Surface leakage investigation via gated type-II InAs/GaSb long-wavelength infrared photodetectors
By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and different surface leakage mechanisms are disclosed. By reducing the SiO2 passivation layer thickness, the saturated gated bias is reduced to -4.5...
Saved in:
Published in: | Applied physics letters Vol. 101; no. 21 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
19-11-2012
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and different surface leakage mechanisms are disclosed. By reducing the SiO2 passivation layer thickness, the saturated gated bias is reduced to -4.5 V. At 77 K, dark current densities of gated devices are reduced by more than 2 orders of magnitude, with 3071 Omega cm2 differential-resistance-area product at -100 mV. With quantum efficiency of 50%, the 11 mu m 50% cut-off gated photodiode has a specific detectivity of 7 1011 Jones, and the detectivity stays above 2 1011 Jones from 0 to -500 mV operation bias. |
---|---|
AbstractList | By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and different surface leakage mechanisms are disclosed. By reducing the SiO2 passivation layer thickness, the saturated gated bias is reduced to -4.5 V. At 77 K, dark current densities of gated devices are reduced by more than 2 orders of magnitude, with 3071 Omega cm2 differential-resistance-area product at -100 mV. With quantum efficiency of 50%, the 11 mu m 50% cut-off gated photodiode has a specific detectivity of 7 1011 Jones, and the detectivity stays above 2 1011 Jones from 0 to -500 mV operation bias. By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and different surface leakage mechanisms are disclosed. By reducing the SiO2 passivation layer thickness, the saturated gated bias is reduced to −4.5 V. At 77 K, dark current densities of gated devices are reduced by more than 2 orders of magnitude, with 3071 Ω cm2 differential-resistance-area product at −100 mV. With quantum efficiency of 50%, the 11μm 50% cut-off gated photodiode has a specific detectivity of 7 × 1011 Jones, and the detectivity stays above 2 × 1011 Jones from 0 to −500 mV operation bias. |
Author | Darvish, S. R. Chen, G. Razeghi, M. Huang, E. K. Hoang, A. M. Bogdanov, S. |
Author_xml | – sequence: 1 givenname: G. surname: Chen fullname: Chen, G. – sequence: 2 givenname: E. K. surname: Huang fullname: Huang, E. K. – sequence: 3 givenname: A. M. surname: Hoang fullname: Hoang, A. M. – sequence: 4 givenname: S. surname: Bogdanov fullname: Bogdanov, S. – sequence: 5 givenname: S. R. surname: Darvish fullname: Darvish, S. R. – sequence: 6 givenname: M. surname: Razeghi fullname: Razeghi, M. |
BookMark | eNqFkDFPwzAUhC1UJNrCwD_ICEOon-3Y8VhVUCJVYijMkWM7aSC1g50W9d8T1O5Mdyd996R3MzRx3lmE7gE_AeZ0AU9McCFxdoWmgIVIKUA-QVOMMU25zOAGzWL8HGNGKJ0itT2EWmmbdFZ9qcYmrTvaOLSNGlrvkmOrktFakwyn3qZFkRRuGRdrta2Szrsm_VFH21nXDLuxWQcVRrTf-cEbO1g9-BBv0XWtumjvLjpHHy_P76vXdPO2LlbLTaophyEVONdGSy0oGJ5RkldMZgQ04YoZQiutNSOM1IaJinItuZUCaCaNpEzU2NA5ejjf7YP_Pow_lPs2att1yll_iCVwASQXOab_owxEznNCYEQfz6gOPsZg67IP7V6FUwm4_Fu8hPKyOP0FBC1z-w |
CitedBy_id | crossref_primary_10_1109_JLT_2021_3117507 crossref_primary_10_3938_jkps_66_535 crossref_primary_10_1063_1_5124093 crossref_primary_10_1186_s11671_021_03550_x crossref_primary_10_1063_1_4813479 crossref_primary_10_1038_s41598_022_15538_3 crossref_primary_10_1088_1674_1056_ac4cc1 crossref_primary_10_1109_LPT_2018_2826528 crossref_primary_10_1063_5_0086774 crossref_primary_10_1007_s00339_017_0835_3 crossref_primary_10_1007_s11664_014_3080_y crossref_primary_10_1063_1_4868486 crossref_primary_10_1364_OL_40_000045 crossref_primary_10_1088_0034_4885_77_8_082401 crossref_primary_10_1038_s41598_017_13016_9 crossref_primary_10_1063_5_0106878 crossref_primary_10_1016_j_infrared_2021_103756 crossref_primary_10_1016_j_jallcom_2015_01_137 crossref_primary_10_7567_JJAP_54_104301 crossref_primary_10_1007_s11434_014_0511_3 crossref_primary_10_1063_1_4833026 |
Cites_doi | 10.1049/el:20062495 10.1063/1.1686894 10.1063/1.3258489 10.1117/12.711588 10.1016/0038-1101(66)90118-3 10.1063/1.3584853 10.1063/1.2345020 10.1063/1.3005196 10.1109/JQE.2010.2103049 10.1063/1.2978330 10.1063/1.4720094 10.1016/j.infrared.2010.05.002 10.1063/1.2747172 10.1063/1.3573867 10.1063/1.3613927 10.1016/j.jcrysgro.2004.12.044 10.1063/1.2963980 10.1117/12.639493 10.1016/j.tsf.2003.09.002 10.1063/1.2776353 10.1364/OL.36.002560 10.1063/1.3658627 10.1063/1.89273 10.1063/1.3078282 10.1063/1.1906326 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7QQ 7U5 8FD JG9 L7M |
DOI | 10.1063/1.4767905 |
DatabaseName | CrossRef Ceramic Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Solid State and Superconductivity Abstracts Ceramic Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_1_4767905 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH AAYXX ABFTF ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L EBS EJD ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS ROL RQS SJN TAE TN5 UCJ UPT UQL WH7 XJE YZZ ~02 7QQ 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c361t-708cdc9c731d65328b49521c26a4d23bccc4242fd47b36c96e971359d9347f0d3 |
ISSN | 0003-6951 |
IngestDate | Fri Aug 16 04:10:04 EDT 2024 Fri Aug 16 05:50:00 EDT 2024 Thu Nov 21 21:46:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c361t-708cdc9c731d65328b49521c26a4d23bccc4242fd47b36c96e971359d9347f0d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1417868221 |
PQPubID | 23500 |
ParticipantIDs | proquest_miscellaneous_1671287803 proquest_miscellaneous_1417868221 crossref_primary_10_1063_1_4767905 |
PublicationCentury | 2000 |
PublicationDate | 2012-11-19 |
PublicationDateYYYYMMDD | 2012-11-19 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-19 day: 19 |
PublicationDecade | 2010 |
PublicationTitle | Applied physics letters |
PublicationYear | 2012 |
References | (2023062322163072300_c21) 2008; 93 (2023062322163072300_c19) 2005; 86 (2023062322163072300_c8) 2005; 278 (2023062322163072300_c17) 2006; 42 (2023062322163072300_c20) 2010; 53 (2023062322163072300_c12) 2007; 91 (2023062322163072300_c10) 2011; 36 (2023062322163072300_c25) 2006; 89 (2023062322163072300_c5) 2011; 98 (2023062322163072300_c22) 2007; 6479 (2023062322163072300_c18) 2004; 84 (2023062322163072300_c6) 2011; 47 (2023062322163072300_c16) 2007; 90 (2023062322163072300_c9) 2006; 6127 (2023062322163072300_c11) 2011; 99 (2023062322163072300_c1) 1977; 30 2023062322163072300_c2 (2023062322163072300_c4) 2011; 99 (2023062322163072300_c23) 1966; 9 (2023062322163072300_c26) 2008; 93 (2023062322163072300_c3) 2012; 100 (2023062322163072300_c13) 2011; 98 (2023062322163072300_c7) 2009; 95 (2023062322163072300_c15) 2004; 447–448 (2023062322163072300_c14) 2009; 94 (2023062322163072300_c24) 2008; 93 |
References_xml | – volume: 42 start-page: 1248 year: 2006 ident: 2023062322163072300_c17 publication-title: Electron. Lett. doi: 10.1049/el:20062495 – volume: 84 start-page: 2037 year: 2004 ident: 2023062322163072300_c18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1686894 – volume: 95 start-page: 183502 year: 2009 ident: 2023062322163072300_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3258489 – volume: 6479 start-page: 64790S year: 2007 ident: 2023062322163072300_c22 publication-title: Proc. SPIE doi: 10.1117/12.711588 – volume: 9 start-page: 783 year: 1966 ident: 2023062322163072300_c23 publication-title: Solid-State Electron. doi: 10.1016/0038-1101(66)90118-3 – volume: 98 start-page: 183501 year: 2011 ident: 2023062322163072300_c13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3584853 – volume: 89 start-page: 093506 year: 2006 ident: 2023062322163072300_c25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2345020 – volume: 93 start-page: 163502 year: 2008 ident: 2023062322163072300_c24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3005196 – volume: 47 start-page: 686 year: 2011 ident: 2023062322163072300_c6 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2010.2103049 – volume: 93 start-page: 123502 year: 2008 ident: 2023062322163072300_c21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2978330 – volume: 100 start-page: 211101 year: 2012 ident: 2023062322163072300_c3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4720094 – volume: 53 start-page: 305 year: 2010 ident: 2023062322163072300_c20 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2010.05.002 – ident: 2023062322163072300_c2 – volume: 90 start-page: 233513 year: 2007 ident: 2023062322163072300_c16 publication-title: Appl. Plys. Lett. doi: 10.1063/1.2747172 – volume: 98 start-page: 143501 year: 2011 ident: 2023062322163072300_c5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3573867 – volume: 99 start-page: 033501 year: 2011 ident: 2023062322163072300_c4 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3613927 – volume: 278 start-page: 156 year: 2005 ident: 2023062322163072300_c8 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2004.12.044 – volume: 93 start-page: 031107 year: 2008 ident: 2023062322163072300_c26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2963980 – volume: 6127 start-page: 61270R year: 2006 ident: 2023062322163072300_c9 publication-title: Proc. SPIE doi: 10.1117/12.639493 – volume: 447–448 start-page: 489 year: 2004 ident: 2023062322163072300_c15 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2003.09.002 – volume: 91 start-page: 091112 year: 2007 ident: 2023062322163072300_c12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2776353 – volume: 36 start-page: 2560 year: 2011 ident: 2023062322163072300_c10 publication-title: OSA Opt. Lett. doi: 10.1364/OL.36.002560 – volume: 99 start-page: 183503 year: 2011 ident: 2023062322163072300_c11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3658627 – volume: 30 start-page: 651 year: 1977 ident: 2023062322163072300_c1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.89273 – volume: 94 start-page: 053506 year: 2009 ident: 2023062322163072300_c14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3078282 – volume: 86 start-page: 173501 year: 2005 ident: 2023062322163072300_c19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1906326 |
SSID | ssj0005233 |
Score | 2.2554157 |
Snippet | By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
SubjectTerms | Bias Density Gating and risering Infrared Leakage Passivation Photodetectors Silicon dioxide |
Title | Surface leakage investigation via gated type-II InAs/GaSb long-wavelength infrared photodetectors |
URI | https://search.proquest.com/docview/1417868221 https://search.proquest.com/docview/1671287803 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Rb9MwEMctNoQED2gMEAM2GcTbZNbEru08Fki3oakgtZP2Fjm2UyamZGrT8fU5O87cgjSNB16iyLLSyj_nfP7nfIfQB0OtNBWTpILFijAlS5JxIQjnNlNyQIeV9aUTpmJyIb_kLI9lFWPbfyUNbcDanZz9B9q3D4UGuAfmcAXqcL0X9-lqUSl4Wa-s-unicS5jIg0AfXOpDp1wZrz2Sk5PwUCMAOX4WE3Lw6umnpNfytWiqOet00KqhQ9Qv_7RtI2xrZf4l-sObe_FdgrJEn7W5-uMUQOdWTuO0ycI1HkUWE-a0DaK2uynZm5U3dxEdTZIE0nqzugFA9ibW0p4FjLK9uY2iBfdvOqOR_9lx8FxcpLCRya4yyAWF6v-A_3kWzE-PzsrZvnFbAs9TMHMOCs3_TpZC_ChtK-X6P5En1eK06PbB296I5uLsfcwZjvoadga4FHH9Bl6YOtd9GQtYeQuevS9G-bnSAXOOHDGG5wxcMaeMw6cseN85CjjPyjjnjLepPwCnY_z2ecTEsplEE150hIxkNroTAuaGD6kqSxh85smOuWKmZSWWmsGDlllmCgp1xm8ja4-Y2YyykQ1MPQl2q6b2r5CeAh99YBpl9mI8aFVqWJp6bL7SXCn02QPve-HrbjusqIUPpqB0yIpwtjuoXf9gBZgs9yHKFXbZrWE7WYiJAfXNLmjDxfgOgkwF6_v0ecNehwn4Fu03S5Wdh9tLc3qwE-K3xuWa2A |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+leakage+investigation+via+gated+type-II+InAs%2FGaSb+long-wavelength+infrared+photodetectors&rft.jtitle=Applied+physics+letters&rft.au=Chen%2C+G&rft.au=Huang%2C+E+K&rft.au=Hoang%2C+A+M&rft.au=Bogdanov%2C+S&rft.date=2012-11-19&rft.issn=0003-6951&rft.volume=101&rft.issue=21&rft_id=info:doi/10.1063%2F1.4767905&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |