Comparing Map Learning between Touchscreen-Based Visual and Haptic Displays: A Behavioral Evaluation with Blind and Sighted Users
The ubiquity of multimodal smart devices affords new opportunities for eyes-free applications for conveying graphical information to both sighted and visually impaired users. Using previously established haptic design guidelines for generic rendering of graphical content on touchscreen interfaces, t...
Saved in:
Published in: | Multimodal technologies and interaction Vol. 6; no. 1; p. 1 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-01-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ubiquity of multimodal smart devices affords new opportunities for eyes-free applications for conveying graphical information to both sighted and visually impaired users. Using previously established haptic design guidelines for generic rendering of graphical content on touchscreen interfaces, the current study evaluates the learning and mental representation of digital maps, representing a key real-world translational eyes-free application. Two experiments involving 12 blind participants and 16 sighted participants compared cognitive map development and test performance on a range of spatio-behavioral tasks across three information-matched learning-mode conditions: (1) our prototype vibro-audio map (VAM), (2) traditional hardcopy-tactile maps, and (3) visual maps. Results demonstrated that when perceptual parameters of the stimuli were matched between modalities during haptic and visual map learning, test performance was highly similar (functionally equivalent) between the learning modes and participant groups. These results suggest equivalent cognitive map formation between both blind and sighted users and between maps learned from different sensory inputs, providing compelling evidence supporting the development of amodal spatial representations in the brain. The practical implications of these results include empirical evidence supporting a growing interest in the efficacy of multisensory interfaces as a primary interaction style for people both with and without vision. Findings challenge the long-held assumption that blind people exhibit deficits on global spatial tasks compared to their sighted peers, with results also providing empirical support for the methodological use of sighted participants in studies pertaining to technologies primarily aimed at supporting blind users. |
---|---|
ISSN: | 2414-4088 2414-4088 |
DOI: | 10.3390/mti6010001 |