on multiple data patterns. We have compared our model’s performance with the performance results obtained by using some traditional machine learning ensemble models such as Random Forest, AdaBoost, Gradient Boosting Machine and Stacking Ensemble, along with some traditional deep learning models such as Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term (BiLSTM). We have calculated the missing parameter named “volatility” using stock price (Close price) for 20 different companies of the frontier market and then made predictions using the aforementioned machine learning ensemble models, deep learning models and our proposed stacking ensemble of the neural network model. The statistical evaluation metrics RMSE and MAE have been used to evaluate the performance of the models. It has been found that our proposed stacking ensemble neural network model outperforms all other traditional machine learning and deep learning models which have been used for comparison in this paper. The lowest RMSE and MAE values we have received using our proposed model are 0.3626 and 0.3682 percent, respectively, and the highest RMSE and MAE values are 2.5696 and 2.444 percent, respectively. The traditional ensemble learning models give the highest RMSE and MAE error rate of 20.4852 and 20.4260 percent, while the deep learning models give 15.2332 and 15.1668 percent, respectively, which clearly states that our proposed model provides a very low error value compared with the traditional models.
Author Chowdhury, Reaz
Shahriar, Hossain
Akter, Mst. Shapna
Mahdy, M. R. C.
Author_xml – sequence: 1
  givenname: Mst. Shapna
  surname: Akter
  fullname: Akter, Mst. Shapna
– sequence: 2
  givenname: Hossain
  surname: Shahriar
  fullname: Shahriar, Hossain
– sequence: 3
  givenname: Reaz
  surname: Chowdhury
  fullname: Chowdhury, Reaz
– sequence: 4
  givenname: M. R. C.
  surname: Mahdy
  fullname: Mahdy, M. R. C.
BookMark eNpNUdtKAzEQDaLg9cUvCPgmVHPfxLdSWi1oBS_PIckmuu12U5NU8e_dWlHn5QzDmTNnZg7Bbhc7D8ApRheUKnQZGsyQQoSTHXCAlVIDrhDd_Zfvg5Oc56gPqogQ1QHwk5i8M7k03Qssrx4-NHkBJ8aVmGAMcJJiVxqf4J1JC1_yFRzCWXz3LXwsxi02XeMu-6Vt_YY-8-tk2h7KR0wLOFytUjTu9RjsBdNmf_KDR-B5Mn4a3Qxu76-no-HtwFGBy8Ay7oQMsuaydtSg3jajjAVja46wRZ54xBGpiWXWSsylFFIIpjhXFFVc0CMw3erW0cz1KjVLkz51NI3-LsT0ok0qjWu9lkEZairsiMNMMKmCDEzVxlbB8pq4Xutsq9Wv8Lb2ueh5XKeut69JhQUn_alxzzrfslyKOScffqdipDdf0X9foV8bVn7p
CitedBy_id crossref_primary_10_1007_s10260_024_00746_0
crossref_primary_10_1016_j_jksuci_2023_101743
crossref_primary_10_1007_s10844_023_00804_1
Cites_doi 10.32861/ijefr.67.170.179
10.1002/047084535X
10.3390/en11040914
10.1109/ICIEA.2018.8398183
10.21437/Interspeech.2019-1982
10.1109/TSMCB.2007.914695
10.3390/s19092018
10.2139/ssrn.1973469
10.1109/TIE.2016.2582729
10.1109/HICSS.1991.184055
10.1007/978-1-4419-9326-7_1
10.1109/ACCESS.2018.2880044
10.1109/TIE.2018.2833045
10.1007/978-3-642-24797-2
10.1109/LSP.2017.2657381
10.3390/app11010158
10.3390/en11071636
10.3390/app8071152
10.3390/su122310090
10.3390/a13050121
10.2469/faj.v61.n1.2683
10.1016/j.scitotenv.2019.02.093
10.18653/v1/D16-1058
10.1038/nature14539
10.1109/MLSP.2015.7324337
10.1109/ICNC.2007.780
10.1016/j.neucom.2017.09.069
10.1007/s10489-020-01839-5
10.1109/TBME.2015.2468589
10.1109/AEEICB.2017.7972337
10.1016/j.ejor.2017.11.054
10.1007/978-1-4419-9326-7
10.1016/j.trc.2015.02.019
10.1109/TII.2019.2955540
