Satellite-Based Prediction of Arctic Sea Ice Concentration Using a Deep Neural Network with Multi-Model Ensemble

Warming of the Arctic leads to a decrease in sea ice, and the decrease of sea ice, in turn, results in warming of the Arctic again. Several microwave sensors have provided continuously updated sea ice data for over 30 years. Many studies have been conducted to investigate the relationships between t...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 11; no. 1; p. 19
Main Authors: Kim, Jiwon, Kim, Kwangjin, Cho, Jaeil, Kang, Yong, Yoon, Hong-Joo, Lee, Yang-Won
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-01-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Warming of the Arctic leads to a decrease in sea ice, and the decrease of sea ice, in turn, results in warming of the Arctic again. Several microwave sensors have provided continuously updated sea ice data for over 30 years. Many studies have been conducted to investigate the relationships between the satellite-derived sea ice concentration (SIC) of the Arctic and climatic factors associated with the accelerated warming. However, linear equations using the general circulation model (GCM) data, with low spatial resolution, cannot sufficiently cope with the problem of complexity or non-linearity. Time-series techniques are effective for one-step-ahead forecasting, but are not appropriate for future prediction for about ten or twenty years because of increasing uncertainty when forecasting multiple steps ahead. This paper describes a new approach to near-future prediction of Arctic SIC by employing a deep learning method with multi-model ensemble. We used the regional climate model (RCM) data provided in higher resolution, instead of GCM. The RCM ensemble was produced by Bayesian model averaging (BMA) to minimize the uncertainty which can arise from a single RCM. The accuracies of RCM variables were much improved by the BMA2 method, which took into consideration temporal and spatial variations to minimize the uncertainty of individual RCMs. A deep neural network (DNN) method was used to deal with the non-linear relationships between SIC and climate variables, and to provide a near-future prediction for the forthcoming 10 to 20 years. We adjusted the DNN model for optimized SIC prediction by adopting best-fitted layer structure, loss function, optimizer algorithm, and activation function. The accuracy was much improved when the DNN model was combined with BMA2 ensemble, showing the correlation coefficient of 0.888. This study provides a viable option for monitoring Arctic sea ice change of the near future.
AbstractList Warming of the Arctic leads to a decrease in sea ice, and the decrease of sea ice, in turn, results in warming of the Arctic again. Several microwave sensors have provided continuously updated sea ice data for over 30 years. Many studies have been conducted to investigate the relationships between the satellite-derived sea ice concentration (SIC) of the Arctic and climatic factors associated with the accelerated warming. However, linear equations using the general circulation model (GCM) data, with low spatial resolution, cannot sufficiently cope with the problem of complexity or non-linearity. Time-series techniques are effective for one-step-ahead forecasting, but are not appropriate for future prediction for about ten or twenty years because of increasing uncertainty when forecasting multiple steps ahead. This paper describes a new approach to near-future prediction of Arctic SIC by employing a deep learning method with multi-model ensemble. We used the regional climate model (RCM) data provided in higher resolution, instead of GCM. The RCM ensemble was produced by Bayesian model averaging (BMA) to minimize the uncertainty which can arise from a single RCM. The accuracies of RCM variables were much improved by the BMA2 method, which took into consideration temporal and spatial variations to minimize the uncertainty of individual RCMs. A deep neural network (DNN) method was used to deal with the non-linear relationships between SIC and climate variables, and to provide a near-future prediction for the forthcoming 10 to 20 years. We adjusted the DNN model for optimized SIC prediction by adopting best-fitted layer structure, loss function, optimizer algorithm, and activation function. The accuracy was much improved when the DNN model was combined with BMA2 ensemble, showing the correlation coefficient of 0.888. This study provides a viable option for monitoring Arctic sea ice change of the near future.
Author Kim, Jiwon
Kim, Kwangjin
Yoon, Hong-Joo
Kang, Yong
Lee, Yang-Won
Cho, Jaeil
Author_xml – sequence: 1
  givenname: Jiwon
  surname: Kim
  fullname: Kim, Jiwon
– sequence: 2
  givenname: Kwangjin
  surname: Kim
  fullname: Kim, Kwangjin
– sequence: 3
  givenname: Jaeil
  surname: Cho
  fullname: Cho, Jaeil
– sequence: 4
  givenname: Yong
  surname: Kang
  fullname: Kang, Yong
– sequence: 5
  givenname: Hong-Joo
  surname: Yoon
  fullname: Yoon, Hong-Joo
– sequence: 6
  givenname: Yang-Won
  orcidid: 0000-0002-5251-6100
  surname: Lee
  fullname: Lee, Yang-Won
BookMark eNpNUdFOFTEQbQwkIvDiFzTxzWSl3elu20e8gt4ExAR5bmbbKe512V7b3hD_npVL1Hk5JzMnZ2Zy3rCDOc3E2FspPgBYcZaLlEIKIe0rdtQK3Taqte3Bf_w1Oy1lI5YCkFaoI7a9xUrTNFZqPmKhwL9lCqOvY5p5ivw8L9TzW0K-9sRXafY014zP87syzvcc-SeiLf9Ku4zTAvUx5Z_8caw_-PVuqmNznQJN_GIu9DBMdMIOI06FTl_wmN1dXnxffWmubj6vV-dXjYde1gbtEDAKY7RWukM_dJ0Kpjc9oEeNfQS0OmgTtWi91YCyg2iM7LsgA2mCY7be-4aEG7fN4wPm3y7h6J4bKd87zMtvEznRY7Qhtj1Qr5SGQbZBDWYw0lKQSixe7_Ze25x-7ahUt0m7PC_nuxYEWDCgukX1fq_yOZWSKf7dKoX7E5D7FxA8AcaZg1c
CitedBy_id crossref_primary_10_1016_j_procs_2023_12_019
crossref_primary_10_1016_j_engappai_2023_106920
crossref_primary_10_3390_info13120577
crossref_primary_10_1007_s10661_021_08843_3
crossref_primary_10_1007_s11274_023_03850_7
crossref_primary_10_3390_jmse11122319
crossref_primary_10_3389_fmars_2021_649378
crossref_primary_10_3390_jmse9030330
crossref_primary_10_3390_rs11121439
crossref_primary_10_3390_rs14102366
crossref_primary_10_1016_j_oceaneng_2023_116486
crossref_primary_10_5194_tc_14_1083_2020
crossref_primary_10_1109_TGRS_2024_3355238
crossref_primary_10_1029_2020JC016277
crossref_primary_10_1109_TGRS_2022_3177600
crossref_primary_10_1109_TGRS_2023_3279089
crossref_primary_10_3389_fmars_2021_680079
crossref_primary_10_3390_rs13173413
crossref_primary_10_3390_rs14225837
crossref_primary_10_1016_j_infrared_2019_04_022
crossref_primary_10_3390_rs11091071
crossref_primary_10_1093_nsr_nwaa047
crossref_primary_10_3390_rs11172009
Cites_doi 10.1007/s00382-011-1105-2
10.1029/JC091iC01p00975
10.3189/172756408784700699
10.1175/2010JCLI3775.1
10.1175/JCLI-D-13-00536.1
10.1002/2017JD027703
10.1029/2011GL050118
10.1214/ss/1009212519
10.1016/S0967-0637(02)00125-5
10.1002/rog.20017
10.1175/JCLI-D-16-0548.1
10.1175/JCLI-D-15-0611.1
10.1175/JCLI3885.1
10.1002/2017GL075375
10.5194/tc-10-2191-2016
10.1007/s10584-011-0101-1
10.1175/JCLI-D-15-0669.1
10.3390/rs6065520
10.1175/JTECH-D-14-00165.1
10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
10.3390/rs9121305
10.1175/2010JCLI3527.1
10.3189/2015AoG69A909
10.1029/JD089iD04p05355
10.1029/2006GL026216
10.1175/JCLI-D-11-00113.1
10.5194/asr-14-139-2017
10.1002/jgrc.20414
10.1088/1748-9326/9/8/084009
10.1175/JCLI-D-15-0448.1
10.1016/S0277-3791(01)00016-6
10.1029/2011GL048970
10.1088/1748-9326/aa69d0
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs11010019
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_06af9df263e64473b12d4b8b819ed140
10_3390_rs11010019
GeographicLocations Arctic Ocean
Barents Sea
United States--US
Hudson Bay
Arctic region
Novaya Zemlya
GeographicLocations_xml – name: Hudson Bay
– name: Novaya Zemlya
– name: Barents Sea
– name: Arctic Ocean
– name: Arctic region
– name: United States--US
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
IPNFZ
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-a9bdaf08877475acb554d86863aca7a6f3a97d78f702c973a153f88165d1de7e3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Tue Oct 22 15:15:27 EDT 2024
Sat Nov 23 07:05:47 EST 2024
Thu Nov 21 21:12:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a9bdaf08877475acb554d86863aca7a6f3a97d78f702c973a153f88165d1de7e3
ORCID 0000-0002-5251-6100
OpenAccessLink https://doaj.org/article/06af9df263e64473b12d4b8b819ed140
PQID 2303938345
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_06af9df263e64473b12d4b8b819ed140
proquest_journals_2303938345
crossref_primary_10_3390_rs11010019
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
(ref1) 2014
ref24
ref23
ref26
ref25
ref20
ref41
Serreze (ref18) 2014
ref22
ref21
Holland (ref31) 2008; Volume 180
ref28
ref27
ref29
ref8
ref7
Walsh (ref6) 1980
ref9
ref4
ref3
ref5
Pfirman (ref37) 1994
ref40
References_xml – ident: ref32
  doi: 10.1007/s00382-011-1105-2
– year: 2014
  ident: ref1
– ident: ref7
– ident: ref20
  doi: 10.1029/JC091iC01p00975
– ident: ref3
  doi: 10.3189/172756408784700699
– ident: ref41
  doi: 10.1175/2010JCLI3775.1
– ident: ref14
  doi: 10.1175/JCLI-D-13-00536.1
– year: 2014
  ident: ref18
  contributor:
    fullname: Serreze
– ident: ref22
  doi: 10.1002/2017JD027703
– ident: ref34
  doi: 10.1029/2011GL050118
– ident: ref10
  doi: 10.1214/ss/1009212519
– ident: ref12
  doi: 10.1016/S0967-0637(02)00125-5
– ident: ref15
  doi: 10.1002/rog.20017
– ident: ref38
  doi: 10.1175/JCLI-D-16-0548.1
– ident: ref17
  doi: 10.1175/JCLI-D-15-0611.1
– ident: ref13
  doi: 10.1175/JCLI3885.1
– ident: ref27
  doi: 10.1002/2017GL075375
– ident: ref24
  doi: 10.5194/tc-10-2191-2016
– ident: ref30
  doi: 10.1007/s10584-011-0101-1
– ident: ref11
  doi: 10.1175/JCLI-D-15-0669.1
– ident: ref8
  doi: 10.3390/rs6065520
– ident: ref28
  doi: 10.1175/JTECH-D-14-00165.1
– volume: Volume 180
  start-page: 133
  year: 2008
  ident: ref31
  article-title: The role of natural versus forced change in future rapid summer Arctic ice loss
  contributor:
    fullname: Holland
– ident: ref2
  doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
– ident: ref9
  doi: 10.3390/rs9121305
– ident: ref36
– ident: ref4
  doi: 10.1175/2010JCLI3527.1
– ident: ref29
  doi: 10.3189/2015AoG69A909
– ident: ref19
  doi: 10.1029/JD089iD04p05355
– ident: ref21
– ident: ref5
  doi: 10.1029/2006GL026216
– ident: ref25
  doi: 10.1175/JCLI-D-11-00113.1
– ident: ref26
  doi: 10.5194/asr-14-139-2017
– ident: ref23
  doi: 10.1002/jgrc.20414
– ident: ref16
  doi: 10.1088/1748-9326/9/8/084009
– ident: ref40
  doi: 10.1175/JCLI-D-15-0448.1
– ident: ref35
  doi: 10.1016/S0277-3791(01)00016-6
– ident: ref33
  doi: 10.1029/2011GL048970
– start-page: 77
  year: 1994
  ident: ref37
  article-title: The northern Barents Sea: Water mass distribution and modification
  contributor:
    fullname: Pfirman
– ident: ref39
  doi: 10.1088/1748-9326/aa69d0
– start-page: 373
  year: 1980
  ident: ref6
  article-title: Empirical orthogonal functions and the statistical predictability of sea ice extent
  contributor:
    fullname: Walsh
SSID ssj0000331904
Score 2.3827024
Snippet Warming of the Arctic leads to a decrease in sea ice, and the decrease of sea ice, in turn, results in warming of the Arctic again. Several microwave sensors...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 19
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Bayesian analysis
Bayesian model averaging
Climate change
Climate models
Computer centers
Correlation coefficient
Correlation coefficients
deep neural network
Forecasting
General circulation models
Ice
Ice environments
Linear equations
Linearity
Machine learning
Microwave sensors
Neural networks
Nonlinearity
regional climate model
Remote sensing
Sea ice
sea ice concentration
Solar energy
Spatial data
Spatial resolution
Spatial variations
Structure-function relationships
Temperature
Uncertainty
Variables
Title Satellite-Based Prediction of Arctic Sea Ice Concentration Using a Deep Neural Network with Multi-Model Ensemble
URI https://www.proquest.com/docview/2303938345
https://doaj.org/article/06af9df263e64473b12d4b8b819ed140
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagCyyIpygUZAlWq3GcxM5IXypLhVSQ2CI7tsVQ0qqPgX_PnZMWEAMLa5TE0XeXe9h33xFyL3JQHJk7prkwDJTCM4iqU2a559IksRdhGMx4KievajBEmpzdqC-sCavpgWvgulGmfW59nAkHrlsKw2ObGGXAkzkL2UGwvlH2LZkKNliAakVJzUcqIK_vLlfg6JBwKP_hgQJR_y87HJzL6JgcNVEhfai_5oTsueqUHDQDyt8-zshiqgN15tqxHvgdS5-WeMKCqNK5hwex1YlOnaaPpaN97EWsGkJcGqoCqKYD5xYUyThgpUld_U1xG5aGJlyGU9FmdFit3LuZuXPyMho-98esGZbASpHxNdO5sdqjzYAEIdWlgTjBqkxlQpda6swLnUsrlZdRXOZSaDB1XimepZZbJ524IK1qXrlLQkthdSKRuxHeYcoYT_448ualUWyjWLfJ3RbAYlFzYhSQSyDMxRfMbdJDbHd3II91uADSLRrpFn9Jt006W8kUzc-1KiBrAhVTIkmv_mONa3IIUVBe76t0SGu93Lgbsr-ym9ugVJ8bjM8W
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Satellite-Based+Prediction+of+Arctic+Sea+Ice+Concentration+Using+a+Deep+Neural+Network+with+Multi-Model+Ensemble&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Kim%2C+Jiwon&rft.au=Kim%2C+Kwangjin&rft.au=Cho%2C+Jaeil&rft.au=Kang%2C+Yong+Q&rft.date=2019-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=1&rft_id=info:doi/10.3390%2Frs11010019&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon