Transfer Linear Subspace Learning for Cross-Corpus Speech Emotion Recognition

Speech emotion recognition has received an increasing interest in recent years, which is often conducted on the assumption that speech utterances in training and testing datasets are obtained under the same conditions. However, in reality, this assumption does not hold as the speech data are often c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on affective computing Vol. 10; no. 2; pp. 265 - 275
Main Author: Song, Peng
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-04-2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Speech emotion recognition has received an increasing interest in recent years, which is often conducted on the assumption that speech utterances in training and testing datasets are obtained under the same conditions. However, in reality, this assumption does not hold as the speech data are often collected from different devices or environments. Hence, there exists discrepancy between the training and testing data, which will have an adverse effect on recognition performance. In this paper, we examine the problem of cross-corpus speech emotion recognition. To address it, we present a novel transfer linear subspace learning (TLSL) framework to learn a common feature subspace for source and target datasets. In TLSL, a nearest neighbor graph algorithm is used to measure the similarity between different corpora, and a feature grouping strategy is introduced to divide the emotional features into two categories, i.e., high transferable part (HTP) versus low transferable part (LTP). To explore the proposed TLSL with different scenarios, we propose two kinds of TLSL approaches, called transfer unsupervised linear subspace learning (TULSL) and transfer supervised linear subspace learning (TSLSL), and provide the corresponding solutions for the optimization problems. Extensive experiments on several benchmark datasets validate the effectiveness of TLSL for cross-corpus speech emotion recognition.
AbstractList Speech emotion recognition has received an increasing interest in recent years, which is often conducted on the assumption that speech utterances in training and testing datasets are obtained under the same conditions. However, in reality, this assumption does not hold as the speech data are often collected from different devices or environments. Hence, there exists discrepancy between the training and testing data, which will have an adverse effect on recognition performance. In this paper, we examine the problem of cross-corpus speech emotion recognition. To address it, we present a novel transfer linear subspace learning (TLSL) framework to learn a common feature subspace for source and target datasets. In TLSL, a nearest neighbor graph algorithm is used to measure the similarity between different corpora, and a feature grouping strategy is introduced to divide the emotional features into two categories, i.e., high transferable part (HTP) versus low transferable part (LTP). To explore the proposed TLSL with different scenarios, we propose two kinds of TLSL approaches, called transfer unsupervised linear subspace learning (TULSL) and transfer supervised linear subspace learning (TSLSL), and provide the corresponding solutions for the optimization problems. Extensive experiments on several benchmark datasets validate the effectiveness of TLSL for cross-corpus speech emotion recognition.
Author Song, Peng
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0002-6567-663X
  surname: Song
  fullname: Song, Peng
  email: pengsongseu@gmail.com
  organization: Yantai University, Yantai Shi, Shandong Sheng, China
BookMark eNpNUMtOwzAQtFCRKKU_ABdLnFP8iO3mWEUtIAUh0XK2nGRTUlE72MmBv8ehFWIvs7ua2R3NNZpYZwGhW0oWlJLsYbfabPIFI1QtmCJCZvICTWmWZgknqZj866_QPIQDicU5l0xN0cvOGxsa8LhoLRiPt0MZOlMBLuJkW7vHjfM49y6EJHe-GwLedgDVB14fXd86i9-gcnvbjv0NumzMZ4D5GWfofbPe5U9J8fr4nK-KpOKS9tEKoyVUhC1TY1ImaxVBNFLJuAUFdSVKIpiogRMQKWQNN8qQlC3L2qSU8Bm6P93tvPsaIPT64AZv40vNGGdKMiZYZLETqxrde2h059uj8d-aEj0mp3-T02Ny-pxcFN2dRC0A_AlUxqnIOP8B_-1rew
CODEN ITACBQ
CitedBy_id crossref_primary_10_1016_j_knosys_2022_108659
crossref_primary_10_1109_ACCESS_2021_3069818
crossref_primary_10_1109_TAFFC_2022_3146325
crossref_primary_10_1016_j_apacoust_2020_107519
crossref_primary_10_3390_electronics11172745
crossref_primary_10_1109_TII_2020_3023677
crossref_primary_10_3233_JIFS_231263
crossref_primary_10_1109_TASLP_2020_3006331
crossref_primary_10_3390_e25010124
crossref_primary_10_1587_transinf_2020EDL8074
crossref_primary_10_1016_j_dsp_2020_102906
crossref_primary_10_1109_TAFFC_2022_3192899
crossref_primary_10_1109_TAFFC_2021_3077489
crossref_primary_10_1016_j_dsp_2021_103121
crossref_primary_10_3233_JIFS_230766
crossref_primary_10_1016_j_neucom_2023_126866
crossref_primary_10_1109_ACCESS_2022_3163712
crossref_primary_10_1109_TAFFC_2018_2800046
crossref_primary_10_1109_TAFFC_2022_3168834
crossref_primary_10_1109_TAFFC_2019_2916092
crossref_primary_10_1007_s13369_023_07920_8
crossref_primary_10_1109_JPROC_2023_3309299
crossref_primary_10_1016_j_specom_2020_12_009
crossref_primary_10_1109_ACCESS_2020_3000066
crossref_primary_10_1109_ACCESS_2020_3047395
crossref_primary_10_3390_e24081046
crossref_primary_10_1016_j_knosys_2023_110851
crossref_primary_10_32604_csse_2022_021635
crossref_primary_10_3390_e24091250
crossref_primary_10_1109_TCDS_2021_3055524
crossref_primary_10_1109_ACCESS_2020_2969032
crossref_primary_10_1109_ACCESS_2020_2984508
crossref_primary_10_1186_s13636_022_00264_5
crossref_primary_10_3390_s21041249
crossref_primary_10_1109_TMM_2021_3087098
crossref_primary_10_1016_j_mlwa_2021_100132
crossref_primary_10_1109_TASLP_2019_2955252
crossref_primary_10_1016_j_apacoust_2024_110118
crossref_primary_10_1109_TAFFC_2021_3109485
crossref_primary_10_1007_s00138_018_0960_9
crossref_primary_10_1109_TAFFC_2023_3290795
crossref_primary_10_1109_TCSS_2021_3130401
crossref_primary_10_1016_j_neucom_2020_10_021
crossref_primary_10_1109_TAFFC_2019_2947464
crossref_primary_10_1016_j_cogsys_2020_10_001
crossref_primary_10_1016_j_apacoust_2022_108919
crossref_primary_10_1109_TAFFC_2022_3167013
crossref_primary_10_1109_TAFFC_2022_3183166
crossref_primary_10_1002_cpe_7319
crossref_primary_10_1016_j_advengsoft_2023_103412
Cites_doi 10.1109/TASL.2013.2255278
10.1109/ICASSP.1996.541103
10.1109/TPAMI.2007.250598
10.3115/1610075.1610094
10.1109/TKDE.2009.191
10.1007/s11263-014-0696-6
10.21437/Interspeech.2010-739
10.1109/TIP.2010.2090535
10.1109/ICCV.2013.398
10.1016/S0167-6393(03)00099-2
10.1109/TASLP.2014.2319157
10.1109/89.279278
10.1587/transinf.E96.D.2286
10.1109/TASL.2007.902859
10.1109/TKDE.2014.2373376
10.1109/T-AFFC.2011.31
10.1109/CVPR.2014.183
10.1109/ICASSP.2016.7472665
10.1109/ICASSP.2007.366937
10.1049/el.2014.3339
10.1126/science.290.5500.2319
10.1109/ICASSP.2016.7472149
10.1145/1273496.1273521
10.1109/TNN.2010.2091281
10.1109/TNN.2005.860852
10.1145/1273496.1273592
10.1613/jair.1872
10.1109/TKDE.2013.111
10.1109/TNN.2009.2015760
10.1109/LSP.2014.2308954
10.1109/TKDE.2009.126
10.1109/T-AFFC.2010.8
10.1109/ICASSP.2006.1659966
10.1006/csla.1998.0043
10.1126/science.290.5500.2323
10.1109/89.876308
10.1007/978-3-540-45167-9_41
10.1109/LSP.2014.2324759
10.1109/TPAMI.2010.231
10.3115/1075671.1075688
10.1109/LSP.2016.2537926
10.1016/j.dsp.2012.05.007
10.1109/MLSP.2016.7738905
10.1109/APSIPA.2015.7415532
10.1109/ICASSP.2011.5947651
10.1145/1390156.1390182
10.1109/TNNLS.2014.2330900
10.1109/TKDE.2014.2382599
10.2197/ipsjjip.17.138
10.1109/ICASSP.2015.7178934
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2017.2705696
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 275
ExternalDocumentID 10_1109_TAFFC_2017_2705696
7931593
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61572419; 61602399
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Southeast University
  grantid: CDLS-2017-02
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2014FQ016
  funderid: 10.13039/501100007129
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIC
RIE
RIG
RNI
RZB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-3021bec0284aa426d7aa45f676bece7edc5b0525de30e54e9f3a7a0428bda4103
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Thu Oct 10 17:45:40 EDT 2024
Fri Aug 23 01:40:18 EDT 2024
Mon Nov 04 12:07:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-3021bec0284aa426d7aa45f676bece7edc5b0525de30e54e9f3a7a0428bda4103
ORCID 0000-0002-6567-663X
PQID 2232762252
PQPubID 2040414
PageCount 11
ParticipantIDs proquest_journals_2232762252
ieee_primary_7931593
crossref_primary_10_1109_TAFFC_2017_2705696
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev T-AFFC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
belkin (ref53) 2001
ref12
fukunaga (ref28) 2013
ref59
ref15
niyogi (ref29) 2004
ref58
ref52
ref55
ref11
ref54
ref10
bishop (ref27) 2006
cai (ref56) 2011; 33
ref17
ref19
ref18
ben-david and (ref46) 2003
ref50
rosenstein (ref45) 2005
bakker (ref47) 2003; 4
ref48
kanamori (ref21) 2009; 10
ref44
kenny (ref14) 2005
ref43
jia (ref60) 2009; 20
sanchez (ref16) 2010
ref8
ref7
ref9
ref4
ref3
ref6
ref40
huang (ref42) 2006
ref35
ref34
ref37
ref36
ref31
ref30
ref33
han (ref5) 2014
ref32
ref2
ref1
wang (ref39) 2008
ref38
gretton (ref20) 2009; 3
ref24
ref23
ref26
jiang (ref41) 2007; 7
ref25
ref64
ref63
ref22
ref65
roweis (ref51) 2000; 290
ref62
pan (ref49) 2008
ref61
References_xml – year: 2013
  ident: ref28
  publication-title: Introduction to statistical pattern recognition
  contributor:
    fullname: fukunaga
– ident: ref17
  doi: 10.1109/TASL.2013.2255278
– year: 2006
  ident: ref27
  publication-title: Pattern Recognition and Machine Learning
  contributor:
    fullname: bishop
– ident: ref8
  doi: 10.1109/ICASSP.1996.541103
– ident: ref31
  doi: 10.1109/TPAMI.2007.250598
– ident: ref43
  doi: 10.3115/1610075.1610094
– ident: ref32
  doi: 10.1109/TKDE.2009.191
– ident: ref54
  doi: 10.1007/s11263-014-0696-6
– ident: ref62
  doi: 10.21437/Interspeech.2010-739
– ident: ref55
  doi: 10.1109/TIP.2010.2090535
– ident: ref48
  doi: 10.1109/ICCV.2013.398
– ident: ref1
  doi: 10.1016/S0167-6393(03)00099-2
– ident: ref63
  doi: 10.1109/TASLP.2014.2319157
– ident: ref10
  doi: 10.1109/89.279278
– ident: ref65
  doi: 10.1587/transinf.E96.D.2286
– year: 2004
  ident: ref29
  article-title: Locality preserving projections
  publication-title: Proc Neural Inf Process Syst
  contributor:
    fullname: niyogi
– ident: ref15
  doi: 10.1109/TASL.2007.902859
– ident: ref50
  doi: 10.1109/TKDE.2014.2373376
– start-page: 601
  year: 2006
  ident: ref42
  article-title: Correcting sample selection bias by unlabeled data
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: huang
– ident: ref64
  doi: 10.1109/T-AFFC.2011.31
– ident: ref58
  doi: 10.1109/CVPR.2014.183
– start-page: 585
  year: 2001
  ident: ref53
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Proc 14th Int Conf Neural Inf Process Syst Natural Synthetic
  contributor:
    fullname: belkin
– ident: ref61
  doi: 10.1109/ICASSP.2016.7472665
– start-page: 550
  year: 2008
  ident: ref39
  article-title: Transferred dimensionality reduction
  publication-title: Proc Knowl Discovery Data Mining
  contributor:
    fullname: wang
– ident: ref2
  doi: 10.1109/ICASSP.2007.366937
– ident: ref18
  doi: 10.1049/el.2014.3339
– ident: ref52
  doi: 10.1126/science.290.5500.2319
– ident: ref25
  doi: 10.1109/ICASSP.2016.7472149
– volume: 10
  start-page: 1391
  year: 2009
  ident: ref21
  article-title: A least-squares approach to direct importance estimation
  publication-title: J Mach Learn Res
  contributor:
    fullname: kanamori
– ident: ref35
  doi: 10.1145/1273496.1273521
– ident: ref44
  doi: 10.1109/TNN.2010.2091281
– ident: ref59
  doi: 10.1109/TNN.2005.860852
– start-page: 223
  year: 2014
  ident: ref5
  article-title: Speech emotion recognition using deep neural network and extreme learning machine
  publication-title: Proc INTERSPEECH
  contributor:
    fullname: han
– ident: ref36
  doi: 10.1145/1273496.1273592
– ident: ref37
  doi: 10.1613/jair.1872
– ident: ref38
  doi: 10.1109/TKDE.2013.111
– volume: 20
  start-page: 729
  year: 2009
  ident: ref60
  article-title: Trace ratio problem revisited
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2015760
  contributor:
    fullname: jia
– ident: ref6
  doi: 10.1109/LSP.2014.2308954
– year: 2005
  ident: ref45
  article-title: To transfer or not to transfer
  publication-title: Proc NIPS Workshop Transfer Learning
  contributor:
    fullname: rosenstein
– ident: ref30
  doi: 10.1109/TKDE.2009.126
– ident: ref19
  doi: 10.1109/T-AFFC.2010.8
– ident: ref13
  doi: 10.1109/ICASSP.2006.1659966
– start-page: 677
  year: 2008
  ident: ref49
  article-title: Transfer learning via dimensionality reduction
  publication-title: Proc 23rd Nat Conf Artif Intell
  contributor:
    fullname: pan
– ident: ref9
  doi: 10.1006/csla.1998.0043
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref51
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
  contributor:
    fullname: roweis
– ident: ref11
  doi: 10.1109/89.876308
– start-page: 567
  year: 2003
  ident: ref46
  article-title: Exploiting task relatedness for multiple task learning
  publication-title: Proc Conf Learning Theory and Kernel Machines
  doi: 10.1007/978-3-540-45167-9_41
  contributor:
    fullname: ben-david and
– volume: 7
  start-page: 264
  year: 2007
  ident: ref41
  article-title: Instance weighting for domain adaptation in NLP
  publication-title: ACL
  contributor:
    fullname: jiang
– year: 2005
  ident: ref14
  article-title: Joint factor analysis of speaker and session variability: Theory and algorithms
  contributor:
    fullname: kenny
– start-page: 2874
  year: 2010
  ident: ref16
  article-title: Domain adaptation and compensation for emotion detection
  publication-title: Proc Interspeech Int Conf Spoken Language Process
  contributor:
    fullname: sanchez
– ident: ref23
  doi: 10.1109/LSP.2014.2324759
– volume: 33
  start-page: 1548
  year: 2011
  ident: ref56
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.231
  contributor:
    fullname: cai
– ident: ref7
  doi: 10.3115/1075671.1075688
– ident: ref26
  doi: 10.1109/LSP.2016.2537926
– ident: ref4
  doi: 10.1016/j.dsp.2012.05.007
– ident: ref12
  doi: 10.1109/MLSP.2016.7738905
– ident: ref33
  doi: 10.1109/APSIPA.2015.7415532
– ident: ref3
  doi: 10.1109/ICASSP.2011.5947651
– ident: ref40
  doi: 10.1145/1390156.1390182
– ident: ref34
  doi: 10.1109/TNNLS.2014.2330900
– ident: ref57
  doi: 10.1109/TKDE.2014.2382599
– ident: ref22
  doi: 10.2197/ipsjjip.17.138
– volume: 3
  year: 2009
  ident: ref20
  article-title: Covariate shift by kernel mean matching
  publication-title: Dataset Shift Mach Learn
  contributor:
    fullname: gretton
– volume: 4
  start-page: 83
  year: 2003
  ident: ref47
  article-title: Task clustering and gating for Bayesian multitask learning
  publication-title: J Mach Learn Res
  contributor:
    fullname: bakker
– ident: ref24
  doi: 10.1109/ICASSP.2015.7178934
SSID ssj0000333627
Score 2.4763532
Snippet Speech emotion recognition has received an increasing interest in recent years, which is often conducted on the assumption that speech utterances in training...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 265
SubjectTerms Algorithm design and analysis
Algorithms
Datasets
dimensionality reduction
Emotion recognition
Learning
Optimization
Principal component analysis
Speech
Speech recognition
subspace learning
Subspaces
Testing
Training
transfer learning
Title Transfer Linear Subspace Learning for Cross-Corpus Speech Emotion Recognition
URI https://ieeexplore.ieee.org/document/7931593
https://www.proquest.com/docview/2232762252
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV2xTsMwED3RTiwUKIhCQR7YwG0Sx3YyVqURCwy0SGxREl9gSiva_H_PTlIhwcKUyIoj686-d2ef7wHcF7JQnhHIY5krTh5xxvMyjHge-1Ekc2H8zJHYLvXrR_S0sGVyHg93YRDRJZ_hxL66s3yzLmq7VTaluUToK3rQ03HU3NU67Kd4QpAt1t29GC-ermZJMrfJW3oSaMJ5W5f_B_Y4MpVfFtjBSjL434BO4aR1H9ms0fcZHGF1DoOOmoG1K3UILw6DSmqiYJMmM7MGgsJjZG1B1U9G3iqb23FyW8243rLlBrH4YouG2Ie9dalF6-oC3pPFav7MW-YEXgjl77gg5CblkO8QZhlhsNH0kKXSilpRoylkbgnsDAoPZYhxKTKd2fApN1noe-IS-tW6witgCqkvueGWyDMUJYUj0lb583Xk5UKFagQPnUzTTVMgI3WBhRenTgOp1UDaamAEQyvFw5etAEcw7tSQtmtom5LjEpCpDmRw_XevGzimf8dNHs0Y-rvvGm-htzX1nZsbe1rlt3k
link.rule.ids 315,782,786,798,27935,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGWChQEEUCnhgg7ROHMfJWJVGRbQdaJHYonxcYEor2vx_zk5SIcHClMiKFevOvndnn-8B3Kcy9Xgm0Apk4lnkEcdWkru-lQS278tEZHZsSGwXav7uP411mZzH3V0YRDTJZ9jXr-YsP1ulpd4qG9BcIvQV-3AgXaV4dVtrt6PChSBrrJqbMTwYLIdhONLpW6rvKEJ6XZn_B_oYOpVfNtgAS9j-35BO4Lh2INmw0vgp7GFxBu2GnIHVa7UDM4NCOTVRuEnTmWkTQQEysrqk6gcjf5WN9DgtXc-43LDFGjH9ZOOK2oe9NslFq-Ic3sLxcjSxau4EKxWevbUEYTeph7wHN44JhTNFD5l7yqNWVJilMtEUdhkKjtLFIBexinUAlWSxa3NxAa1iVeAlMA-pLznimsrTFTkFJFLX-bOVzxPhuV4XHhqZRuuqREZkQgseREYDkdZAVGugCx0txd2XtQC70GvUENWraBOR6-KQsXakc_V3rzs4nCxn02j6PH-5hiP6T1Bl1fSgtf0q8Qb2N1l5a-bJNyNcusQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+Linear+Subspace+Learning+for+Cross-Corpus+Speech+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Song%2C+Peng&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.volume=10&rft.issue=2&rft.spage=265&rft.epage=275&rft_id=info:doi/10.1109%2FTAFFC.2017.2705696&rft.externalDocID=7931593
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon