Surface leakage investigation via gated type-II InAs/GaSb long-wavelength infrared photodetectors

By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and different surface leakage mechanisms are disclosed. By reducing the SiO2 passivation layer thickness, the saturated gated bias is reduced to -4.5...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters Vol. 101; no. 21
Main Authors: Chen, G., Huang, E. K., Hoang, A. M., Bogdanov, S., Darvish, S. R., Razeghi, M.
Format: Journal Article
Language:English
Published: 19-11-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and different surface leakage mechanisms are disclosed. By reducing the SiO2 passivation layer thickness, the saturated gated bias is reduced to -4.5 V. At 77 K, dark current densities of gated devices are reduced by more than 2 orders of magnitude, with 3071 Omega cm2 differential-resistance-area product at -100 mV. With quantum efficiency of 50%, the 11 mu m 50% cut-off gated photodiode has a specific detectivity of 7 1011 Jones, and the detectivity stays above 2 1011 Jones from 0 to -500 mV operation bias.
AbstractList By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and different surface leakage mechanisms are disclosed. By reducing the SiO2 passivation layer thickness, the saturated gated bias is reduced to -4.5 V. At 77 K, dark current densities of gated devices are reduced by more than 2 orders of magnitude, with 3071 Omega cm2 differential-resistance-area product at -100 mV. With quantum efficiency of 50%, the 11 mu m 50% cut-off gated photodiode has a specific detectivity of 7 1011 Jones, and the detectivity stays above 2 1011 Jones from 0 to -500 mV operation bias.
By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and different surface leakage mechanisms are disclosed. By reducing the SiO2 passivation layer thickness, the saturated gated bias is reduced to −4.5 V. At 77 K, dark current densities of gated devices are reduced by more than 2 orders of magnitude, with 3071 Ω cm2 differential-resistance-area product at −100 mV. With quantum efficiency of 50%, the 11μm 50% cut-off gated photodiode has a specific detectivity of 7 × 1011 Jones, and the detectivity stays above 2 × 1011 Jones from 0 to −500 mV operation bias.
Author Darvish, S. R.
Chen, G.
Razeghi, M.
Huang, E. K.
Hoang, A. M.
Bogdanov, S.
Author_xml – sequence: 1
  givenname: G.
  surname: Chen
  fullname: Chen, G.
– sequence: 2
  givenname: E. K.
  surname: Huang
  fullname: Huang, E. K.
– sequence: 3
  givenname: A. M.
  surname: Hoang
  fullname: Hoang, A. M.
– sequence: 4
  givenname: S.
  surname: Bogdanov
  fullname: Bogdanov, S.
– sequence: 5
  givenname: S. R.
  surname: Darvish
  fullname: Darvish, S. R.
– sequence: 6
  givenname: M.
  surname: Razeghi
  fullname: Razeghi, M.
BookMark eNqFkDFPwzAUhC1UJNrCwD_ICEOon-3Y8VhVUCJVYijMkWM7aSC1g50W9d8T1O5Mdyd996R3MzRx3lmE7gE_AeZ0AU9McCFxdoWmgIVIKUA-QVOMMU25zOAGzWL8HGNGKJ0itT2EWmmbdFZ9qcYmrTvaOLSNGlrvkmOrktFakwyn3qZFkRRuGRdrta2Szrsm_VFH21nXDLuxWQcVRrTf-cEbO1g9-BBv0XWtumjvLjpHHy_P76vXdPO2LlbLTaophyEVONdGSy0oGJ5RkldMZgQ04YoZQiutNSOM1IaJinItuZUCaCaNpEzU2NA5ejjf7YP_Pow_lPs2att1yll_iCVwASQXOab_owxEznNCYEQfz6gOPsZg67IP7V6FUwm4_Fu8hPKyOP0FBC1z-w
CitedBy_id crossref_primary_10_1109_JLT_2021_3117507
crossref_primary_10_3938_jkps_66_535
crossref_primary_10_1063_1_5124093
crossref_primary_10_1186_s11671_021_03550_x
crossref_primary_10_1063_1_4813479
crossref_primary_10_1038_s41598_022_15538_3
crossref_primary_10_1088_1674_1056_ac4cc1
crossref_primary_10_1109_LPT_2018_2826528
crossref_primary_10_1063_5_0086774
crossref_primary_10_1007_s00339_017_0835_3
crossref_primary_10_1007_s11664_014_3080_y
crossref_primary_10_1063_1_4868486
crossref_primary_10_1364_OL_40_000045
crossref_primary_10_1088_0034_4885_77_8_082401
crossref_primary_10_1038_s41598_017_13016_9
crossref_primary_10_1063_5_0106878
crossref_primary_10_1016_j_infrared_2021_103756
crossref_primary_10_1016_j_jallcom_2015_01_137
crossref_primary_10_7567_JJAP_54_104301
crossref_primary_10_1007_s11434_014_0511_3
crossref_primary_10_1063_1_4833026
Cites_doi 10.1049/el:20062495
10.1063/1.1686894
10.1063/1.3258489
10.1117/12.711588
10.1016/0038-1101(66)90118-3
10.1063/1.3584853
10.1063/1.2345020
10.1063/1.3005196
10.1109/JQE.2010.2103049
10.1063/1.2978330
10.1063/1.4720094
10.1016/j.infrared.2010.05.002
10.1063/1.2747172
10.1063/1.3573867
10.1063/1.3613927
10.1016/j.jcrysgro.2004.12.044
10.1063/1.2963980
10.1117/12.639493
10.1016/j.tsf.2003.09.002
10.1063/1.2776353
10.1364/OL.36.002560
10.1063/1.3658627
10.1063/1.89273
10.1063/1.3078282
10.1063/1.1906326
ContentType Journal Article
DBID AAYXX
CITATION
7QQ
7U5
8FD
JG9
L7M
DOI 10.1063/1.4767905
DatabaseName CrossRef
Ceramic Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_1_4767905
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
AAYXX
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
EBS
EJD
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
ROL
RQS
SJN
TAE
TN5
UCJ
UPT
UQL
WH7
XJE
YZZ
~02
7QQ
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c361t-708cdc9c731d65328b49521c26a4d23bccc4242fd47b36c96e971359d9347f0d3
ISSN 0003-6951
IngestDate Fri Aug 16 04:10:04 EDT 2024
Fri Aug 16 05:50:00 EDT 2024
Thu Nov 21 21:46:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c361t-708cdc9c731d65328b49521c26a4d23bccc4242fd47b36c96e971359d9347f0d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1417868221
PQPubID 23500
ParticipantIDs proquest_miscellaneous_1671287803
proquest_miscellaneous_1417868221
crossref_primary_10_1063_1_4767905
PublicationCentury 2000
PublicationDate 2012-11-19
PublicationDateYYYYMMDD 2012-11-19
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-19
  day: 19
PublicationDecade 2010
PublicationTitle Applied physics letters
PublicationYear 2012
References (2023062322163072300_c21) 2008; 93
(2023062322163072300_c19) 2005; 86
(2023062322163072300_c8) 2005; 278
(2023062322163072300_c17) 2006; 42
(2023062322163072300_c20) 2010; 53
(2023062322163072300_c12) 2007; 91
(2023062322163072300_c10) 2011; 36
(2023062322163072300_c25) 2006; 89
(2023062322163072300_c5) 2011; 98
(2023062322163072300_c22) 2007; 6479
(2023062322163072300_c18) 2004; 84
(2023062322163072300_c6) 2011; 47
(2023062322163072300_c16) 2007; 90
(2023062322163072300_c9) 2006; 6127
(2023062322163072300_c11) 2011; 99
(2023062322163072300_c1) 1977; 30
2023062322163072300_c2
(2023062322163072300_c4) 2011; 99
(2023062322163072300_c23) 1966; 9
(2023062322163072300_c26) 2008; 93
(2023062322163072300_c3) 2012; 100
(2023062322163072300_c13) 2011; 98
(2023062322163072300_c7) 2009; 95
(2023062322163072300_c15) 2004; 447–448
(2023062322163072300_c14) 2009; 94
(2023062322163072300_c24) 2008; 93
References_xml – volume: 42
  start-page: 1248
  year: 2006
  ident: 2023062322163072300_c17
  publication-title: Electron. Lett.
  doi: 10.1049/el:20062495
– volume: 84
  start-page: 2037
  year: 2004
  ident: 2023062322163072300_c18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1686894
– volume: 95
  start-page: 183502
  year: 2009
  ident: 2023062322163072300_c7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3258489
– volume: 6479
  start-page: 64790S
  year: 2007
  ident: 2023062322163072300_c22
  publication-title: Proc. SPIE
  doi: 10.1117/12.711588
– volume: 9
  start-page: 783
  year: 1966
  ident: 2023062322163072300_c23
  publication-title: Solid-State Electron.
  doi: 10.1016/0038-1101(66)90118-3
– volume: 98
  start-page: 183501
  year: 2011
  ident: 2023062322163072300_c13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3584853
– volume: 89
  start-page: 093506
  year: 2006
  ident: 2023062322163072300_c25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2345020
– volume: 93
  start-page: 163502
  year: 2008
  ident: 2023062322163072300_c24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3005196
– volume: 47
  start-page: 686
  year: 2011
  ident: 2023062322163072300_c6
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2010.2103049
– volume: 93
  start-page: 123502
  year: 2008
  ident: 2023062322163072300_c21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2978330
– volume: 100
  start-page: 211101
  year: 2012
  ident: 2023062322163072300_c3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4720094
– volume: 53
  start-page: 305
  year: 2010
  ident: 2023062322163072300_c20
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2010.05.002
– ident: 2023062322163072300_c2
– volume: 90
  start-page: 233513
  year: 2007
  ident: 2023062322163072300_c16
  publication-title: Appl. Plys. Lett.
  doi: 10.1063/1.2747172
– volume: 98
  start-page: 143501
  year: 2011
  ident: 2023062322163072300_c5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3573867
– volume: 99
  start-page: 033501
  year: 2011
  ident: 2023062322163072300_c4
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3613927
– volume: 278
  start-page: 156
  year: 2005
  ident: 2023062322163072300_c8
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2004.12.044
– volume: 93
  start-page: 031107
  year: 2008
  ident: 2023062322163072300_c26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2963980
– volume: 6127
  start-page: 61270R
  year: 2006
  ident: 2023062322163072300_c9
  publication-title: Proc. SPIE
  doi: 10.1117/12.639493
– volume: 447–448
  start-page: 489
  year: 2004
  ident: 2023062322163072300_c15
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2003.09.002
– volume: 91
  start-page: 091112
  year: 2007
  ident: 2023062322163072300_c12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2776353
– volume: 36
  start-page: 2560
  year: 2011
  ident: 2023062322163072300_c10
  publication-title: OSA Opt. Lett.
  doi: 10.1364/OL.36.002560
– volume: 99
  start-page: 183503
  year: 2011
  ident: 2023062322163072300_c11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3658627
– volume: 30
  start-page: 651
  year: 1977
  ident: 2023062322163072300_c1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.89273
– volume: 94
  start-page: 053506
  year: 2009
  ident: 2023062322163072300_c14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3078282
– volume: 86
  start-page: 173501
  year: 2005
  ident: 2023062322163072300_c19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1906326
SSID ssj0005233
Score 2.2554157
Snippet By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and...
SourceID proquest
crossref
SourceType Aggregation Database
SubjectTerms Bias
Density
Gating and risering
Infrared
Leakage
Passivation
Photodetectors
Silicon dioxide
Title Surface leakage investigation via gated type-II InAs/GaSb long-wavelength infrared photodetectors
URI https://search.proquest.com/docview/1417868221
https://search.proquest.com/docview/1671287803
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Rb9MwEMctNoQED2gMEAM2GcTbZNbEru08Fki3oakgtZP2Fjm2UyamZGrT8fU5O87cgjSNB16iyLLSyj_nfP7nfIfQB0OtNBWTpILFijAlS5JxIQjnNlNyQIeV9aUTpmJyIb_kLI9lFWPbfyUNbcDanZz9B9q3D4UGuAfmcAXqcL0X9-lqUSl4Wa-s-unicS5jIg0AfXOpDp1wZrz2Sk5PwUCMAOX4WE3Lw6umnpNfytWiqOet00KqhQ9Qv_7RtI2xrZf4l-sObe_FdgrJEn7W5-uMUQOdWTuO0ycI1HkUWE-a0DaK2uynZm5U3dxEdTZIE0nqzugFA9ibW0p4FjLK9uY2iBfdvOqOR_9lx8FxcpLCRya4yyAWF6v-A_3kWzE-PzsrZvnFbAs9TMHMOCs3_TpZC_ChtK-X6P5En1eK06PbB296I5uLsfcwZjvoadga4FHH9Bl6YOtd9GQtYeQuevS9G-bnSAXOOHDGG5wxcMaeMw6cseN85CjjPyjjnjLepPwCnY_z2ecTEsplEE150hIxkNroTAuaGD6kqSxh85smOuWKmZSWWmsGDlllmCgp1xm8ja4-Y2YyykQ1MPQl2q6b2r5CeAh99YBpl9mI8aFVqWJp6bL7SXCn02QPve-HrbjusqIUPpqB0yIpwtjuoXf9gBZgs9yHKFXbZrWE7WYiJAfXNLmjDxfgOgkwF6_v0ecNehwn4Fu03S5Wdh9tLc3qwE-K3xuWa2A
link.rule.ids 315,782,786,27933,27934
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+leakage+investigation+via+gated+type-II+InAs%2FGaSb+long-wavelength+infrared+photodetectors&rft.jtitle=Applied+physics+letters&rft.au=Chen%2C+G&rft.au=Huang%2C+E+K&rft.au=Hoang%2C+A+M&rft.au=Bogdanov%2C+S&rft.date=2012-11-19&rft.issn=0003-6951&rft.volume=101&rft.issue=21&rft_id=info:doi/10.1063%2F1.4767905&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon