Demagnetization factors for cylindrical shells and related shapes
Magnetostatic self and interaction energies can be computed via demagnetization factors whenever the magnetic state is close to a uniform state, e.g. in the presence of a strong applied field, or when the dimensions involved are within the single-domain limit. We derive analytical expressions for th...
Saved in:
Published in: | Journal of magnetism and magnetic materials Vol. 321; no. 9; pp. 1306 - 1315 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
01-05-2009
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnetostatic self and interaction energies can be computed via demagnetization factors whenever the magnetic state is close to a uniform state, e.g. in the presence of a strong applied field, or when the dimensions involved are within the single-domain limit. We derive analytical expressions for the demagnetization factors of cylindrical shells and rings with rectangular and square cross-sections. The factors are given either as a combination of elliptic integrals or as a series expansion in powers of the dimensionless ratio between inner and outer radii. Limiting cases are analysed for particular ranges of the shape parameters. We also investigate the ring with a square cross-section, and the elliptic ring, where analytical expressions are provided only for small eccentricity. Finally, we introduce the dipolar coupling integral encoding magnetostatic interactions between a magnetized cylinder and a thin coating on its lateral surface. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0304-8853 |
DOI: | 10.1016/j.jmmm.2008.11.046 |