10.19030/jabr.v30i2.8421
10.3390/jrfm11040061
10.1007/978-3-319-54109-9_6
10.1109/5.726791
10.1007/s10462-020-09896-5
10.1016/j.eneco.2017.05.023
10.1109/BigData47090.2019.9005997
10.1109/EMBC.2015.7318926
10.1109/CIEL.2014.7015739
10.1162/neco.1992.4.2.243
10.1007/978-3-642-41136-6_5
10.1016/j.cam.2019.112395
10.1109/ICASSP40776.2020.9052948
10.1109/GET.2016.7916627
10.1088/1755-1315/440/3/032115
10.1162/neco.1997.9.8.1735
10.1109/ICACCI.2017.8126078
10.1016/j.ymssp.2020.107398
10.1016/j.physa.2020.124444
10.1016/j.physd.2019.132306
10.1002/widm.1249
10.21437/ICSLP.2002-316
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PIMPY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/fi14090252
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1999-5903
ExternalDocumentID oai_doaj_org_article_8f9a3a71c2c146489f8f49dab7fb5d2c
10_3390_fi14090252
GeographicLocations Romania
GeographicLocations_xml – name: Romania
GroupedDBID -DT
.4I
3V.
5VS
7WY
8FE
8FG
8FL
AADQD
AAFWJ
AAKPC
AAYXX
ABDBF
ABUWG
ACIHN
ADBBV
AEAQA
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EAP
EBS
EJD
ESX
FRNLG
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_DOAJ
HCIFZ
IAO
ITC
K60
K6V
K6~
K7-
KQ8
M0C
M0N
MODMG
M~E
OK1
P62
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RIG
RNS
TR2
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c361t-b45c68f8d58dc3a09994344fabd501b0e2e0502d2b4bb81588686649559307563
IEDL.DBID DOA
ISSN 1999-5903
IngestDate Tue Oct 22 15:16:44 EDT 2024
Thu Oct 10 19:25:18 EDT 2024
Fri Nov 22 02:37:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-b45c68f8d58dc3a09994344fabd501b0e2e0502d2b4bb81588686649559307563
OpenAccessLink https://doaj.org/article/8f9a3a71c2c146489f8f49dab7fb5d2c
PQID 2716520901
PQPubID 2032396
ParticipantIDs doaj_primary_oai_doaj_org_article_8f9a3a71c2c146489f8f49dab7fb5d2c
proquest_journals_2716520901
crossref_primary_10_3390_fi14090252
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Future internet
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_39) 2021; 54
ref_14
ref_58
ref_12
Abdeljaber (ref_51) 2018; 275
ref_56
ref_11
ref_54
ref_52
Schmidhuber (ref_62) 1992; 4
Hu (ref_37) 2008; 38
LeCun (ref_44) 1998; 86
Poon (ref_27) 2005; 61
ref_19
ref_18
Chen (ref_10) 2020; 365
ref_17
Carta (ref_20) 2021; 51
ref_16
ref_15
Kiranyaz (ref_53) 2021; 151
ref_59
Chowdhury (ref_2) 2020; 555
Hochreiter (ref_61) 1997; 9
Du (ref_66) 2020; 440
Fischer (ref_64) 2018; 270
Yoon (ref_8) 1991; Volume 4
Kiranyaz (ref_49) 2018; 66
Selemela (ref_25) 2021; 17
ref_69
ref_24
ref_68
ref_23
ref_67
ref_22
ref_21
ref_65
ref_63
Patel (ref_13) 2014; 3
ref_28
Ince (ref_50) 2016; 63
Kiranyaz (ref_47) 2015; 63
Altan (ref_31) 2019; 4
Garosi (ref_29) 2019; 664
Sagi (ref_41) 2018; 8
ref_36
ref_35
LeCun (ref_45) 2015; 521
ref_34
ref_33
ref_32
Lin (ref_4) 2007; Volume 1
ref_30
Sherstinsky (ref_60) 2020; 404
Anghel (ref_3) 2020; 6
Zhao (ref_9) 2017; 66
Wang (ref_57) 2019; 16
Gomes (ref_1) 2014; 30
Zhang (ref_38) 2015; 58
ref_46
ref_43
ref_42
ref_40
Haidar (ref_55) 2018; 6
Salamon (ref_70) 2017; 24
ref_48
Ederington (ref_26) 2006; 16
ref_5
ref_7
ref_6
References_xml – volume: 6
  start-page: 170
  year: 2020
  ident: ref_3
  article-title: Predicting Intraday Prices in the Frontier Stock Market of Romania Using Machine Learning Algorithms
  publication-title: Int. J. Econ. Financ. Res.
  doi: 10.32861/ijefr.67.170.179
  contributor:
    fullname: Anghel
– volume: 16
  start-page: 10
  year: 2006
  ident: ref_26
  article-title: Measuring historical volatility
  publication-title: J. Appl. Financ.
  contributor:
    fullname: Ederington
– ident: ref_59
  doi: 10.1002/047084535X
– ident: ref_32
  doi: 10.3390/en11040914
– ident: ref_14
  doi: 10.1109/ICIEA.2018.8398183
– ident: ref_68
  doi: 10.21437/Interspeech.2019-1982
– volume: 38
  start-page: 577
  year: 2008
  ident: ref_37
  article-title: Adaboost-based algorithm for network intrusion detection
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
  doi: 10.1109/TSMCB.2007.914695
  contributor:
    fullname: Hu
– ident: ref_56
  doi: 10.3390/s19092018
– volume: 3
  start-page: 13755
  year: 2014
  ident: ref_13
  article-title: Stock price prediction using artificial neural network
  publication-title: Int. J. Innov. Res. Sci. Eng. Technol.
  contributor:
    fullname: Patel
– ident: ref_16
– ident: ref_24
  doi: 10.2139/ssrn.1973469
– volume: 63
  start-page: 7067
  year: 2016
  ident: ref_50
  article-title: Real-time motor fault detection by 1-D convolutional neural networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2582729
  contributor:
    fullname: Ince
– volume: Volume 4
  start-page: 156
  year: 1991
  ident: ref_8
  article-title: Predicting stock price performance: A neural network approach
  publication-title: Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences
  doi: 10.1109/HICSS.1991.184055
  contributor:
    fullname: Yoon
– ident: ref_40
  doi: 10.1007/978-1-4419-9326-7_1
– ident: ref_35
– volume: 6
  start-page: 69053
  year: 2018
  ident: ref_55
  article-title: Monthly rainfall forecasting using one-dimensional deep convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2880044
  contributor:
    fullname: Haidar
– volume: 66
  start-page: 8760
  year: 2018
  ident: ref_49
  article-title: Real-time fault detection and identification for MMC using 1-D convolutional neural networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2833045
  contributor:
    fullname: Kiranyaz
– ident: ref_23
– ident: ref_63
  doi: 10.1007/978-3-642-24797-2
– volume: 24
  start-page: 279
  year: 2017
  ident: ref_70
  article-title: Deep convolutional neural networks and data augmentation for environmental sound classification
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2017.2657381
  contributor:
    fullname: Salamon
– ident: ref_11
  doi: 10.3390/app11010158
– ident: ref_30
  doi: 10.3390/en11071636
– ident: ref_22
  doi: 10.3390/app8071152
– ident: ref_52
– ident: ref_54
  doi: 10.3390/su122310090
– ident: ref_21
  doi: 10.3390/a13050121
– ident: ref_17
– volume: 61
  start-page: 45
  year: 2005
  ident: ref_27
  article-title: Practical issues in forecasting volatility
  publication-title: Financ. Anal. J.
  doi: 10.2469/faj.v61.n1.2683
  contributor:
    fullname: Poon
– volume: 664
  start-page: 1117
  year: 2019
  ident: ref_29
  article-title: Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2019.02.093
  contributor:
    fullname: Garosi
– ident: ref_65
  doi: 10.18653/v1/D16-1058
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_45
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: LeCun
– ident: ref_69
  doi: 10.1109/MLSP.2015.7324337
– ident: ref_7
– ident: ref_28
– volume: Volume 1
  start-page: 688
  year: 2007
  ident: ref_4
  article-title: Time series prediction based on linear regression and SVR
  publication-title: Proceedings of the Third International Conference on Natural Computation (ICNC 2007)
  doi: 10.1109/ICNC.2007.780
  contributor:
    fullname: Lin
– volume: 275
  start-page: 1308
  year: 2018
  ident: ref_51
  article-title: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.069
  contributor:
    fullname: Abdeljaber
– volume: 51
  start-page: 889
  year: 2021
  ident: ref_20
  article-title: A multi-layer and multi-ensemble stock trader using deep learning and deep reinforcement learning
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01839-5
  contributor:
    fullname: Carta
– volume: 63
  start-page: 664
  year: 2015
  ident: ref_47
  article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468589
  contributor:
    fullname: Kiranyaz
– ident: ref_34
  doi: 10.1109/AEEICB.2017.7972337
– volume: 270
  start-page: 654
  year: 2018
  ident: ref_64
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.11.054
  contributor:
    fullname: Fischer
– volume: 17
  start-page: 229
  year: 2021
  ident: ref_25
  article-title: Analysing Volatility during Extreme Market Events Using the Mid Cap Share Index
  publication-title: Economica
  contributor:
    fullname: Selemela
– ident: ref_42
  doi: 10.1007/978-1-4419-9326-7
– volume: 4
  start-page: 17
  year: 2019
  ident: ref_31
  article-title: The effect of kernel values in support vector machine to forecasting performance of financial time series
  publication-title: J. Cogn. Syst.
  contributor:
    fullname: Altan
– volume: 58
  start-page: 308
  year: 2015
  ident: ref_38
  article-title: A gradient boosting method to improve travel time prediction
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2015.02.019
  contributor:
    fullname: Zhang
– volume: 16
  start-page: 5735
  year: 2019
  ident: ref_57
  article-title: Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2955540
  contributor:
    fullname: Wang
– volume: 30
  start-page: 18
  year: 2014
  ident: ref_1
  article-title: Volatility spillovers between oil prices and stock returns: A focus on frontier markets
  publication-title: J. Appl. Bus. Res.
  doi: 10.19030/jabr.v30i2.8421
  contributor:
    fullname: Gomes
– ident: ref_18
  doi: 10.3390/jrfm11040061
– ident: ref_67
– ident: ref_48
  doi: 10.1007/978-3-319-54109-9_6
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_44
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
  contributor:
    fullname: LeCun
– volume: 54
  start-page: 1937
  year: 2021
  ident: ref_39
  article-title: A comparative analysis of gradient boosting algorithms
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09896-5
– volume: 66
  start-page: 9
  year: 2017
  ident: ref_9
  article-title: A deep learning ensemble approach for crude oil price forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2017.05.023
  contributor:
    fullname: Zhao
– ident: ref_15
  doi: 10.1109/BigData47090.2019.9005997
– ident: ref_6
– ident: ref_46
  doi: 10.1109/EMBC.2015.7318926
– ident: ref_19
  doi: 10.1109/CIEL.2014.7015739
– ident: ref_33
– volume: 4
  start-page: 243
  year: 1992
  ident: ref_62
  article-title: A fixed size storage O (n 3) time complexity learning algorithm for fully recurrent continually running networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.2.243
  contributor:
    fullname: Schmidhuber
– ident: ref_36
  doi: 10.1007/978-3-642-41136-6_5
– volume: 365
  start-page: 112395
  year: 2020
  ident: ref_10
  article-title: Bitcoin price prediction using machine learning: An approach to sample dimension engineering
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.112395
  contributor:
    fullname: Chen
– ident: ref_58
  doi: 10.1109/ICASSP40776.2020.9052948
– ident: ref_5
  doi: 10.1109/GET.2016.7916627
– volume: 440
  start-page: 032115
  year: 2020
  ident: ref_66
  article-title: Power load forecasting using BiLSTM-attention
  publication-title: Proc. Iop Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/440/3/032115
  contributor:
    fullname: Du
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_61
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
  contributor:
    fullname: Hochreiter
– ident: ref_12
  doi: 10.1109/ICACCI.2017.8126078
– volume: 151
  start-page: 107398
  year: 2021
  ident: ref_53
  article-title: 1D convolutional neural networks and applications: A survey
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107398
  contributor:
    fullname: Kiranyaz
– volume: 555
  start-page: 124444
  year: 2020
  ident: ref_2
  article-title: Predicting the stock price of frontier markets using machine learning and modified Black–Scholes Option pricing model
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2020.124444
  contributor:
    fullname: Chowdhury
– volume: 404
  start-page: 132306
  year: 2020
  ident: ref_60
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/j.physd.2019.132306
  contributor:
    fullname: Sherstinsky
– volume: 8
  start-page: e1249
  year: 2018
  ident: ref_41
  article-title: Ensemble learning: A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
  contributor:
    fullname: Sagi
– ident: ref_43
  doi: 10.21437/ICSLP.2002-316
SSID ssj0000392667
Score 2.335387
Snippet Forecasting the risk factor of the financial frontier markets has always been a very challenging task. Unlike an emerging market, a frontier market has a...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 252
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Datasets
Deep learning
Discriminant analysis
Economic forecasting
Emerging markets
frontier market
Generalized linear models
Internet
Investigations
Machine learning
machine learning ensemble
Mathematical models
Neural networks
Parameters
Performance evaluation
Risk analysis
Risk factors
Root-mean-square errors
Stacking
stacking ensemble of neural network
Support vector machines
Time series
Volatility
Title Forecasting the Risk Factor of Frontier Markets: A Novel Stacking Ensemble of Neural Network Approach
URI https://www.proquest.com/docview/2716520901
https://doaj.org/article/8f9a3a71c2c146489f8f49dab7fb5d2c
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMct6AQD4ikKBVmCNarj2I7DVqBRFzrwkNgiP6WK0iLS8vnxOSkUMbCwRpYc3eV8_4vOv0PosghSyFJqkyA2TMK0YYlOuUqILoimzBqv4b7z6CEfP8vbIWByvkZ9QU9YgwduDNeXvlCZylNDTQhqJgsvPSus0rnX3FITT1-SrxVT8QwOaV-IvOGRZqGu7_sJoJ1Chqc_MlAE9f86h2NyKXfRTqsK8aB5mz204Wb7aHuNFXiAHAzRNKqGNmUcVBu-n9QvuIzjcvDc4xJIBCHH4bt4j7m-wgM8nn-4KQ560sAPcTyc1e5VTx0sByhH2HHcdIHjQYsWP0RP5fDxZpS0MxISk4l0kWjGjZBeWi6tyRToPZYx5pW2nKSaOOoIJ9RSzbSWKZdSSCEYcOdCdHORHaHObD5zxwhr5X2De4GB1CyVXgU9ZmSuRVBledZFFyu7VW8NCqMKJQRYt_q2bhddg0m_VgC-Oj4ITq1ap1Z_ObWLeiuHVG1M1RUNpR007ZD05D_2OEVbFK4yxH6xHuos3pfuDG3Wdnkev6VPnBzNkQ
link.rule.ids 315,782,786,866,2107,27934,27935
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+the+Risk+Factor+of+Frontier+Markets%3A+A+Novel+Stacking+Ensemble+of+Neural+Network+Approach&rft.jtitle=Future+internet&rft.au=Akter%2C+Mst+Shapna&rft.au=Hossain+Shahriar&rft.au=Chowdhury%2C+Reaz&rft.au=Mahdy%2C+M+R+C&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=1999-5903&rft.volume=14&rft.issue=9&rft.spage=252&rft_id=info:doi/10.3390%2Ffi14090252&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon