3D Façade Labeling over Complex Scenarios: A Case Study Using Convolutional Neural Network and Structure-From-Motion

Urban environments are regions in which spectral variability and spatial variability are extremely high, with a huge range of shapes and sizes, and they also demand high resolution images for applications involving their study. Due to the fact that these environments can grow even more over time, ap...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 10; no. 9; p. 1435
Main Authors: Lotte, Rodolfo, Haala, Norbert, Karpina, Mateusz, Aragão, Luiz, Shimabukuro, Yosio
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-09-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Urban environments are regions in which spectral variability and spatial variability are extremely high, with a huge range of shapes and sizes, and they also demand high resolution images for applications involving their study. Due to the fact that these environments can grow even more over time, applications related to their monitoring tend to turn to autonomous intelligent systems, which together with remote sensing data could help or even predict daily life situations. The task of mapping cities by autonomous operators was usually carried out by aerial optical images due to its scale and resolution; however new scientific questions have arisen, and this has led research into a new era of highly-detailed data extraction. For many years, using artificial neural models to solve complex problems such as automatic image classification was commonplace, owing much of their popularity to their ability to adapt to complex situations without needing human intervention. In spite of that, their popularity declined in the mid-2000s, mostly due to the complex and time-consuming nature of their methods and workflows. However, newer neural network architectures have brought back the interest in their application for autonomous classifiers, especially for image classification purposes. Convolutional Neural Networks (CNN) have been a trend for pixel-wise image segmentation, showing flexibility when detecting and classifying any kind of object, even in situations where humans failed to perceive differences, such as in city scenarios. In this paper, we aim to explore and experiment with state-of-the-art technologies to semantically label 3D urban models over complex scenarios. To achieve these goals, we split the problem into two main processing lines: first, how to correctly label the façade features in the 2D domain, where a supervised CNN is used to segment ground-based façade images into six feature classes, roof, window, wall, door, balcony and shop; second, a Structure-from-Motion (SfM) and Multi-View-Stereo (MVS) workflow is used to extract the geometry of the façade, wherein the segmented images in the previous stage are then used to label the generated mesh by a “reverse” ray-tracing technique. This paper demonstrates that the proposed methodology is robust in complex scenarios. The façade feature inferences have reached up to 93% accuracy over most of the datasets used. Although it still presents some deficiencies in unknown architectural styles and needs some improvements to be made regarding 3D-labeling, we present a consistent and simple methodology to handle the problem.
AbstractList Urban environments are regions in which spectral variability and spatial variability are extremely high, with a huge range of shapes and sizes, and they also demand high resolution images for applications involving their study. Due to the fact that these environments can grow even more over time, applications related to their monitoring tend to turn to autonomous intelligent systems, which together with remote sensing data could help or even predict daily life situations. The task of mapping cities by autonomous operators was usually carried out by aerial optical images due to its scale and resolution; however new scientific questions have arisen, and this has led research into a new era of highly-detailed data extraction. For many years, using artificial neural models to solve complex problems such as automatic image classification was commonplace, owing much of their popularity to their ability to adapt to complex situations without needing human intervention. In spite of that, their popularity declined in the mid-2000s, mostly due to the complex and time-consuming nature of their methods and workflows. However, newer neural network architectures have brought back the interest in their application for autonomous classifiers, especially for image classification purposes. Convolutional Neural Networks (CNN) have been a trend for pixel-wise image segmentation, showing flexibility when detecting and classifying any kind of object, even in situations where humans failed to perceive differences, such as in city scenarios. In this paper, we aim to explore and experiment with state-of-the-art technologies to semantically label 3D urban models over complex scenarios. To achieve these goals, we split the problem into two main processing lines: first, how to correctly label the façade features in the 2D domain, where a supervised CNN is used to segment ground-based façade images into six feature classes, roof, window, wall, door, balcony and shop; second, a Structure-from-Motion (SfM) and Multi-View-Stereo (MVS) workflow is used to extract the geometry of the façade, wherein the segmented images in the previous stage are then used to label the generated mesh by a "reverse" ray-tracing technique. This paper demonstrates that the proposed methodology is robust in complex scenarios. The façade feature inferences have reached up to 93% accuracy over most of the datasets used. Although it still presents some deficiencies in unknown architectural styles and needs some improvements to be made regarding 3D-labeling, we present a consistent and simple methodology to handle the problem.
Author Shimabukuro, Yosio
Aragão, Luiz
Haala, Norbert
Karpina, Mateusz
Lotte, Rodolfo
Author_xml – sequence: 1
  givenname: Rodolfo
  surname: Lotte
  fullname: Lotte, Rodolfo
– sequence: 2
  givenname: Norbert
  surname: Haala
  fullname: Haala, Norbert
– sequence: 3
  givenname: Mateusz
  surname: Karpina
  fullname: Karpina, Mateusz
– sequence: 4
  givenname: Luiz
  surname: Aragão
  fullname: Aragão, Luiz
– sequence: 5
  givenname: Yosio
  surname: Shimabukuro
  fullname: Shimabukuro, Yosio
BookMark eNpNkc9u1DAQxi1UJErphSewxA0pMP6zjsOtCmyptMCh9GyNnXGVJRsvdlLoE_VBeDGyXQTMYb7R6KdvNPqes5MxjcTYSwFvlGrgbS4CoBFarZ6wUwm1rLRs5Ml_8zN2XsoWllJKNKBP2aze8zX-esCO-AY9Df14y9MdZd6m3X6gn_w60Ii5T-Udv-AtFuLX09zd85tyQNs03qVhnvo04sA_05wfZfqR8jeOY7fAeQ7TnKla57SrPqUD-oI9jTgUOv-jZ-xm_eFr-7HafLm8ai82VVBGTBXq2HkdqYYIHSmvLAarxUoCeiFWsY6hgaVTNAGo8UqC0CYgmqaJ0tfqjF0dfbuEW7fP_Q7zvUvYu8dFyrcO89SHgZy0KDXIeqV8pxvfoSWtDFgQ3gYDZvF6dfTa5_R9pjK5bZrz8nVxUkhjjbXaLtTrIxVyKiVT_HtVgDuk5P6lpH4DFvaGag
CitedBy_id crossref_primary_10_1016_j_jobe_2023_107155
crossref_primary_10_1155_2022_9220581
crossref_primary_10_1080_07038992_2024_2309895
crossref_primary_10_1145_3578552
crossref_primary_10_1016_j_autcon_2020_103180
crossref_primary_10_3390_rs12142224
crossref_primary_10_1111_tgis_12616
crossref_primary_10_1016_j_buildenv_2022_109056
crossref_primary_10_1371_journal_pone_0230671
crossref_primary_10_1109_LGRS_2020_3035721
crossref_primary_10_1515_geo_2022_0476
crossref_primary_10_32604_iasc_2021_015227
crossref_primary_10_3390_rs14112579
crossref_primary_10_3390_s21062077
crossref_primary_10_3390_rs11131586
Cites_doi 10.1016/j.isprsjprs.2013.10.011
10.1016/j.isprsjprs.2009.06.002
10.1113/jphysiol.1968.sp008455
10.1016/j.cag.2015.07.004
10.3390/ijgi4020754
10.1109/TPAMI.2004.1262177
10.1111/cgf.12077
10.5194/isprsarchives-XXXVIII-5-W16-171-2011
10.1109/TGRS.2016.2551720
10.1111/cgf.12720
10.3390/ijgi4042842
10.1016/j.cag.2012.02.003
10.1007/s11263-014-0733-5
10.1007/s10707-011-0131-x
10.1016/j.cviu.2016.06.002
10.1109/34.868688
10.1109/TPAMI.2012.120
10.1016/j.compenvurbsys.2003.08.002
10.3390/s90705241
10.1109/34.1000236
10.1016/j.buildenv.2012.10.012
10.1016/j.ijleo.2015.11.147
10.1109/TPAMI.2009.186
10.1016/j.isprsjprs.2014.07.007
10.1080/13658816.2015.1073292
10.1080/13658810701739039
10.1127/1432-8364/2011/0094
10.1109/JSTARS.2014.2329330
10.1162/neco.1989.1.4.541
10.1051/3u3d/201203008
10.1016/j.apenergy.2015.05.094
10.1038/nature14539
10.14358/PERS.77.2.125
10.1109/LGRS.2015.2499239
10.1016/j.landurbplan.2011.03.011
10.1016/j.compenvurbsys.2015.05.002
10.1145/1778765.1778830
10.5194/isprsarchives-XXXIX-B2-145-2012
10.1007/BF00133570
10.1111/cgf.12170
10.1109/TPAMI.2016.2644615
10.1016/j.cad.2014.03.001
10.1016/j.isprsjprs.2014.07.011
10.1016/S0198-9715(01)00038-2
10.1109/JPROC.2010.2049330
10.1007/BF02478259
10.1109/TPAMI.2017.2696526
10.5194/isprsarchives-XL-3-W2-247-2015
10.1145/1141911.1141964
10.14358/PERS.83.4.281
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs10091435
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_28a2402753bd49bda8e4360801b8c606
10_3390_rs10091435
GeographicLocations Brazil
United States--US
Germany
GeographicLocations_xml – name: United States--US
– name: Germany
– name: Brazil
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
IPNFZ
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-a4fdb4fe70f0de3b38ac841520ab115f7fc90f7fef6c0e9b320146caa699f2b73
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Tue Oct 22 15:15:49 EDT 2024
Sat Nov 09 10:48:19 EST 2024
Thu Sep 26 16:01:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a4fdb4fe70f0de3b38ac841520ab115f7fc90f7fef6c0e9b320146caa699f2b73
OpenAccessLink https://doaj.org/article/28a2402753bd49bda8e4360801b8c606
PQID 2126868848
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_28a2402753bd49bda8e4360801b8c606
proquest_journals_2126868848
crossref_primary_10_3390_rs10091435
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref57
ref56
Kolbe (ref2) 2009
ref59
ref53
Verdie (ref41) 2015
ref52
ref55
ref54
Goodfellow (ref98) 2016
ref51
ref50
Aringer (ref8) 2014
ref46
ref45
(ref91) 2016
ref48
Korc (ref95) 2009
ref42
Bláha (ref79) 2016
ref44
ref43
(ref93) 2017
ref49
Vosselman (ref23) 2001; 34
ref9
ref3
ref100
ref101
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref39
Krizhevsky (ref26) 2012
ref38
ref24
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
(ref5) 2017
ref11
ref99
ref10
ref17
ref16
ref19
ref18
Shi (ref47) 2000; 22
ref94
Sun (ref74) 2012; 9
ref90
ref89
ref86
ref85
ref88
ref87
ref82
Agency (ref4) 2010
ref81
ref84
ref80
ref78
ref75
ref77
ref76
(ref7) 2016
ref1
Ming (ref83) 2002; 34
ref71
ref70
ref73
ref72
Kolbe (ref36) 2005
ref68
ref67
Tu (ref58) 2010; 32
ref69
ref64
ref63
ref66
ref65
(ref6) 2015
ref60
ref62
ref61
(ref92) 2015
References_xml – ident: ref1
– ident: ref40
  doi: 10.1016/j.isprsjprs.2013.10.011
– ident: ref54
  doi: 10.1016/j.isprsjprs.2009.06.002
– ident: ref85
– ident: ref68
  doi: 10.1113/jphysiol.1968.sp008455
– ident: ref99
– ident: ref76
– ident: ref62
  doi: 10.1016/j.cag.2015.07.004
– ident: ref18
  doi: 10.3390/ijgi4020754
– start-page: 143
  year: 2014
  ident: ref8
  article-title: Bavarian 3D building model and update concept based on LiDAR, image matching and cadastre information
  contributor:
    fullname: Aringer
– ident: ref53
– ident: ref48
  doi: 10.1109/TPAMI.2004.1262177
– ident: ref35
  doi: 10.1111/cgf.12077
– ident: ref30
– ident: ref43
  doi: 10.5194/isprsarchives-XXXVIII-5-W16-171-2011
– start-page: 1097
  year: 2012
  ident: ref26
  article-title: Imagenet classification with deep convolutional neural networks
  contributor:
    fullname: Krizhevsky
– ident: ref65
– ident: ref73
  doi: 10.1109/TGRS.2016.2551720
– year: 2015
  ident: ref6
– ident: ref82
– year: 2017
  ident: ref93
– ident: ref61
  doi: 10.1111/cgf.12720
– ident: ref96
– ident: ref33
– volume: 9
  start-page: 5897
  year: 2012
  ident: ref74
  article-title: Marginal fisher analysis feature extraction algorithm based on multilayer auto-encoder
  publication-title: J. Inf. Comput. Sci.
  contributor:
    fullname: Sun
– year: 2016
  ident: ref98
  contributor:
    fullname: Goodfellow
– ident: ref60
– ident: ref11
  doi: 10.3390/ijgi4042842
– year: 2015
  ident: ref41
  contributor:
    fullname: Verdie
– ident: ref56
  doi: 10.1016/j.cag.2012.02.003
– ident: ref97
– ident: ref32
– ident: ref80
  doi: 10.1007/s11263-014-0733-5
– ident: ref63
– year: 2009
  ident: ref95
  contributor:
    fullname: Korc
– ident: ref46
– ident: ref44
  doi: 10.1007/s10707-011-0131-x
– ident: ref21
– ident: ref31
  doi: 10.1016/j.cviu.2016.06.002
– year: 2016
  ident: ref91
– start-page: 15
  year: 2009
  ident: ref2
  article-title: Representing and exchanging 3D city models with CityGML
  contributor:
    fullname: Kolbe
– year: 2010
  ident: ref4
  contributor:
    fullname: Agency
– year: 2016
  ident: ref7
– ident: ref52
– volume: 22
  start-page: 888
  year: 2000
  ident: ref47
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
  contributor:
    fullname: Shi
– ident: ref50
  doi: 10.1109/TPAMI.2012.120
– ident: ref100
– ident: ref77
– ident: ref94
– volume: 34
  start-page: 456
  year: 2002
  ident: ref83
  article-title: 3D-City Model supporting for CCTV monitoring system
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  contributor:
    fullname: Ming
– year: 2015
  ident: ref92
– ident: ref10
– ident: ref37
– ident: ref22
  doi: 10.1016/j.compenvurbsys.2003.08.002
– ident: ref17
  doi: 10.3390/s90705241
– ident: ref81
– ident: ref49
  doi: 10.1109/34.1000236
– volume: 34
  start-page: 37
  year: 2001
  ident: ref23
  article-title: 3D building model reconstruction from point clouds and ground plans
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  contributor:
    fullname: Vosselman
– ident: ref87
  doi: 10.1016/j.buildenv.2012.10.012
– ident: ref72
– ident: ref12
  doi: 10.1016/j.ijleo.2015.11.147
– ident: ref69
– volume: 32
  start-page: 1744
  year: 2010
  ident: ref58
  article-title: Auto-context and its application to high-level vision tasks and 3d brain image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.186
  contributor:
    fullname: Tu
– ident: ref88
  doi: 10.1016/j.isprsjprs.2014.07.007
– ident: ref15
  doi: 10.1080/13658816.2015.1073292
– ident: ref90
  doi: 10.1080/13658810701739039
– ident: ref3
  doi: 10.1127/1432-8364/2011/0094
– ident: ref75
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref27
  doi: 10.1162/neco.1989.1.4.541
– ident: ref86
  doi: 10.1051/3u3d/201203008
– start-page: 883
  year: 2005
  ident: ref36
  article-title: CityGML: Interoperable access to 3D city models
  contributor:
    fullname: Kolbe
– ident: ref16
  doi: 10.1016/j.apenergy.2015.05.094
– ident: ref66
  doi: 10.1038/nature14539
– ident: ref42
  doi: 10.14358/PERS.77.2.125
– ident: ref71
  doi: 10.1109/LGRS.2015.2499239
– ident: ref20
  doi: 10.1016/j.landurbplan.2011.03.011
– start-page: 44
  year: 2016
  ident: ref79
  article-title: Towards integrated 3D reconstruction and semantic interpretation of urban scenes
  contributor:
    fullname: Bláha
– ident: ref64
– ident: ref19
  doi: 10.1016/j.compenvurbsys.2015.05.002
– ident: ref55
  doi: 10.1145/1778765.1778830
– ident: ref45
– ident: ref9
  doi: 10.5194/isprsarchives-XXXIX-B2-145-2012
– ident: ref51
  doi: 10.1007/BF00133570
– ident: ref78
– ident: ref57
  doi: 10.1111/cgf.12170
– ident: ref70
– ident: ref29
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref13
  doi: 10.1016/j.cad.2014.03.001
– ident: ref38
  doi: 10.1016/j.isprsjprs.2014.07.011
– ident: ref89
  doi: 10.1016/S0198-9715(01)00038-2
– ident: ref59
– ident: ref84
– ident: ref101
  doi: 10.1109/JPROC.2010.2049330
– ident: ref28
– ident: ref67
  doi: 10.1007/BF02478259
– ident: ref34
  doi: 10.1109/TPAMI.2017.2696526
– ident: ref39
  doi: 10.5194/isprsarchives-XL-3-W2-247-2015
– year: 2017
  ident: ref5
– ident: ref24
  doi: 10.1145/1141911.1141964
– ident: ref14
– ident: ref25
  doi: 10.14358/PERS.83.4.281
SSID ssj0000331904
Score 2.316629
Snippet Urban environments are regions in which spectral variability and spatial variability are extremely high, with a huge range of shapes and sizes, and they also...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 1435
SubjectTerms 3D reconstruction
Artificial neural networks
Classification
Data processing
deep-learning
façade feature detection
Finite element method
Geometry
Image classification
Image processing
Image resolution
Image segmentation
Labeling
Mesh generation
Neural networks
Noise
Operators (mathematics)
Pattern recognition
Planning
Quality
Remote sensing
Semantics
Smart cities
State of the art
structure-from-motion
Three dimensional models
Urban environments
Workflow
Title 3D Façade Labeling over Complex Scenarios: A Case Study Using Convolutional Neural Network and Structure-From-Motion
URI https://www.proquest.com/docview/2126868848
https://doaj.org/article/28a2402753bd49bda8e4360801b8c606
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagCyyIpygUZAnWqElsHIet9KEOwFKQ2CI_zmJAKWooor-IH8If4-ykBcTAwuJIliVH353vIZ-_I-RcO2GY0zKSqTWYoDiIcg5JlFvInEEFMOF9xXiS3T7IwdDT5KxaffmasJoeuAaum0rlLwAwqtaW59oqCZwJjHMSLY1oyLZj8S2ZCjaYoWrFvOYjZZjXd2dVguGEjw5-eKBA1P_LDgfnMtomW01USHv13-yQNSh3yUbToPxxsUfmbEBH6uNdWaDXSodH5NRXX1J_oJ_gjU4MlJj3TqtL2qN99E3UlwguaKgJwFXla6NkuI9n5AifUAJOVWnpJPDIzmcQjWZoNm9Cc599cj8a3vXHUdMxITJMJC-R4s5q7iCLXWyBaSaVkd5Fx0pj6OcQ_jzGEVBCMeSapZ47xigl8tylOmMHpFVOSzgkFO1O4vwtTZIAF85J67RgzCh3YVzOWJucLVEsnmtijAITCo918YV1m1x5gFcrPJl1mEARF42Ii79E3CadpXiK5oRVBbpcIYWUXB79xx7HZBOxkHX1WIe0EHQ4IeuVnZ8GzfoE-WjTVw
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Fa%C3%A7ade+Labeling+over+Complex+Scenarios%3A+A+Case+Study+Using+Convolutional+Neural+Network+and+Structure-From-Motion&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Lotte%2C+Rodolfo+Georjute&rft.au=Haala%2C+Norbert&rft.au=Karpina%2C+Mateusz&rft.au=Luiz+Eduardo+Oliveira+e+Cruz+de+Arag%C3%A3o&rft.date=2018-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=10&rft.issue=9&rft_id=info:doi/10.3390%2Frs10091435&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon