Stage 1 testing and pharmacodynamic evaluation of the HSP90 inhibitor alvespimycin (17-DMAG, KOS-1022) by the pediatric preclinical testing program
Background Alvespimycin (17‐DMAG, KOS‐1022), a potent small‐molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because of the multiple Hsp90 client proteins involved in cancer cell growth and survival. Procedures Alvespimycin was tested against the in vitro...
Saved in:
Published in: | Pediatric blood & cancer Vol. 51; no. 1; pp. 34 - 41 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01-07-2008
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Background
Alvespimycin (17‐DMAG, KOS‐1022), a potent small‐molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because of the multiple Hsp90 client proteins involved in cancer cell growth and survival.
Procedures
Alvespimycin was tested against the in vitro panel of the Pediatric Preclinical Testing Program (PPTP) at concentrations from 1 nM to 10 µM and was tested against the PPTP's in vivo tumor panels by intraperitoneal administration using a 50 mg/kg BID twice weekly × 6 weeks dose and schedule. Hsp70 induction in tumor and liver tissue was used as a pharmacodynamic measure of Hsp90 inhibition and stress response induction.
Results
Alvespimycin had a median IC50 of 68 nM against the PPTP's in vitro panel, with a trend for lower IC50 values for the rhabdomyosarcoma panel (median IC50 32 nM) and for higher IC50 values for the neuroblastoma panel (median IC50 380 nM). Using the time to event activity measure, alvespimycin had intermediate or high activity against 4 of 28 evaluable solid tumor xenografts, including 3 of 4 alveolar rhabdomyosarcoma xenografts (one with a partial response). Hsp70 induction was observed in tumor tissue from both responding and non‐responding xenografts.
Conclusions
Alvespimycin demonstrated little in vivo antitumor activity against most of the PPTP's preclinical models. The greatest drug effect was observed for the alveolar rhabdomyosarcoma xenografts in the rhabdomyosarcoma panel. Hsp70 induction was observed in responding and non‐responding xenografts, suggesting that tumor‐specific events subsequent to HSP90 inhibition are primary determinants of antitumor activity. Pediatr Blood Cancer 2008;51:34–41. © 2008 Wiley‐Liss, Inc. |
---|---|
AbstractList | BACKGROUNDAlvespimycin (17-DMAG, KOS-1022), a potent small-molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because of the multiple Hsp90 client proteins involved in cancer cell growth and survival.PROCEDURESAlvespimycin was tested against the in vitro panel of the Pediatric Preclinical Testing Program (PPTP) at concentrations from 1 nM to 10 microM and was tested against the PPTP's in vivo tumor panels by intraperitoneal administration using a 50 mg/kg BID twice weekly x 6 weeks dose and schedule. Hsp70 induction in tumor and liver tissue was used as a pharmacodynamic measure of Hsp90 inhibition and stress response induction.RESULTSAlvespimycin had a median IC(50) of 68 nM against the PPTP's in vitro panel, with a trend for lower IC(50) values for the rhabdomyosarcoma panel (median IC(50) 32 nM) and for higher IC(50) values for the neuroblastoma panel (median IC(50) 380 nM). Using the time to event activity measure, alvespimycin had intermediate or high activity against 4 of 28 evaluable solid tumor xenografts, including 3 of 4 alveolar rhabdomyosarcoma xenografts (one with a partial response). Hsp70 induction was observed in tumor tissue from both responding and non-responding xenografts.CONCLUSIONSAlvespimycin demonstrated little in vivo antitumor activity against most of the PPTP's preclinical models. The greatest drug effect was observed for the alveolar rhabdomyosarcoma xenografts in the rhabdomyosarcoma panel. Hsp70 induction was observed in responding and non-responding xenografts, suggesting that tumor-specific events subsequent to HSP90 inhibition are primary determinants of antitumor activity. Alvespimycin (17-DMAG, KOS-1022), a potent small-molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because of the multiple Hsp90 client proteins involved in cancer cell growth and survival. Alvespimycin was tested against the in vitro panel of the Pediatric Preclinical Testing Program (PPTP) at concentrations from 1 nM to 10 microM and was tested against the PPTP's in vivo tumor panels by intraperitoneal administration using a 50 mg/kg BID twice weekly x 6 weeks dose and schedule. Hsp70 induction in tumor and liver tissue was used as a pharmacodynamic measure of Hsp90 inhibition and stress response induction. Alvespimycin had a median IC(50) of 68 nM against the PPTP's in vitro panel, with a trend for lower IC(50) values for the rhabdomyosarcoma panel (median IC(50) 32 nM) and for higher IC(50) values for the neuroblastoma panel (median IC(50) 380 nM). Using the time to event activity measure, alvespimycin had intermediate or high activity against 4 of 28 evaluable solid tumor xenografts, including 3 of 4 alveolar rhabdomyosarcoma xenografts (one with a partial response). Hsp70 induction was observed in tumor tissue from both responding and non-responding xenografts. Alvespimycin demonstrated little in vivo antitumor activity against most of the PPTP's preclinical models. The greatest drug effect was observed for the alveolar rhabdomyosarcoma xenografts in the rhabdomyosarcoma panel. Hsp70 induction was observed in responding and non-responding xenografts, suggesting that tumor-specific events subsequent to HSP90 inhibition are primary determinants of antitumor activity. Background Alvespimycin (17‐DMAG, KOS‐1022), a potent small‐molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because of the multiple Hsp90 client proteins involved in cancer cell growth and survival. Procedures Alvespimycin was tested against the in vitro panel of the Pediatric Preclinical Testing Program (PPTP) at concentrations from 1 nM to 10 µM and was tested against the PPTP's in vivo tumor panels by intraperitoneal administration using a 50 mg/kg BID twice weekly × 6 weeks dose and schedule. Hsp70 induction in tumor and liver tissue was used as a pharmacodynamic measure of Hsp90 inhibition and stress response induction. Results Alvespimycin had a median IC50 of 68 nM against the PPTP's in vitro panel, with a trend for lower IC50 values for the rhabdomyosarcoma panel (median IC50 32 nM) and for higher IC50 values for the neuroblastoma panel (median IC50 380 nM). Using the time to event activity measure, alvespimycin had intermediate or high activity against 4 of 28 evaluable solid tumor xenografts, including 3 of 4 alveolar rhabdomyosarcoma xenografts (one with a partial response). Hsp70 induction was observed in tumor tissue from both responding and non‐responding xenografts. Conclusions Alvespimycin demonstrated little in vivo antitumor activity against most of the PPTP's preclinical models. The greatest drug effect was observed for the alveolar rhabdomyosarcoma xenografts in the rhabdomyosarcoma panel. Hsp70 induction was observed in responding and non‐responding xenografts, suggesting that tumor‐specific events subsequent to HSP90 inhibition are primary determinants of antitumor activity. Pediatr Blood Cancer 2008;51:34–41. © 2008 Wiley‐Liss, Inc. |
Author | Lock, Richard Morton, Christopher L. Keir, Stephen T. Wu, Jianrong Kolb, E. Anders Maris, John M. Phelps, Doris A. Houghton, Peter J. Reynolds, C. Patrick Carol, Hernan Smith, Malcolm A. |
Author_xml | – sequence: 1 givenname: Malcolm A. surname: Smith fullname: Smith, Malcolm A. organization: Cancer Therapy Evaluation Program, NCI, Bethesda, Maryland – sequence: 2 givenname: Christopher L. surname: Morton fullname: Morton, Christopher L. organization: St. Jude Children's Research Hospital, Memphis, Tennessee – sequence: 3 givenname: Doris A. surname: Phelps fullname: Phelps, Doris A. organization: St. Jude Children's Research Hospital, Memphis, Tennessee – sequence: 4 givenname: E. Anders surname: Kolb fullname: Kolb, E. Anders organization: The Children's Hospital at Montefiore, Bronx, New York – sequence: 5 givenname: Richard surname: Lock fullname: Lock, Richard organization: Children's Cancer Institute Australia for Medical Research, Randwick, NSW, Australia – sequence: 6 givenname: Hernan surname: Carol fullname: Carol, Hernan organization: Children's Cancer Institute Australia for Medical Research, Randwick, NSW, Australia – sequence: 7 givenname: C. Patrick surname: Reynolds fullname: Reynolds, C. Patrick organization: Children's Hospital of Los Angeles, Los Angeles, California – sequence: 8 givenname: John M. surname: Maris fullname: Maris, John M. organization: Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania – sequence: 9 givenname: Stephen T. surname: Keir fullname: Keir, Stephen T. organization: Duke University Medical Center, Durham, North Carolina – sequence: 10 givenname: Jianrong surname: Wu fullname: Wu, Jianrong organization: St. Jude Children's Research Hospital, Memphis, Tennessee – sequence: 11 givenname: Peter J. surname: Houghton fullname: Houghton, Peter J. email: peter.houghton@stjude.org organization: St. Jude Children's Research Hospital, Memphis, Tennessee |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18260120$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1y0zAURjVMGfoDC16A0YqhM7jVtSzLXpYE0k5bGggMS40ky4moLRvJaevn4IUrmhBWrHQX5ztXc79DtOc6ZxB6DeQECElPe6VPUmCkeIYOgGUsYQT43m4m5T46DOFnRHPCihdoH4o4QUoO0O_FIJcGAx5MGKxbYukq3K-kb6XuqtHJ1mps7mSzloPtHO5qPKwMPl_MS4KtW1llh85j2dyZ0Nt21Nbhd8CT6fXZ7D2-vFkkQNL0GKvxKdebysrBR2fvjW6ss1o2u92975Zeti_R81o2wbzavkfo-6eP3ybnydXN7GJydpVomkORSAaqKiktgHLDwPC00HnNSlYTzRVRKa0zVjPI6poDzSnXGTCtSpVXIA3k9Ai93Xjj3l_r-AfR2qBN00hnunUQnPCUpxlE8HgDat-F4E0tem9b6UcBRPxpQMQGxFMDkX2zla5Va6p_5PbkETjdAPe2MeP_TWL-YfJXmWwSNgzmYZeQ_lbknHImfnyeicu8uP4y_zoVU_oIsWOfgg |
CitedBy_id | crossref_primary_10_59786_bmtj_122 crossref_primary_10_1002_pbc_24724 crossref_primary_10_1016_j_biopha_2018_03_102 crossref_primary_10_1016_j_ctrv_2010_02_007 crossref_primary_10_1158_0008_5472_CAN_08_3723 crossref_primary_10_1002_pbc_23154 crossref_primary_10_1007_s10147_012_0417_5 crossref_primary_10_1517_17460441_2013_817988 crossref_primary_10_1038_leu_2016_192 crossref_primary_10_1038_onc_2013_129 crossref_primary_10_1016_j_isci_2020_101996 crossref_primary_10_1186_1471_2407_12_233 crossref_primary_10_1016_j_bbacli_2014_06_003 crossref_primary_10_1093_hmg_ddn419 crossref_primary_10_3390_ijms22158306 crossref_primary_10_1007_s13277_013_1422_7 crossref_primary_10_1517_17460440903380430 crossref_primary_10_1038_s41598_017_18061_y crossref_primary_10_1111_j_1365_2141_2010_08282_x crossref_primary_10_1002_pbc_24451 crossref_primary_10_1007_s00259_009_1158_1 crossref_primary_10_1073_pnas_0902880106 |
Cites_doi | 10.1200/jco.2006.24.18_suppl.3021 10.1200/jco.2006.24.18_suppl.9018 10.1158/1078-0432.CCR-05-1225 10.1074/jbc.M211600200 10.1007/s00280-001-0380-8 10.1158/1078-0432.CCR-05-0740 10.2174/156802606777812068 10.1158/0008-5472.CAN-05-2632 10.1002/ijc.10820 10.1158/1078-0432.CCR-06-1178 10.1182/blood-2003-08-2911 10.1038/sj.onc.1205184 10.1007/s00280-004-0939-2 10.1200/jco.2006.24.18_suppl.9022 10.1158/1535-7163.551.3.5 10.1073/pnas.0608372103 10.1016/S1359-6349(06)70575-4 10.1002/pbc.21214 10.1200/jco.2007.25.18_suppl.3566 10.1158/1078-0432.CCR-03-0795 10.1016/S1359-6349(06)70318-4 10.1158/1078-0432.CCR-06-2468 10.1182/blood.V108.11.1961.1961 10.1182/blood.V108.11.406.406 10.1007/s00280-004-0865-3 10.1158/1078-0432.CCR-07-0632 10.1182/blood-2002-05-1361 10.1158/1535-7163.MCT-06-0646 10.1158/1078-0432.CCR-06-1015 10.1002/pbc.21078 10.1053/j.seminoncol.2006.04.001 10.1126/science.1142210 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Wiley‐Liss, Inc. (c) 2008 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2008 Wiley‐Liss, Inc. – notice: (c) 2008 Wiley-Liss, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/pbc.21508 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1545-5017 |
EndPage | 41 |
ExternalDocumentID | 10_1002_pbc_21508 18260120 PBC21508 ark_67375_WNG_K68MQPRD_D |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Cancer Institute funderid: NO1‐CM‐42216; CA21765; CA108786 – fundername: NCI NIH HHS grantid: CA108786 – fundername: NCI NIH HHS grantid: N01-CM-42216 – fundername: NCI NIH HHS grantid: CA21765 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABPPZ ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WHWMO WIH WIJ WIK WJL WOHZO WQJ WRC WVDHM WXI WXSBR XG1 XV2 ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c3618-a51bd9338137e51e728c6f595f0c7b0b23f45f514ff713637c415cb9b6d1ae163 |
IEDL.DBID | 33P |
ISSN | 1545-5009 |
IngestDate | Fri Aug 16 05:49:53 EDT 2024 Fri Nov 22 00:27:05 EST 2024 Sat Sep 28 08:40:26 EDT 2024 Sat Aug 24 01:08:50 EDT 2024 Wed Oct 30 09:54:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | (c) 2008 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3618-a51bd9338137e51e728c6f595f0c7b0b23f45f514ff713637c415cb9b6d1ae163 |
Notes | National Cancer Institute - No. NO1-CM-42216; No. CA21765; No. CA108786 istex:8066915C1825201C6F23D1BFFF0B8763AF531F76 ark:/67375/WNG-K68MQPRD-D ArticleID:PBC21508 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18260120 |
PQID | 70727241 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_70727241 crossref_primary_10_1002_pbc_21508 pubmed_primary_18260120 wiley_primary_10_1002_pbc_21508_PBC21508 istex_primary_ark_67375_WNG_K68MQPRD_D |
PublicationCentury | 2000 |
PublicationDate | 2008-07 July 2008 2008-Jul 2008-07-00 20080701 |
PublicationDateYYYYMMDD | 2008-07-01 |
PublicationDate_xml | – month: 07 year: 2008 text: 2008-07 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Pediatric blood & cancer |
PublicationTitleAlternate | Pediatr. Blood Cancer |
PublicationYear | 2008 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Houghton PJ, Morton CL, Kolb EA, et al. Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 50: 37-45. Kang J, Kamal A, Burrows FJ, et al. Inhibition of neuroblastoma xenograft growth by Hsp90 inhibitors. Anticancer Res 2006; 26: 1903-1908. Robles AI, Wright MH, Gandhi B, et al. Schedule-dependent synergy between the heat shock protein 90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin and doxorubicin restores apoptosis to p53-mutant lymphoma cell lines. Clin Cancer Res 2006; 12: 6547-6556. Weigel BJ, Blaney SM, Kersey J, et al., A phase I study of 17-AAG in relapsed/refractory pediatric patients with solid tumors: A Children's Oncology Group Study. J Clin Oncol 2006; 24: Abstr #9018. Kurmasheva RT, Harwood FC, Houghton PJ. Differential regulation of vascular endothelial growth factor by Akt and mammalian target of rapamycin inhibitors in cell lines derived from childhood solid tumors. Mol Cancer Ther 2007; 6: 1620-1628. Basso AD, Solit DB, Munster PN, et al. Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress H ER2. Oncogene 2002; 21: 1159-1166. Hollingshead M, Alley M, Burger AM, et al. In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother Pharmacol 2005; 56: 115-125. Demetri GD, George S, Morgan JA, et al. Overcoming resistance to tyrosine kinase inhibitors (TKIs) through inhibition of Heat Shock Protein 90 (Hsp90) chaperone function in patients with metastatic GIST: Results of a Phase I Trial of ipi-504, a water-soluble Hsp90 inhibitor. Eur J Cancer Suppl 2006; 4: 173. Richardson P, Chanan-Khan AA, Lonial S, et al. A multicenter phase 1 clinical trial of tanespimycin (KOS-953) + Bortezomib (BZ): Encouraging activity and manageable toxicity in heavily pre-treated patients with relapsed refractory multiple myeloma (MM). Blood 2006; 108: Abstr #406. Wetzler M, Earp JC, Brady MT, et al. Synergism between arsenic trioxide and heat shock protein 90 inhibitors on signal transducer and activator of transcription protein 3 activity-Pharmacodynamic drug-drug interaction modeling. Clin Cancer Res 2007; 13: 2261-2270. Modi S, Stopeck AT, Gordon MS, et al. Phase 1 dose escalating trial of KOS-953 (heat shock protein 90 inhibitor) and trastuzumab (T). Proc Am Assoc Cancer Res 2006; 47: Abstr #2919. Cullinan SB, Whitesell L. Heat shock protein 90: A unique chemotherapeutic target. Semin Oncol 2006; 33: 457-465. Kaur G, Belotti D, Burger AM, et al. Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: An orally bioavailable heat shock protein 90 modulator. Clin Cancer Res 2004; 10: 4813-4821. Camphausen K, Tofilon PJ. Inhibition of Hsp90: A multitarget approach to radiosensitization. Clin Cancer Res 2007; 13: 4326-4330. Bagatell R, Gore L, Egorin M, et al. Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of 17-Allylamino-17-demethoxygeldanamycin (17AAG) in children with solid tumors. J Clin Oncol 2006; 24: Abstr #9022. da Rocha Dias S, Friedlos F, Light Y, et al. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res 2005; 65: 10686-10691. Nowakowski GS, McCollum AK, Ames MM, et al. A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin Cancer Res 2006; 12: 6087-6093. Smith MA, Maris JM, Keir ST, et al. Pediatric preclinical testing program (PPTP) evaluation of the Bcl-2 inhibitor ABT-263. Proc Annu Meet Am Assoc Cancer Res 2007; Abstr #4951. Eiseman JL, Lan J, Lagattuta TF, et al. Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother Pharmacol 2005; 55: 21-32. Egorin MJ, Belani CP, Remick SC, et al. Phase I, pharmacokinetic (PK), & pharmacodynamic (PD) study of 17-dimethylaminoethylamino-17-demethoxygeldanamycin, (17DMAG, NSC 707545) in patients with advanced solid tumors. J Clin Oncol 2006; 24: Abstr #3021. Egorin MJ, Lagattuta TF, Hamburger DR, et al. Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats. Cancer Chemother Pharmacol 2002; 49: 7-19. Sydor JR, Normant E, Pien CS, et al. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci USA 2006; 103: 17408-17413. Calabrese C, Frank A, Maclean K, et al. Medulloblastoma sensitivity to 17-allylamino-17-demethoxygeldanamycin requires MEK/ERKM. J Biol Chem 2003; 278: 24951-24959. Murgo AJ, Kummar S, Gardner ER, et al. Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) administered twice weekly. J Clin Oncol 2007; 25: Abstr #3566. Kim S, Kang J, Hu W, et al. Geldanamycin decreases Raf-1 and Akt levels and induces apoptosis in neuroblastomas. Int J Cancer 2003; 103: 352-359. Houghton PJ, Maris JM, Friedman HS, et al. Evaluation of Bortezomib against childhood tumor models by the Pediatric Preclinical Testing Program (PPTP). Clin Cancer Res 2005; 11: Abstr #A96. Mimnaugh EG, Xu W, Vos M, et al. Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 2004; 3: 551-566. Keshelava N, Frgala T, Krejsa J, et al. DIMSCAN: A microcomputer fluorescence-based cytotoxicity assay for preclinical testing of combination chemotherapy. Methods Mol Med 2005; 110: 139-153. Friedman HS, Colvin OM, Skapek SX, et al. Experimental chemotherapy of human medulloblastoma cell lines and transplantable xenografts with bifunctional alkylating agents. Cancer Res 1988; 48: 4189-4195. Lancet J, Baer MR, Gojo I, et al. Phase 1, pharmacokinetic (PK) and pharmacodynamic (PD) study of intravenous alvespimycin (KOS-1022) in patients with refractory hematological malignancies. Blood 2006; 108: Abstr #1961. Torres EM, Sokolsky T, Tucker CM, et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 2007; 317: 916-924. Graham C, Tucker C, Creech J, et al. Evaluation of the antitumor efficacy, pharmacokinetics, and pharmacodynamics of the histone deacetylase inhibitor depsipeptide in childhood cancer models in vivo. Clin Cancer Res 2006; 12: 223-234. Houghton PJ, Maris JM, Friedman HS, et al. Pediatric preclinical testing program (PPTP) evaluation of the KSP inhibitor Ispinesib (SB-715992). Eur J Cancer Suppl 2006; 4: 98. Gorre ME, Ellwood-Yen K, Chiosis G, et al. BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 2002; 100: 3041-3044. Bonvini P, Gastaldi T, Falini B, et al. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: Down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin. Cancer Res 2002; 62: 1559-1566. Solit DB, Rosen N. Hsp90: A novel target for cancer therapy. Curr Top Med Chem 2006; 6: 1205-1214. Yao Q, Nishiuchi R, Li Q, et al. FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin Cancer Res 2003; 9: 4483-4493. Liem NL, Papa RA, Milross CG, et al. Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood 2004; 103: 3905-3914. Houghton PJ, Morton CL, Tucker C, et al. The pediatric preclinical testing program: Description of models and early testing results. Pediatr Blood Cancer 2007; 49: 928-940. Peterson JK, Tucker C, Favours E, et al. In vivo evaluation of ixabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models. Clin Cancer Res 2005; 11: 6950-6958. 2004; 103 2005; 110 2006; 12 2006; 33 2004; 3 2007 2006; 6 2005; 65 2006; 4 2008; 50 2003; 278 2007; 13 2004; 10 2002; 49 2007; 317 2006; 108 2006; 24 2002; 62 1988; 48 2002; 100 2002; 21 2006; 47 2003; 9 2006; 26 2007; 6 2003; 103 2005; 11 2005; 55 2005; 56 2007; 25 2006; 103 2007; 49 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 Kang J (e_1_2_7_14_2) 2006; 26 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 Weigel BJ (e_1_2_7_41_2) 2006; 24 e_1_2_7_16_2 Friedman HS (e_1_2_7_17_2) 1988; 48 Richardson P (e_1_2_7_32_2) 2006; 108 e_1_2_7_13_2 Modi S (e_1_2_7_33_2) 2006; 47 e_1_2_7_12_2 e_1_2_7_10_2 Bonvini P (e_1_2_7_4_2) 2002; 62 e_1_2_7_27_2 Murgo AJ (e_1_2_7_28_2) 2007; 25 Yao Q (e_1_2_7_11_2) 2003; 9 Bagatell R (e_1_2_7_40_2) 2006; 24 Houghton PJ (e_1_2_7_24_2) 2005; 11 Lancet J (e_1_2_7_29_2) 2006; 108 e_1_2_7_25_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_22_2 e_1_2_7_21_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 Keshelava N (e_1_2_7_15_2) 2005; 110 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 e_1_2_7_39_2 Egorin MJ (e_1_2_7_31_2) 2006; 24 Smith MA (e_1_2_7_26_2) 2007 |
References_xml | – volume: 21 start-page: 1159 year: 2002 end-page: 1166 article-title: Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress H ER2 publication-title: Oncogene – volume: 47 year: 2006 article-title: Phase 1 dose escalating trial of KOS‐953 (heat shock protein 90 inhibitor) and trastuzumab (T) publication-title: Proc Am Assoc Cancer Res – volume: 9 start-page: 4483 year: 2003 end-page: 4493 article-title: FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction‐associated kinases publication-title: Clin Cancer Res – volume: 6 start-page: 1205 year: 2006 end-page: 1214 article-title: Hsp90: A novel target for cancer therapy publication-title: Curr Top Med Chem – volume: 48 start-page: 4189 year: 1988 end-page: 4195 article-title: Experimental chemotherapy of human medulloblastoma cell lines and transplantable xenografts with bifunctional alkylating agents publication-title: Cancer Res – volume: 103 start-page: 3905 year: 2004 end-page: 3914 article-title: Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies publication-title: Blood – volume: 13 start-page: 4326 year: 2007 end-page: 4330 article-title: Inhibition of Hsp90: A multitarget approach to radiosensitization publication-title: Clin Cancer Res – volume: 33 start-page: 457 year: 2006 end-page: 465 article-title: Heat shock protein 90: A unique chemotherapeutic target publication-title: Semin Oncol – volume: 317 start-page: 916 year: 2007 end-page: 924 article-title: Effects of aneuploidy on cellular physiology and cell division in haploid yeast publication-title: Science – volume: 55 start-page: 21 year: 2005 end-page: 32 article-title: Pharmacokinetics and pharmacodynamics of 17‐demethoxy 17‐[[(2‐dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B‐17 SCID mice bearing MDA‐MB‐231 human breast cancer xenografts publication-title: Cancer Chemother Pharmacol – volume: 49 start-page: 928 year: 2007 end-page: 940 article-title: The pediatric preclinical testing program: Description of models and early testing results publication-title: Pediatr Blood Cancer – volume: 10 start-page: 4813 year: 2004 end-page: 4821 article-title: Antiangiogenic properties of 17‐(dimethylaminoethylamino)‐17‐demethoxygeldanamycin: An orally bioavailable heat shock protein 90 modulator publication-title: Clin Cancer Res – volume: 100 start-page: 3041 year: 2002 end-page: 3044 article-title: BCR‐ABL point mutants isolated from patients with imatinib mesylate‐resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR‐ABL chaperone heat shock protein 90 publication-title: Blood – volume: 6 start-page: 1620 year: 2007 end-page: 1628 article-title: Differential regulation of vascular endothelial growth factor by Akt and mammalian target of rapamycin inhibitors in cell lines derived from childhood solid tumors publication-title: Mol Cancer Ther – volume: 62 start-page: 1559 year: 2002 end-page: 1566 article-title: Nucleophosmin‐anaplastic lymphoma kinase (NPM‐ALK), a novel Hsp90‐client tyrosine kinase: Down‐regulation of NPM‐ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17‐allylamino,17‐demethoxygeldanamycin publication-title: Cancer Res – volume: 3 start-page: 551 year: 2004 end-page: 566 article-title: Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum‐derived cytosolic vacuolization, and enhances antitumor activity publication-title: Mol Cancer Ther – volume: 4 start-page: 98 year: 2006 article-title: Pediatric preclinical testing program (PPTP) evaluation of the KSP inhibitor Ispinesib (SB‐715992) publication-title: Eur J Cancer Suppl – volume: 11 start-page: 6950 year: 2005 end-page: 6958 article-title: In vivo evaluation of ixabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models publication-title: Clin Cancer Res – volume: 103 start-page: 17408 year: 2006 end-page: 17413 article-title: Development of 17‐allylamino‐17‐demethoxygeldanamycin hydroquinone hydrochloride (IPI‐504), an anti‐cancer agent directed against Hsp90 publication-title: Proc Natl Acad Sci USA – volume: 11 year: 2005 article-title: Evaluation of Bortezomib against childhood tumor models by the Pediatric Preclinical Testing Program (PPTP) publication-title: Clin Cancer Res – volume: 65 start-page: 10686 year: 2005 end-page: 10691 article-title: Activated B‐RAF is an Hsp90 client protein that is targeted by the anticancer drug 17‐allylamino‐17‐demethoxygeldanamycin publication-title: Cancer Res – volume: 56 start-page: 115 year: 2005 end-page: 125 article-title: In vivo antitumor efficacy of 17‐DMAG (17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin hydrochloride), a water‐soluble geldanamycin derivative publication-title: Cancer Chemother Pharmacol – volume: 24 year: 2006 article-title: Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of 17‐Allylamino‐17‐demethoxygeldanamycin (17AAG) in children with solid tumors publication-title: J Clin Oncol – volume: 108 year: 2006 article-title: A multicenter phase 1 clinical trial of tanespimycin (KOS‐953) + Bortezomib (BZ): Encouraging activity and manageable toxicity in heavily pre‐treated patients with relapsed refractory multiple myeloma (MM) publication-title: Blood – volume: 50 start-page: 37 year: 2008 end-page: 45 article-title: Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program publication-title: Pediatr Blood Cancer – volume: 25 year: 2007 article-title: Phase I trial of 17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin (17‐DMAG) administered twice weekly publication-title: J Clin Oncol – volume: 110 start-page: 139 year: 2005 end-page: 153 article-title: DIMSCAN: A microcomputer fluorescence‐based cytotoxicity assay for preclinical testing of combination chemotherapy publication-title: Methods Mol Med – volume: 12 start-page: 6087 year: 2006 end-page: 6093 article-title: A phase I trial of twice‐weekly 17‐allylamino‐demethoxy‐geldanamycin in patients with advanced cancer publication-title: Clin Cancer Res – volume: 103 start-page: 352 year: 2003 end-page: 359 article-title: Geldanamycin decreases Raf‐1 and Akt levels and induces apoptosis in neuroblastomas publication-title: Int J Cancer – volume: 108 year: 2006 article-title: Phase 1, pharmacokinetic (PK) and pharmacodynamic (PD) study of intravenous alvespimycin (KOS‐1022) in patients with refractory hematological malignancies publication-title: Blood – volume: 49 start-page: 7 year: 2002 end-page: 19 article-title: Pharmacokinetics, tissue distribution, and metabolism of 17‐(dimethylaminoethylamino)‐17‐demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats publication-title: Cancer Chemother Pharmacol – volume: 24 year: 2006 article-title: Phase I, pharmacokinetic (PK), & pharmacodynamic (PD) study of 17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin, (17DMAG, NSC 707545) in patients with advanced solid tumors publication-title: J Clin Oncol – volume: 12 start-page: 6547 year: 2006 end-page: 6556 article-title: Schedule‐dependent synergy between the heat shock protein 90 inhibitor 17‐(dimethylaminoethylamino)‐17‐demethoxygeldanamycin and doxorubicin restores apoptosis to p53‐mutant lymphoma cell lines publication-title: Clin Cancer Res – volume: 26 start-page: 1903 year: 2006 end-page: 1908 article-title: Inhibition of neuroblastoma xenograft growth by Hsp90 inhibitors publication-title: Anticancer Res – volume: 24 year: 2006 article-title: A phase I study of 17‐AAG in relapsed/refractory pediatric patients with solid tumors: A Children's Oncology Group Study publication-title: J Clin Oncol – year: 2007 article-title: Pediatric preclinical testing program (PPTP) evaluation of the Bcl‐2 inhibitor ABT‐263 publication-title: Proc Annu Meet Am Assoc Cancer Res – volume: 12 start-page: 223 year: 2006 end-page: 234 article-title: Evaluation of the antitumor efficacy, pharmacokinetics, and pharmacodynamics of the histone deacetylase inhibitor depsipeptide in childhood cancer models in vivo publication-title: Clin Cancer Res – volume: 4 start-page: 173 year: 2006 article-title: Overcoming resistance to tyrosine kinase inhibitors (TKIs) through inhibition of Heat Shock Protein 90 (Hsp90) chaperone function in patients with metastatic GIST: Results of a Phase I Trial of ipi‐504, a water‐soluble Hsp90 inhibitor publication-title: Eur J Cancer Suppl – volume: 278 start-page: 24951 year: 2003 end-page: 24959 article-title: Medulloblastoma sensitivity to 17‐allylamino‐17‐demethoxygeldanamycin requires MEK/ERKM publication-title: J Biol Chem – volume: 13 start-page: 2261 year: 2007 end-page: 2270 article-title: Synergism between arsenic trioxide and heat shock protein 90 inhibitors on signal transducer and activator of transcription protein 3 activity—Pharmacodynamic drug‐drug interaction modeling publication-title: Clin Cancer Res – volume: 24 year: 2006 ident: e_1_2_7_31_2 article-title: Phase I, pharmacokinetic (PK), & pharmacodynamic (PD) study of 17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin, (17DMAG, NSC 707545) in patients with advanced solid tumors publication-title: J Clin Oncol doi: 10.1200/jco.2006.24.18_suppl.3021 contributor: fullname: Egorin MJ – volume: 24 year: 2006 ident: e_1_2_7_41_2 article-title: A phase I study of 17‐AAG in relapsed/refractory pediatric patients with solid tumors: A Children's Oncology Group Study publication-title: J Clin Oncol doi: 10.1200/jco.2006.24.18_suppl.9018 contributor: fullname: Weigel BJ – ident: e_1_2_7_18_2 doi: 10.1158/1078-0432.CCR-05-1225 – ident: e_1_2_7_12_2 doi: 10.1074/jbc.M211600200 – ident: e_1_2_7_30_2 doi: 10.1007/s00280-001-0380-8 – ident: e_1_2_7_19_2 doi: 10.1158/1078-0432.CCR-05-0740 – volume: 9 start-page: 4483 year: 2003 ident: e_1_2_7_11_2 article-title: FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction‐associated kinases publication-title: Clin Cancer Res contributor: fullname: Yao Q – ident: e_1_2_7_6_2 doi: 10.2174/156802606777812068 – ident: e_1_2_7_7_2 doi: 10.1158/0008-5472.CAN-05-2632 – ident: e_1_2_7_13_2 doi: 10.1002/ijc.10820 – ident: e_1_2_7_38_2 doi: 10.1158/1078-0432.CCR-06-1178 – ident: e_1_2_7_20_2 doi: 10.1182/blood-2003-08-2911 – ident: e_1_2_7_5_2 doi: 10.1038/sj.onc.1205184 – ident: e_1_2_7_10_2 doi: 10.1007/s00280-004-0939-2 – volume: 24 year: 2006 ident: e_1_2_7_40_2 article-title: Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of 17‐Allylamino‐17‐demethoxygeldanamycin (17AAG) in children with solid tumors publication-title: J Clin Oncol doi: 10.1200/jco.2006.24.18_suppl.9022 contributor: fullname: Bagatell R – ident: e_1_2_7_36_2 doi: 10.1158/1535-7163.551.3.5 – ident: e_1_2_7_34_2 doi: 10.1073/pnas.0608372103 – ident: e_1_2_7_35_2 doi: 10.1016/S1359-6349(06)70575-4 – volume: 110 start-page: 139 year: 2005 ident: e_1_2_7_15_2 article-title: DIMSCAN: A microcomputer fluorescence‐based cytotoxicity assay for preclinical testing of combination chemotherapy publication-title: Methods Mol Med contributor: fullname: Keshelava N – ident: e_1_2_7_16_2 doi: 10.1002/pbc.21214 – volume: 47 year: 2006 ident: e_1_2_7_33_2 article-title: Phase 1 dose escalating trial of KOS‐953 (heat shock protein 90 inhibitor) and trastuzumab (T) publication-title: Proc Am Assoc Cancer Res contributor: fullname: Modi S – volume: 11 year: 2005 ident: e_1_2_7_24_2 article-title: Evaluation of Bortezomib against childhood tumor models by the Pediatric Preclinical Testing Program (PPTP) publication-title: Clin Cancer Res contributor: fullname: Houghton PJ – volume: 25 year: 2007 ident: e_1_2_7_28_2 article-title: Phase I trial of 17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin (17‐DMAG) administered twice weekly publication-title: J Clin Oncol doi: 10.1200/jco.2007.25.18_suppl.3566 contributor: fullname: Murgo AJ – ident: e_1_2_7_9_2 doi: 10.1158/1078-0432.CCR-03-0795 – ident: e_1_2_7_25_2 doi: 10.1016/S1359-6349(06)70318-4 – ident: e_1_2_7_37_2 doi: 10.1158/1078-0432.CCR-06-2468 – volume: 108 year: 2006 ident: e_1_2_7_29_2 article-title: Phase 1, pharmacokinetic (PK) and pharmacodynamic (PD) study of intravenous alvespimycin (KOS‐1022) in patients with refractory hematological malignancies publication-title: Blood doi: 10.1182/blood.V108.11.1961.1961 contributor: fullname: Lancet J – volume: 108 year: 2006 ident: e_1_2_7_32_2 article-title: A multicenter phase 1 clinical trial of tanespimycin (KOS‐953) + Bortezomib (BZ): Encouraging activity and manageable toxicity in heavily pre‐treated patients with relapsed refractory multiple myeloma (MM) publication-title: Blood doi: 10.1182/blood.V108.11.406.406 contributor: fullname: Richardson P – ident: e_1_2_7_27_2 doi: 10.1007/s00280-004-0865-3 – year: 2007 ident: e_1_2_7_26_2 article-title: Pediatric preclinical testing program (PPTP) evaluation of the Bcl‐2 inhibitor ABT‐263 publication-title: Proc Annu Meet Am Assoc Cancer Res contributor: fullname: Smith MA – ident: e_1_2_7_39_2 doi: 10.1158/1078-0432.CCR-07-0632 – ident: e_1_2_7_3_2 doi: 10.1182/blood-2002-05-1361 – volume: 26 start-page: 1903 year: 2006 ident: e_1_2_7_14_2 article-title: Inhibition of neuroblastoma xenograft growth by Hsp90 inhibitors publication-title: Anticancer Res contributor: fullname: Kang J – volume: 48 start-page: 4189 year: 1988 ident: e_1_2_7_17_2 article-title: Experimental chemotherapy of human medulloblastoma cell lines and transplantable xenografts with bifunctional alkylating agents publication-title: Cancer Res contributor: fullname: Friedman HS – ident: e_1_2_7_22_2 doi: 10.1158/1535-7163.MCT-06-0646 – ident: e_1_2_7_23_2 doi: 10.1158/1078-0432.CCR-06-1015 – ident: e_1_2_7_21_2 doi: 10.1002/pbc.21078 – ident: e_1_2_7_2_2 doi: 10.1053/j.seminoncol.2006.04.001 – volume: 62 start-page: 1559 year: 2002 ident: e_1_2_7_4_2 article-title: Nucleophosmin‐anaplastic lymphoma kinase (NPM‐ALK), a novel Hsp90‐client tyrosine kinase: Down‐regulation of NPM‐ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17‐allylamino,17‐demethoxygeldanamycin publication-title: Cancer Res contributor: fullname: Bonvini P – ident: e_1_2_7_8_2 doi: 10.1126/science.1142210 |
SSID | ssj0026058 |
Score | 2.0377913 |
Snippet | Background
Alvespimycin (17‐DMAG, KOS‐1022), a potent small‐molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent... Alvespimycin (17-DMAG, KOS-1022), a potent small-molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because of the... BACKGROUNDAlvespimycin (17-DMAG, KOS-1022), a potent small-molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 34 |
SubjectTerms | alvespimycin Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacokinetics Antineoplastic Agents - pharmacology Benzoquinones - pharmacokinetics Benzoquinones - pharmacology Benzoquinones - therapeutic use Cell Line, Tumor developmental therapeutics Dose-Response Relationship, Drug Drug Screening Assays, Antitumor Female HSP90 Heat-Shock Proteins - antagonists & inhibitors Humans Lactams, Macrocyclic - pharmacokinetics Lactams, Macrocyclic - pharmacology Lactams, Macrocyclic - therapeutic use Mice Mice, SCID Neoplasms, Experimental - drug therapy preclinical testing Transplantation, Heterologous Tumor Burden - drug effects |
Title | Stage 1 testing and pharmacodynamic evaluation of the HSP90 inhibitor alvespimycin (17-DMAG, KOS-1022) by the pediatric preclinical testing program |
URI | https://api.istex.fr/ark:/67375/WNG-K68MQPRD-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpbc.21508 https://www.ncbi.nlm.nih.gov/pubmed/18260120 https://search.proquest.com/docview/70727241 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIhLeUPKy0IIFYnQ2IljR5xKt-1K1ZaFBZWbZcd2W0Gz0W4X0Vt_Qm_8P34JY-exqgQSEjcf7NjyjMffZGY-I_TCOcIENyamRcbizNg8FkWWxM65TKnMAob1tcPDCd__IgbbnibnbVcL0_BD9D_c_MkI9tofcKXnG0vS0FqXb6hnMwf7C15CKN9Ix72z5cN9gSsVlsAASHSsQgnd6Edeuouu-W398SegeRm3hotn5-Z_LfkWWm3xJt5sFOQ2umKrO-j6qI2o30U_AW0eWkzwqafbqA6xqgyuWz5r0zxXj5eU4HjqMEBGPJyMiwQfV0fHGkzCDKtv333M_uQMvorXCf91fjEYbe6-xnvvJ9D2Dt8rrM_C2Lp7HQTXYG7bysx-_jZh7B76vLP9aWsYt481xGWaExErRrQpwOElKbeMWE5FmTtWMJeUXCeapi5jDuCZc-AX5ykvATqUutC5IcoCKryPVqppZR8i7CxXOThaVDOeCUNEyZ22xGd3UaXKLELPO7HJuuHkkA37MpWwxTJscYReBoH2PdTsq09i40we7O_KvVyMPow_DuQgQs86iUs4Wj5eoio7XcwlT3yUOiMRetAownI24ZnYaBKh9SDvvy9Djt9thcbav3d9hG40WSk-KfgxWjmdLewTdHVuFk-Djv8Gzbv9Ig |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RVgIu5Q3hVQshVKSGxo4dJxKX0m27aLvLwhbBzbITu1SUbLTtInrjJ3Dr_-svwXYeq0ogIXHzwS95xvY3npnPAM-NwSzlRRGSjLKQFjoJ04xGoTGGSkm1xbAud7g_4aPPaW_H0eS8bnNhan6I7sHN7Qx_XrsN7h6kNxesoZXKXxFHZ74EKzSxiugSOOJxZ245h59nS7WTYBZKtLxCEdnsml66jVbcwv74E9S8jFz91bN74_8mfRNWG8iJtmoduQVXdHkbrg4bp_odOLeA81AjjE4d40Z5iGRZoKqhtC7qH-vRghUcTQ2yqBH1J-MsQkfllyNlT4UZksffndv-25ntFa1jfvHzV2-4tbeBBu8mtuxsvpdInfm2VftBCKrsidskZ3bjNzFjd-Hj7s7Bdj9s_msI8zjBaSgZVkVmbV4cc82w5iTNE8MyZqKcq0iR2FBmLEIzxprGScxzix5ylamkwFJbYHgPlstpqR8AMprLxNpaRDFO0wKnOTdKYxfgRaTMaQDPWrmJqqblEDUBMxF2iYVf4gBeeIl2NeTsq4tj40x8Gu2JQZIO348_9EQvgLVW5MLuLucykaWezk8Ej5yjmuIA7teasBgtdWRsJApg3Qv879MQ4zfbvvDw36uuwbX-wXBf7L8dDR7B9TpIxcUIP4bl09lcP4Glk2L-1Cv8b8dHAVk |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RVqq4UP5JC9RCCBWJ0Dix40ScStPtomWXwBbBzbJju1TQbLTtInrjEbjxfjwJdv5WlUBC4uaDHVueGfubzMxngMfGYJowpfwwJdQnSsd-kpLAN8YQIYi2GNbVDg-nbPIxyQ4cTc6Lrham4Yfof7g5y6jPa2fglTK7S9LQShbPQ8dmvgJrxMJwR5wfRXnvbbl4X02WatdALZLoaIWCcLcfeukyWnP7-u1PSPMycK1vnsHGf635OlxrASfaazTkBlzR5U1YH7ch9Vvw08LNY40wOnd8G-UxEqVCVUtorZr36tGSExzNDLKYEQ2neRqgk_LTibRnwhyJL19d0P70wn4V7WD26_uPbLx3-AyN3kxt23l8T5G8qMdW3fMgqLLnbVua2c_fZozdhveDg6P9od--1uAXUYwTX1AsVWo9XhwxTbFmYVLEhqbUBAWTgQwjQ6ix-MwY6xjHESssdihkKmOFhbaw8A6slrNS3wNkNBOx9bRCSRlJFE4KZqTGLr0rFKIgHjzqxMarhpSDN_TLIbdbzOst9uBJLdC-h5h_dllsjPIPk0M-ipPx2_xdxjMPtjuJc2tbLmAiSj1bnHEWuDA1wR7cbRRhOVviqNjCwIOdWt5_XwbPX-7Xjc1_77oN63k24K9fTUZbcLXJUHEJwvdh9Xy-0A9g5UwtHtbq_hulxv_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stage+1+testing+and+pharmacodynamic+evaluation+of+the+HSP90+inhibitor+alvespimycin+%2817%E2%80%90DMAG%2C+KOS%E2%80%901022%29+by+the+pediatric+preclinical+testing+program&rft.jtitle=Pediatric+blood+%26+cancer&rft.au=Smith%2C+Malcolm+A.&rft.au=Morton%2C+Christopher+L.&rft.au=Phelps%2C+Doris+A.&rft.au=Kolb%2C+E.+Anders&rft.date=2008-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1545-5009&rft.eissn=1545-5017&rft.volume=51&rft.issue=1&rft.spage=34&rft.epage=41&rft_id=info:doi/10.1002%2Fpbc.21508&rft.externalDBID=10.1002%252Fpbc.21508&rft.externalDocID=PBC21508 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5009&client=summon |