Types and Genesis of Siderite in the Coal-Bearing Beds of the Late Permian Xuanwei Formation in Eastern Yunnan, China
The Late Permian strata of the Xuanwei Formation in the eastern Yunnan region exhibit extensive diverse morphological features within siderite deposits. These variations in siderite deposits suggest potential differences in their formation processes. In this study, fieldwork and comprehensive indoor...
Saved in:
Published in: | Minerals (Basel) Vol. 13; no. 9; p. 1233 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
01-09-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Late Permian strata of the Xuanwei Formation in the eastern Yunnan region exhibit extensive diverse morphological features within siderite deposits. These variations in siderite deposits suggest potential differences in their formation processes. In this study, fieldwork and comprehensive indoor studies revealed four distinct forms of siderite deposits: stratiform-laminated, lens-like nodule, sandstone cementation, and fracture filling. The stratiform-laminated siderite, varying in color from bluish-grey to dark grey, is composed of uniformly sized microcrystalline to fine-grained siderite along with detrital matter, displaying precise layering and banding structures that suggest direct deposition from cyclic iron-rich seawater under reducing conditions. Lens-like-nodule siderite, which appears grey-yellow, is composed of mud microcrystalline siderite, medium to coarse-grained pseudo-ooids, and glauconite. It shows conformable distribution characteristics resulting from the diagenetic differentiation of iron-rich sediments under reducing conditions during the diagenetic and early diagenetic periods. Siderite as sandstone cementation exhibits a yellow-brown color and consists of dispersed colloidal siderite and cemented siderite clumps that fill intergranular pores of detrital particles. It precipitated under reducing conditions within those intergranular pores. Siderite filling fractures typically appear as vein-like or network-like structures intersecting bedding at large angles. They exhibit grain structures with significant variations in size. These siderite deposits exhibit exceptional purity and result from siderite dissolution during sedimentary periods, followed by reprecipitation within regional extensional fractures during the diagenetic phase. The primary occurrence of siderite deposits in the study area is within coal-bearing strata, as revealed by the integration of sedimentary profiles and sedimentary facies analysis. The coal-bearing strata, influenced by the Emeishan large igneous province, underwent iron enrichment during and after volcanic eruptions while developing a reducing environment, which was facilitated by abundant vegetation. Consequently, geological processes led to siderite layers, lens-like siderite nodules, and siderite cementation. The Yanshan orogeny induced extensive high-angle fracture development in epigenetic coal-bearing strata, facilitating fluid circulation and the redistribution of soluble siderite. This geological activity resulted in the formation of vein-like structures composed of siderite. |
---|---|
ISSN: | 2075-163X |
DOI: | 10.3390/min13091233 |