Stage 1 testing and pharmacodynamic evaluation of the HSP90 inhibitor alvespimycin (17-DMAG, KOS-1022) by the pediatric preclinical testing program

Background Alvespimycin (17‐DMAG, KOS‐1022), a potent small‐molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because of the multiple Hsp90 client proteins involved in cancer cell growth and survival. Procedures Alvespimycin was tested against the in vitro...

Full description

Saved in:
Bibliographic Details
Published in:Pediatric blood & cancer Vol. 51; no. 1; pp. 34 - 41
Main Authors: Smith, Malcolm A., Morton, Christopher L., Phelps, Doris A., Kolb, E. Anders, Lock, Richard, Carol, Hernan, Reynolds, C. Patrick, Maris, John M., Keir, Stephen T., Wu, Jianrong, Houghton, Peter J.
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01-07-2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Alvespimycin (17‐DMAG, KOS‐1022), a potent small‐molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because of the multiple Hsp90 client proteins involved in cancer cell growth and survival. Procedures Alvespimycin was tested against the in vitro panel of the Pediatric Preclinical Testing Program (PPTP) at concentrations from 1 nM to 10 µM and was tested against the PPTP's in vivo tumor panels by intraperitoneal administration using a 50 mg/kg BID twice weekly × 6 weeks dose and schedule. Hsp70 induction in tumor and liver tissue was used as a pharmacodynamic measure of Hsp90 inhibition and stress response induction. Results Alvespimycin had a median IC50 of 68 nM against the PPTP's in vitro panel, with a trend for lower IC50 values for the rhabdomyosarcoma panel (median IC50 32 nM) and for higher IC50 values for the neuroblastoma panel (median IC50 380 nM). Using the time to event activity measure, alvespimycin had intermediate or high activity against 4 of 28 evaluable solid tumor xenografts, including 3 of 4 alveolar rhabdomyosarcoma xenografts (one with a partial response). Hsp70 induction was observed in tumor tissue from both responding and non‐responding xenografts. Conclusions Alvespimycin demonstrated little in vivo antitumor activity against most of the PPTP's preclinical models. The greatest drug effect was observed for the alveolar rhabdomyosarcoma xenografts in the rhabdomyosarcoma panel. Hsp70 induction was observed in responding and non‐responding xenografts, suggesting that tumor‐specific events subsequent to HSP90 inhibition are primary determinants of antitumor activity. Pediatr Blood Cancer 2008;51:34–41. © 2008 Wiley‐Liss, Inc.
AbstractList BACKGROUNDAlvespimycin (17-DMAG, KOS-1022), a potent small-molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because of the multiple Hsp90 client proteins involved in cancer cell growth and survival.PROCEDURESAlvespimycin was tested against the in vitro panel of the Pediatric Preclinical Testing Program (PPTP) at concentrations from 1 nM to 10 microM and was tested against the PPTP's in vivo tumor panels by intraperitoneal administration using a 50 mg/kg BID twice weekly x 6 weeks dose and schedule. Hsp70 induction in tumor and liver tissue was used as a pharmacodynamic measure of Hsp90 inhibition and stress response induction.RESULTSAlvespimycin had a median IC(50) of 68 nM against the PPTP's in vitro panel, with a trend for lower IC(50) values for the rhabdomyosarcoma panel (median IC(50) 32 nM) and for higher IC(50) values for the neuroblastoma panel (median IC(50) 380 nM). Using the time to event activity measure, alvespimycin had intermediate or high activity against 4 of 28 evaluable solid tumor xenografts, including 3 of 4 alveolar rhabdomyosarcoma xenografts (one with a partial response). Hsp70 induction was observed in tumor tissue from both responding and non-responding xenografts.CONCLUSIONSAlvespimycin demonstrated little in vivo antitumor activity against most of the PPTP's preclinical models. The greatest drug effect was observed for the alveolar rhabdomyosarcoma xenografts in the rhabdomyosarcoma panel. Hsp70 induction was observed in responding and non-responding xenografts, suggesting that tumor-specific events subsequent to HSP90 inhibition are primary determinants of antitumor activity.
Alvespimycin (17-DMAG, KOS-1022), a potent small-molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because of the multiple Hsp90 client proteins involved in cancer cell growth and survival. Alvespimycin was tested against the in vitro panel of the Pediatric Preclinical Testing Program (PPTP) at concentrations from 1 nM to 10 microM and was tested against the PPTP's in vivo tumor panels by intraperitoneal administration using a 50 mg/kg BID twice weekly x 6 weeks dose and schedule. Hsp70 induction in tumor and liver tissue was used as a pharmacodynamic measure of Hsp90 inhibition and stress response induction. Alvespimycin had a median IC(50) of 68 nM against the PPTP's in vitro panel, with a trend for lower IC(50) values for the rhabdomyosarcoma panel (median IC(50) 32 nM) and for higher IC(50) values for the neuroblastoma panel (median IC(50) 380 nM). Using the time to event activity measure, alvespimycin had intermediate or high activity against 4 of 28 evaluable solid tumor xenografts, including 3 of 4 alveolar rhabdomyosarcoma xenografts (one with a partial response). Hsp70 induction was observed in tumor tissue from both responding and non-responding xenografts. Alvespimycin demonstrated little in vivo antitumor activity against most of the PPTP's preclinical models. The greatest drug effect was observed for the alveolar rhabdomyosarcoma xenografts in the rhabdomyosarcoma panel. Hsp70 induction was observed in responding and non-responding xenografts, suggesting that tumor-specific events subsequent to HSP90 inhibition are primary determinants of antitumor activity.
Background Alvespimycin (17‐DMAG, KOS‐1022), a potent small‐molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because of the multiple Hsp90 client proteins involved in cancer cell growth and survival. Procedures Alvespimycin was tested against the in vitro panel of the Pediatric Preclinical Testing Program (PPTP) at concentrations from 1 nM to 10 µM and was tested against the PPTP's in vivo tumor panels by intraperitoneal administration using a 50 mg/kg BID twice weekly × 6 weeks dose and schedule. Hsp70 induction in tumor and liver tissue was used as a pharmacodynamic measure of Hsp90 inhibition and stress response induction. Results Alvespimycin had a median IC50 of 68 nM against the PPTP's in vitro panel, with a trend for lower IC50 values for the rhabdomyosarcoma panel (median IC50 32 nM) and for higher IC50 values for the neuroblastoma panel (median IC50 380 nM). Using the time to event activity measure, alvespimycin had intermediate or high activity against 4 of 28 evaluable solid tumor xenografts, including 3 of 4 alveolar rhabdomyosarcoma xenografts (one with a partial response). Hsp70 induction was observed in tumor tissue from both responding and non‐responding xenografts. Conclusions Alvespimycin demonstrated little in vivo antitumor activity against most of the PPTP's preclinical models. The greatest drug effect was observed for the alveolar rhabdomyosarcoma xenografts in the rhabdomyosarcoma panel. Hsp70 induction was observed in responding and non‐responding xenografts, suggesting that tumor‐specific events subsequent to HSP90 inhibition are primary determinants of antitumor activity. Pediatr Blood Cancer 2008;51:34–41. © 2008 Wiley‐Liss, Inc.
Author Lock, Richard
Morton, Christopher L.
Keir, Stephen T.
Wu, Jianrong
Kolb, E. Anders
Maris, John M.
Phelps, Doris A.
Houghton, Peter J.
Reynolds, C. Patrick
Carol, Hernan
Smith, Malcolm A.
Author_xml – sequence: 1
  givenname: Malcolm A.
  surname: Smith
  fullname: Smith, Malcolm A.
  organization: Cancer Therapy Evaluation Program, NCI, Bethesda, Maryland
– sequence: 2
  givenname: Christopher L.
  surname: Morton
  fullname: Morton, Christopher L.
  organization: St. Jude Children's Research Hospital, Memphis, Tennessee
– sequence: 3
  givenname: Doris A.
  surname: Phelps
  fullname: Phelps, Doris A.
  organization: St. Jude Children's Research Hospital, Memphis, Tennessee
– sequence: 4
  givenname: E. Anders
  surname: Kolb
  fullname: Kolb, E. Anders
  organization: The Children's Hospital at Montefiore, Bronx, New York
– sequence: 5
  givenname: Richard
  surname: Lock
  fullname: Lock, Richard
  organization: Children's Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
– sequence: 6
  givenname: Hernan
  surname: Carol
  fullname: Carol, Hernan
  organization: Children's Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
– sequence: 7
  givenname: C. Patrick
  surname: Reynolds
  fullname: Reynolds, C. Patrick
  organization: Children's Hospital of Los Angeles, Los Angeles, California
– sequence: 8
  givenname: John M.
  surname: Maris
  fullname: Maris, John M.
  organization: Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania
– sequence: 9
  givenname: Stephen T.
  surname: Keir
  fullname: Keir, Stephen T.
  organization: Duke University Medical Center, Durham, North Carolina
– sequence: 10
  givenname: Jianrong
  surname: Wu
  fullname: Wu, Jianrong
  organization: St. Jude Children's Research Hospital, Memphis, Tennessee
– sequence: 11
  givenname: Peter J.
  surname: Houghton
  fullname: Houghton, Peter J.
  email: peter.houghton@stjude.org
  organization: St. Jude Children's Research Hospital, Memphis, Tennessee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18260120$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1y0zAURjVMGfoDC16A0YqhM7jVtSzLXpYE0k5bGggMS40ky4moLRvJaevn4IUrmhBWrHQX5ztXc79DtOc6ZxB6DeQECElPe6VPUmCkeIYOgGUsYQT43m4m5T46DOFnRHPCihdoH4o4QUoO0O_FIJcGAx5MGKxbYukq3K-kb6XuqtHJ1mps7mSzloPtHO5qPKwMPl_MS4KtW1llh85j2dyZ0Nt21Nbhd8CT6fXZ7D2-vFkkQNL0GKvxKdebysrBR2fvjW6ss1o2u92975Zeti_R81o2wbzavkfo-6eP3ybnydXN7GJydpVomkORSAaqKiktgHLDwPC00HnNSlYTzRVRKa0zVjPI6poDzSnXGTCtSpVXIA3k9Ai93Xjj3l_r-AfR2qBN00hnunUQnPCUpxlE8HgDat-F4E0tem9b6UcBRPxpQMQGxFMDkX2zla5Va6p_5PbkETjdAPe2MeP_TWL-YfJXmWwSNgzmYZeQ_lbknHImfnyeicu8uP4y_zoVU_oIsWOfgg
CitedBy_id crossref_primary_10_59786_bmtj_122
crossref_primary_10_1002_pbc_24724
crossref_primary_10_1016_j_biopha_2018_03_102
crossref_primary_10_1016_j_ctrv_2010_02_007
crossref_primary_10_1158_0008_5472_CAN_08_3723
crossref_primary_10_1002_pbc_23154
crossref_primary_10_1007_s10147_012_0417_5
crossref_primary_10_1517_17460441_2013_817988
crossref_primary_10_1038_leu_2016_192
crossref_primary_10_1038_onc_2013_129
crossref_primary_10_1016_j_isci_2020_101996
crossref_primary_10_1186_1471_2407_12_233
crossref_primary_10_1016_j_bbacli_2014_06_003
crossref_primary_10_1093_hmg_ddn419
crossref_primary_10_3390_ijms22158306
crossref_primary_10_1007_s13277_013_1422_7
crossref_primary_10_1517_17460440903380430
crossref_primary_10_1038_s41598_017_18061_y
crossref_primary_10_1111_j_1365_2141_2010_08282_x
crossref_primary_10_1002_pbc_24451
crossref_primary_10_1007_s00259_009_1158_1
crossref_primary_10_1073_pnas_0902880106
Cites_doi 10.1200/jco.2006.24.18_suppl.3021
10.1200/jco.2006.24.18_suppl.9018
10.1158/1078-0432.CCR-05-1225
10.1074/jbc.M211600200
10.1007/s00280-001-0380-8
10.1158/1078-0432.CCR-05-0740
10.2174/156802606777812068
10.1158/0008-5472.CAN-05-2632
10.1002/ijc.10820
10.1158/1078-0432.CCR-06-1178
10.1182/blood-2003-08-2911
10.1038/sj.onc.1205184
10.1007/s00280-004-0939-2
10.1200/jco.2006.24.18_suppl.9022
10.1158/1535-7163.551.3.5
10.1073/pnas.0608372103
10.1016/S1359-6349(06)70575-4
10.1002/pbc.21214
10.1200/jco.2007.25.18_suppl.3566
10.1158/1078-0432.CCR-03-0795
10.1016/S1359-6349(06)70318-4
10.1158/1078-0432.CCR-06-2468
10.1182/blood.V108.11.1961.1961
10.1182/blood.V108.11.406.406
10.1007/s00280-004-0865-3
10.1158/1078-0432.CCR-07-0632
10.1182/blood-2002-05-1361
10.1158/1535-7163.MCT-06-0646
10.1158/1078-0432.CCR-06-1015
10.1002/pbc.21078
10.1053/j.seminoncol.2006.04.001
10.1126/science.1142210
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
(c) 2008 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
– notice: (c) 2008 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/pbc.21508
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1545-5017
EndPage 41
ExternalDocumentID 10_1002_pbc_21508
18260120
PBC21508
ark_67375_WNG_K68MQPRD_D
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Cancer Institute
  funderid: NO1‐CM‐42216; CA21765; CA108786
– fundername: NCI NIH HHS
  grantid: CA108786
– fundername: NCI NIH HHS
  grantid: N01-CM-42216
– fundername: NCI NIH HHS
  grantid: CA21765
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
XV2
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c3618-a51bd9338137e51e728c6f595f0c7b0b23f45f514ff713637c415cb9b6d1ae163
IEDL.DBID 33P
ISSN 1545-5009
IngestDate Fri Aug 16 05:49:53 EDT 2024
Fri Nov 22 00:27:05 EST 2024
Sat Sep 28 08:40:26 EDT 2024
Sat Aug 24 01:08:50 EDT 2024
Wed Oct 30 09:54:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License (c) 2008 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3618-a51bd9338137e51e728c6f595f0c7b0b23f45f514ff713637c415cb9b6d1ae163
Notes National Cancer Institute - No. NO1-CM-42216; No. CA21765; No. CA108786
istex:8066915C1825201C6F23D1BFFF0B8763AF531F76
ark:/67375/WNG-K68MQPRD-D
ArticleID:PBC21508
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18260120
PQID 70727241
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_70727241
crossref_primary_10_1002_pbc_21508
pubmed_primary_18260120
wiley_primary_10_1002_pbc_21508_PBC21508
istex_primary_ark_67375_WNG_K68MQPRD_D
PublicationCentury 2000
PublicationDate 2008-07
July 2008
2008-Jul
2008-07-00
20080701
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Pediatric blood & cancer
PublicationTitleAlternate Pediatr. Blood Cancer
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Houghton PJ, Morton CL, Kolb EA, et al. Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 50: 37-45.
Kang J, Kamal A, Burrows FJ, et al. Inhibition of neuroblastoma xenograft growth by Hsp90 inhibitors. Anticancer Res 2006; 26: 1903-1908.
Robles AI, Wright MH, Gandhi B, et al. Schedule-dependent synergy between the heat shock protein 90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin and doxorubicin restores apoptosis to p53-mutant lymphoma cell lines. Clin Cancer Res 2006; 12: 6547-6556.
Weigel BJ, Blaney SM, Kersey J, et al., A phase I study of 17-AAG in relapsed/refractory pediatric patients with solid tumors: A Children's Oncology Group Study. J Clin Oncol 2006; 24: Abstr #9018.
Kurmasheva RT, Harwood FC, Houghton PJ. Differential regulation of vascular endothelial growth factor by Akt and mammalian target of rapamycin inhibitors in cell lines derived from childhood solid tumors. Mol Cancer Ther 2007; 6: 1620-1628.
Basso AD, Solit DB, Munster PN, et al. Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress H ER2. Oncogene 2002; 21: 1159-1166.
Hollingshead M, Alley M, Burger AM, et al. In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother Pharmacol 2005; 56: 115-125.
Demetri GD, George S, Morgan JA, et al. Overcoming resistance to tyrosine kinase inhibitors (TKIs) through inhibition of Heat Shock Protein 90 (Hsp90) chaperone function in patients with metastatic GIST: Results of a Phase I Trial of ipi-504, a water-soluble Hsp90 inhibitor. Eur J Cancer Suppl 2006; 4: 173.
Richardson P, Chanan-Khan AA, Lonial S, et al. A multicenter phase 1 clinical trial of tanespimycin (KOS-953) + Bortezomib (BZ): Encouraging activity and manageable toxicity in heavily pre-treated patients with relapsed refractory multiple myeloma (MM). Blood 2006; 108: Abstr #406.
Wetzler M, Earp JC, Brady MT, et al. Synergism between arsenic trioxide and heat shock protein 90 inhibitors on signal transducer and activator of transcription protein 3 activity-Pharmacodynamic drug-drug interaction modeling. Clin Cancer Res 2007; 13: 2261-2270.
Modi S, Stopeck AT, Gordon MS, et al. Phase 1 dose escalating trial of KOS-953 (heat shock protein 90 inhibitor) and trastuzumab (T). Proc Am Assoc Cancer Res 2006; 47: Abstr #2919.
Cullinan SB, Whitesell L. Heat shock protein 90: A unique chemotherapeutic target. Semin Oncol 2006; 33: 457-465.
Kaur G, Belotti D, Burger AM, et al. Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: An orally bioavailable heat shock protein 90 modulator. Clin Cancer Res 2004; 10: 4813-4821.
Camphausen K, Tofilon PJ. Inhibition of Hsp90: A multitarget approach to radiosensitization. Clin Cancer Res 2007; 13: 4326-4330.
Bagatell R, Gore L, Egorin M, et al. Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of 17-Allylamino-17-demethoxygeldanamycin (17AAG) in children with solid tumors. J Clin Oncol 2006; 24: Abstr #9022.
da Rocha Dias S, Friedlos F, Light Y, et al. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res 2005; 65: 10686-10691.
Nowakowski GS, McCollum AK, Ames MM, et al. A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin Cancer Res 2006; 12: 6087-6093.
Smith MA, Maris JM, Keir ST, et al. Pediatric preclinical testing program (PPTP) evaluation of the Bcl-2 inhibitor ABT-263. Proc Annu Meet Am Assoc Cancer Res 2007; Abstr #4951.
Eiseman JL, Lan J, Lagattuta TF, et al. Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother Pharmacol 2005; 55: 21-32.
Egorin MJ, Belani CP, Remick SC, et al. Phase I, pharmacokinetic (PK), & pharmacodynamic (PD) study of 17-dimethylaminoethylamino-17-demethoxygeldanamycin, (17DMAG, NSC 707545) in patients with advanced solid tumors. J Clin Oncol 2006; 24: Abstr #3021.
Egorin MJ, Lagattuta TF, Hamburger DR, et al. Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats. Cancer Chemother Pharmacol 2002; 49: 7-19.
Sydor JR, Normant E, Pien CS, et al. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci USA 2006; 103: 17408-17413.
Calabrese C, Frank A, Maclean K, et al. Medulloblastoma sensitivity to 17-allylamino-17-demethoxygeldanamycin requires MEK/ERKM. J Biol Chem 2003; 278: 24951-24959.
Murgo AJ, Kummar S, Gardner ER, et al. Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) administered twice weekly. J Clin Oncol 2007; 25: Abstr #3566.
Kim S, Kang J, Hu W, et al. Geldanamycin decreases Raf-1 and Akt levels and induces apoptosis in neuroblastomas. Int J Cancer 2003; 103: 352-359.
Houghton PJ, Maris JM, Friedman HS, et al. Evaluation of Bortezomib against childhood tumor models by the Pediatric Preclinical Testing Program (PPTP). Clin Cancer Res 2005; 11: Abstr #A96.
Mimnaugh EG, Xu W, Vos M, et al. Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 2004; 3: 551-566.
Keshelava N, Frgala T, Krejsa J, et al. DIMSCAN: A microcomputer fluorescence-based cytotoxicity assay for preclinical testing of combination chemotherapy. Methods Mol Med 2005; 110: 139-153.
Friedman HS, Colvin OM, Skapek SX, et al. Experimental chemotherapy of human medulloblastoma cell lines and transplantable xenografts with bifunctional alkylating agents. Cancer Res 1988; 48: 4189-4195.
Lancet J, Baer MR, Gojo I, et al. Phase 1, pharmacokinetic (PK) and pharmacodynamic (PD) study of intravenous alvespimycin (KOS-1022) in patients with refractory hematological malignancies. Blood 2006; 108: Abstr #1961.
Torres EM, Sokolsky T, Tucker CM, et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 2007; 317: 916-924.
Graham C, Tucker C, Creech J, et al. Evaluation of the antitumor efficacy, pharmacokinetics, and pharmacodynamics of the histone deacetylase inhibitor depsipeptide in childhood cancer models in vivo. Clin Cancer Res 2006; 12: 223-234.
Houghton PJ, Maris JM, Friedman HS, et al. Pediatric preclinical testing program (PPTP) evaluation of the KSP inhibitor Ispinesib (SB-715992). Eur J Cancer Suppl 2006; 4: 98.
Gorre ME, Ellwood-Yen K, Chiosis G, et al. BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 2002; 100: 3041-3044.
Bonvini P, Gastaldi T, Falini B, et al. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: Down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin. Cancer Res 2002; 62: 1559-1566.
Solit DB, Rosen N. Hsp90: A novel target for cancer therapy. Curr Top Med Chem 2006; 6: 1205-1214.
Yao Q, Nishiuchi R, Li Q, et al. FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin Cancer Res 2003; 9: 4483-4493.
Liem NL, Papa RA, Milross CG, et al. Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood 2004; 103: 3905-3914.
Houghton PJ, Morton CL, Tucker C, et al. The pediatric preclinical testing program: Description of models and early testing results. Pediatr Blood Cancer 2007; 49: 928-940.
Peterson JK, Tucker C, Favours E, et al. In vivo evaluation of ixabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models. Clin Cancer Res 2005; 11: 6950-6958.
2004; 103
2005; 110
2006; 12
2006; 33
2004; 3
2007
2006; 6
2005; 65
2006; 4
2008; 50
2003; 278
2007; 13
2004; 10
2002; 49
2007; 317
2006; 108
2006; 24
2002; 62
1988; 48
2002; 100
2002; 21
2006; 47
2003; 9
2006; 26
2007; 6
2003; 103
2005; 11
2005; 55
2005; 56
2007; 25
2006; 103
2007; 49
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
Kang J (e_1_2_7_14_2) 2006; 26
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
Weigel BJ (e_1_2_7_41_2) 2006; 24
e_1_2_7_16_2
Friedman HS (e_1_2_7_17_2) 1988; 48
Richardson P (e_1_2_7_32_2) 2006; 108
e_1_2_7_13_2
Modi S (e_1_2_7_33_2) 2006; 47
e_1_2_7_12_2
e_1_2_7_10_2
Bonvini P (e_1_2_7_4_2) 2002; 62
e_1_2_7_27_2
Murgo AJ (e_1_2_7_28_2) 2007; 25
Yao Q (e_1_2_7_11_2) 2003; 9
Bagatell R (e_1_2_7_40_2) 2006; 24
Houghton PJ (e_1_2_7_24_2) 2005; 11
Lancet J (e_1_2_7_29_2) 2006; 108
e_1_2_7_25_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_22_2
e_1_2_7_21_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
Keshelava N (e_1_2_7_15_2) 2005; 110
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
Egorin MJ (e_1_2_7_31_2) 2006; 24
Smith MA (e_1_2_7_26_2) 2007
References_xml – volume: 21
  start-page: 1159
  year: 2002
  end-page: 1166
  article-title: Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress H ER2
  publication-title: Oncogene
– volume: 47
  year: 2006
  article-title: Phase 1 dose escalating trial of KOS‐953 (heat shock protein 90 inhibitor) and trastuzumab (T)
  publication-title: Proc Am Assoc Cancer Res
– volume: 9
  start-page: 4483
  year: 2003
  end-page: 4493
  article-title: FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction‐associated kinases
  publication-title: Clin Cancer Res
– volume: 6
  start-page: 1205
  year: 2006
  end-page: 1214
  article-title: Hsp90: A novel target for cancer therapy
  publication-title: Curr Top Med Chem
– volume: 48
  start-page: 4189
  year: 1988
  end-page: 4195
  article-title: Experimental chemotherapy of human medulloblastoma cell lines and transplantable xenografts with bifunctional alkylating agents
  publication-title: Cancer Res
– volume: 103
  start-page: 3905
  year: 2004
  end-page: 3914
  article-title: Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies
  publication-title: Blood
– volume: 13
  start-page: 4326
  year: 2007
  end-page: 4330
  article-title: Inhibition of Hsp90: A multitarget approach to radiosensitization
  publication-title: Clin Cancer Res
– volume: 33
  start-page: 457
  year: 2006
  end-page: 465
  article-title: Heat shock protein 90: A unique chemotherapeutic target
  publication-title: Semin Oncol
– volume: 317
  start-page: 916
  year: 2007
  end-page: 924
  article-title: Effects of aneuploidy on cellular physiology and cell division in haploid yeast
  publication-title: Science
– volume: 55
  start-page: 21
  year: 2005
  end-page: 32
  article-title: Pharmacokinetics and pharmacodynamics of 17‐demethoxy 17‐[[(2‐dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B‐17 SCID mice bearing MDA‐MB‐231 human breast cancer xenografts
  publication-title: Cancer Chemother Pharmacol
– volume: 49
  start-page: 928
  year: 2007
  end-page: 940
  article-title: The pediatric preclinical testing program: Description of models and early testing results
  publication-title: Pediatr Blood Cancer
– volume: 10
  start-page: 4813
  year: 2004
  end-page: 4821
  article-title: Antiangiogenic properties of 17‐(dimethylaminoethylamino)‐17‐demethoxygeldanamycin: An orally bioavailable heat shock protein 90 modulator
  publication-title: Clin Cancer Res
– volume: 100
  start-page: 3041
  year: 2002
  end-page: 3044
  article-title: BCR‐ABL point mutants isolated from patients with imatinib mesylate‐resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR‐ABL chaperone heat shock protein 90
  publication-title: Blood
– volume: 6
  start-page: 1620
  year: 2007
  end-page: 1628
  article-title: Differential regulation of vascular endothelial growth factor by Akt and mammalian target of rapamycin inhibitors in cell lines derived from childhood solid tumors
  publication-title: Mol Cancer Ther
– volume: 62
  start-page: 1559
  year: 2002
  end-page: 1566
  article-title: Nucleophosmin‐anaplastic lymphoma kinase (NPM‐ALK), a novel Hsp90‐client tyrosine kinase: Down‐regulation of NPM‐ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17‐allylamino,17‐demethoxygeldanamycin
  publication-title: Cancer Res
– volume: 3
  start-page: 551
  year: 2004
  end-page: 566
  article-title: Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum‐derived cytosolic vacuolization, and enhances antitumor activity
  publication-title: Mol Cancer Ther
– volume: 4
  start-page: 98
  year: 2006
  article-title: Pediatric preclinical testing program (PPTP) evaluation of the KSP inhibitor Ispinesib (SB‐715992)
  publication-title: Eur J Cancer Suppl
– volume: 11
  start-page: 6950
  year: 2005
  end-page: 6958
  article-title: In vivo evaluation of ixabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models
  publication-title: Clin Cancer Res
– volume: 103
  start-page: 17408
  year: 2006
  end-page: 17413
  article-title: Development of 17‐allylamino‐17‐demethoxygeldanamycin hydroquinone hydrochloride (IPI‐504), an anti‐cancer agent directed against Hsp90
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  year: 2005
  article-title: Evaluation of Bortezomib against childhood tumor models by the Pediatric Preclinical Testing Program (PPTP)
  publication-title: Clin Cancer Res
– volume: 65
  start-page: 10686
  year: 2005
  end-page: 10691
  article-title: Activated B‐RAF is an Hsp90 client protein that is targeted by the anticancer drug 17‐allylamino‐17‐demethoxygeldanamycin
  publication-title: Cancer Res
– volume: 56
  start-page: 115
  year: 2005
  end-page: 125
  article-title: In vivo antitumor efficacy of 17‐DMAG (17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin hydrochloride), a water‐soluble geldanamycin derivative
  publication-title: Cancer Chemother Pharmacol
– volume: 24
  year: 2006
  article-title: Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of 17‐Allylamino‐17‐demethoxygeldanamycin (17AAG) in children with solid tumors
  publication-title: J Clin Oncol
– volume: 108
  year: 2006
  article-title: A multicenter phase 1 clinical trial of tanespimycin (KOS‐953) + Bortezomib (BZ): Encouraging activity and manageable toxicity in heavily pre‐treated patients with relapsed refractory multiple myeloma (MM)
  publication-title: Blood
– volume: 50
  start-page: 37
  year: 2008
  end-page: 45
  article-title: Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program
  publication-title: Pediatr Blood Cancer
– volume: 25
  year: 2007
  article-title: Phase I trial of 17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin (17‐DMAG) administered twice weekly
  publication-title: J Clin Oncol
– volume: 110
  start-page: 139
  year: 2005
  end-page: 153
  article-title: DIMSCAN: A microcomputer fluorescence‐based cytotoxicity assay for preclinical testing of combination chemotherapy
  publication-title: Methods Mol Med
– volume: 12
  start-page: 6087
  year: 2006
  end-page: 6093
  article-title: A phase I trial of twice‐weekly 17‐allylamino‐demethoxy‐geldanamycin in patients with advanced cancer
  publication-title: Clin Cancer Res
– volume: 103
  start-page: 352
  year: 2003
  end-page: 359
  article-title: Geldanamycin decreases Raf‐1 and Akt levels and induces apoptosis in neuroblastomas
  publication-title: Int J Cancer
– volume: 108
  year: 2006
  article-title: Phase 1, pharmacokinetic (PK) and pharmacodynamic (PD) study of intravenous alvespimycin (KOS‐1022) in patients with refractory hematological malignancies
  publication-title: Blood
– volume: 49
  start-page: 7
  year: 2002
  end-page: 19
  article-title: Pharmacokinetics, tissue distribution, and metabolism of 17‐(dimethylaminoethylamino)‐17‐demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats
  publication-title: Cancer Chemother Pharmacol
– volume: 24
  year: 2006
  article-title: Phase I, pharmacokinetic (PK), & pharmacodynamic (PD) study of 17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin, (17DMAG, NSC 707545) in patients with advanced solid tumors
  publication-title: J Clin Oncol
– volume: 12
  start-page: 6547
  year: 2006
  end-page: 6556
  article-title: Schedule‐dependent synergy between the heat shock protein 90 inhibitor 17‐(dimethylaminoethylamino)‐17‐demethoxygeldanamycin and doxorubicin restores apoptosis to p53‐mutant lymphoma cell lines
  publication-title: Clin Cancer Res
– volume: 26
  start-page: 1903
  year: 2006
  end-page: 1908
  article-title: Inhibition of neuroblastoma xenograft growth by Hsp90 inhibitors
  publication-title: Anticancer Res
– volume: 24
  year: 2006
  article-title: A phase I study of 17‐AAG in relapsed/refractory pediatric patients with solid tumors: A Children's Oncology Group Study
  publication-title: J Clin Oncol
– year: 2007
  article-title: Pediatric preclinical testing program (PPTP) evaluation of the Bcl‐2 inhibitor ABT‐263
  publication-title: Proc Annu Meet Am Assoc Cancer Res
– volume: 12
  start-page: 223
  year: 2006
  end-page: 234
  article-title: Evaluation of the antitumor efficacy, pharmacokinetics, and pharmacodynamics of the histone deacetylase inhibitor depsipeptide in childhood cancer models in vivo
  publication-title: Clin Cancer Res
– volume: 4
  start-page: 173
  year: 2006
  article-title: Overcoming resistance to tyrosine kinase inhibitors (TKIs) through inhibition of Heat Shock Protein 90 (Hsp90) chaperone function in patients with metastatic GIST: Results of a Phase I Trial of ipi‐504, a water‐soluble Hsp90 inhibitor
  publication-title: Eur J Cancer Suppl
– volume: 278
  start-page: 24951
  year: 2003
  end-page: 24959
  article-title: Medulloblastoma sensitivity to 17‐allylamino‐17‐demethoxygeldanamycin requires MEK/ERKM
  publication-title: J Biol Chem
– volume: 13
  start-page: 2261
  year: 2007
  end-page: 2270
  article-title: Synergism between arsenic trioxide and heat shock protein 90 inhibitors on signal transducer and activator of transcription protein 3 activity—Pharmacodynamic drug‐drug interaction modeling
  publication-title: Clin Cancer Res
– volume: 24
  year: 2006
  ident: e_1_2_7_31_2
  article-title: Phase I, pharmacokinetic (PK), & pharmacodynamic (PD) study of 17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin, (17DMAG, NSC 707545) in patients with advanced solid tumors
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2006.24.18_suppl.3021
  contributor:
    fullname: Egorin MJ
– volume: 24
  year: 2006
  ident: e_1_2_7_41_2
  article-title: A phase I study of 17‐AAG in relapsed/refractory pediatric patients with solid tumors: A Children's Oncology Group Study
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2006.24.18_suppl.9018
  contributor:
    fullname: Weigel BJ
– ident: e_1_2_7_18_2
  doi: 10.1158/1078-0432.CCR-05-1225
– ident: e_1_2_7_12_2
  doi: 10.1074/jbc.M211600200
– ident: e_1_2_7_30_2
  doi: 10.1007/s00280-001-0380-8
– ident: e_1_2_7_19_2
  doi: 10.1158/1078-0432.CCR-05-0740
– volume: 9
  start-page: 4483
  year: 2003
  ident: e_1_2_7_11_2
  article-title: FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction‐associated kinases
  publication-title: Clin Cancer Res
  contributor:
    fullname: Yao Q
– ident: e_1_2_7_6_2
  doi: 10.2174/156802606777812068
– ident: e_1_2_7_7_2
  doi: 10.1158/0008-5472.CAN-05-2632
– ident: e_1_2_7_13_2
  doi: 10.1002/ijc.10820
– ident: e_1_2_7_38_2
  doi: 10.1158/1078-0432.CCR-06-1178
– ident: e_1_2_7_20_2
  doi: 10.1182/blood-2003-08-2911
– ident: e_1_2_7_5_2
  doi: 10.1038/sj.onc.1205184
– ident: e_1_2_7_10_2
  doi: 10.1007/s00280-004-0939-2
– volume: 24
  year: 2006
  ident: e_1_2_7_40_2
  article-title: Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of 17‐Allylamino‐17‐demethoxygeldanamycin (17AAG) in children with solid tumors
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2006.24.18_suppl.9022
  contributor:
    fullname: Bagatell R
– ident: e_1_2_7_36_2
  doi: 10.1158/1535-7163.551.3.5
– ident: e_1_2_7_34_2
  doi: 10.1073/pnas.0608372103
– ident: e_1_2_7_35_2
  doi: 10.1016/S1359-6349(06)70575-4
– volume: 110
  start-page: 139
  year: 2005
  ident: e_1_2_7_15_2
  article-title: DIMSCAN: A microcomputer fluorescence‐based cytotoxicity assay for preclinical testing of combination chemotherapy
  publication-title: Methods Mol Med
  contributor:
    fullname: Keshelava N
– ident: e_1_2_7_16_2
  doi: 10.1002/pbc.21214
– volume: 47
  year: 2006
  ident: e_1_2_7_33_2
  article-title: Phase 1 dose escalating trial of KOS‐953 (heat shock protein 90 inhibitor) and trastuzumab (T)
  publication-title: Proc Am Assoc Cancer Res
  contributor:
    fullname: Modi S
– volume: 11
  year: 2005
  ident: e_1_2_7_24_2
  article-title: Evaluation of Bortezomib against childhood tumor models by the Pediatric Preclinical Testing Program (PPTP)
  publication-title: Clin Cancer Res
  contributor:
    fullname: Houghton PJ
– volume: 25
  year: 2007
  ident: e_1_2_7_28_2
  article-title: Phase I trial of 17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin (17‐DMAG) administered twice weekly
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2007.25.18_suppl.3566
  contributor:
    fullname: Murgo AJ
– ident: e_1_2_7_9_2
  doi: 10.1158/1078-0432.CCR-03-0795
– ident: e_1_2_7_25_2
  doi: 10.1016/S1359-6349(06)70318-4
– ident: e_1_2_7_37_2
  doi: 10.1158/1078-0432.CCR-06-2468
– volume: 108
  year: 2006
  ident: e_1_2_7_29_2
  article-title: Phase 1, pharmacokinetic (PK) and pharmacodynamic (PD) study of intravenous alvespimycin (KOS‐1022) in patients with refractory hematological malignancies
  publication-title: Blood
  doi: 10.1182/blood.V108.11.1961.1961
  contributor:
    fullname: Lancet J
– volume: 108
  year: 2006
  ident: e_1_2_7_32_2
  article-title: A multicenter phase 1 clinical trial of tanespimycin (KOS‐953) + Bortezomib (BZ): Encouraging activity and manageable toxicity in heavily pre‐treated patients with relapsed refractory multiple myeloma (MM)
  publication-title: Blood
  doi: 10.1182/blood.V108.11.406.406
  contributor:
    fullname: Richardson P
– ident: e_1_2_7_27_2
  doi: 10.1007/s00280-004-0865-3
– year: 2007
  ident: e_1_2_7_26_2
  article-title: Pediatric preclinical testing program (PPTP) evaluation of the Bcl‐2 inhibitor ABT‐263
  publication-title: Proc Annu Meet Am Assoc Cancer Res
  contributor:
    fullname: Smith MA
– ident: e_1_2_7_39_2
  doi: 10.1158/1078-0432.CCR-07-0632
– ident: e_1_2_7_3_2
  doi: 10.1182/blood-2002-05-1361
– volume: 26
  start-page: 1903
  year: 2006
  ident: e_1_2_7_14_2
  article-title: Inhibition of neuroblastoma xenograft growth by Hsp90 inhibitors
  publication-title: Anticancer Res
  contributor:
    fullname: Kang J
– volume: 48
  start-page: 4189
  year: 1988
  ident: e_1_2_7_17_2
  article-title: Experimental chemotherapy of human medulloblastoma cell lines and transplantable xenografts with bifunctional alkylating agents
  publication-title: Cancer Res
  contributor:
    fullname: Friedman HS
– ident: e_1_2_7_22_2
  doi: 10.1158/1535-7163.MCT-06-0646
– ident: e_1_2_7_23_2
  doi: 10.1158/1078-0432.CCR-06-1015
– ident: e_1_2_7_21_2
  doi: 10.1002/pbc.21078
– ident: e_1_2_7_2_2
  doi: 10.1053/j.seminoncol.2006.04.001
– volume: 62
  start-page: 1559
  year: 2002
  ident: e_1_2_7_4_2
  article-title: Nucleophosmin‐anaplastic lymphoma kinase (NPM‐ALK), a novel Hsp90‐client tyrosine kinase: Down‐regulation of NPM‐ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17‐allylamino,17‐demethoxygeldanamycin
  publication-title: Cancer Res
  contributor:
    fullname: Bonvini P
– ident: e_1_2_7_8_2
  doi: 10.1126/science.1142210
SSID ssj0026058
Score 2.0377913
Snippet Background Alvespimycin (17‐DMAG, KOS‐1022), a potent small‐molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent...
Alvespimycin (17-DMAG, KOS-1022), a potent small-molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because of the...
BACKGROUNDAlvespimycin (17-DMAG, KOS-1022), a potent small-molecule inhibitor of the protein chaperone Hsp90, is being developed as an anticancer agent because...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 34
SubjectTerms alvespimycin
Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacokinetics
Antineoplastic Agents - pharmacology
Benzoquinones - pharmacokinetics
Benzoquinones - pharmacology
Benzoquinones - therapeutic use
Cell Line, Tumor
developmental therapeutics
Dose-Response Relationship, Drug
Drug Screening Assays, Antitumor
Female
HSP90 Heat-Shock Proteins - antagonists & inhibitors
Humans
Lactams, Macrocyclic - pharmacokinetics
Lactams, Macrocyclic - pharmacology
Lactams, Macrocyclic - therapeutic use
Mice
Mice, SCID
Neoplasms, Experimental - drug therapy
preclinical testing
Transplantation, Heterologous
Tumor Burden - drug effects
Title Stage 1 testing and pharmacodynamic evaluation of the HSP90 inhibitor alvespimycin (17-DMAG, KOS-1022) by the pediatric preclinical testing program
URI https://api.istex.fr/ark:/67375/WNG-K68MQPRD-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpbc.21508
https://www.ncbi.nlm.nih.gov/pubmed/18260120
https://search.proquest.com/docview/70727241
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIhLeUPKy0IIFYnQ2IljR5xKt-1K1ZaFBZWbZcd2W0Gz0W4X0Vt_Qm_8P34JY-exqgQSEjcf7NjyjMffZGY-I_TCOcIENyamRcbizNg8FkWWxM65TKnMAob1tcPDCd__IgbbnibnbVcL0_BD9D_c_MkI9tofcKXnG0vS0FqXb6hnMwf7C15CKN9Ix72z5cN9gSsVlsAASHSsQgnd6Edeuouu-W398SegeRm3hotn5-Z_LfkWWm3xJt5sFOQ2umKrO-j6qI2o30U_AW0eWkzwqafbqA6xqgyuWz5r0zxXj5eU4HjqMEBGPJyMiwQfV0fHGkzCDKtv333M_uQMvorXCf91fjEYbe6-xnvvJ9D2Dt8rrM_C2Lp7HQTXYG7bysx-_jZh7B76vLP9aWsYt481xGWaExErRrQpwOElKbeMWE5FmTtWMJeUXCeapi5jDuCZc-AX5ykvATqUutC5IcoCKryPVqppZR8i7CxXOThaVDOeCUNEyZ22xGd3UaXKLELPO7HJuuHkkA37MpWwxTJscYReBoH2PdTsq09i40we7O_KvVyMPow_DuQgQs86iUs4Wj5eoio7XcwlT3yUOiMRetAownI24ZnYaBKh9SDvvy9Djt9thcbav3d9hG40WSk-KfgxWjmdLewTdHVuFk-Djv8Gzbv9Ig
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RVgIu5Q3hVQshVKSGxo4dJxKX0m27aLvLwhbBzbITu1SUbLTtInrjJ3Dr_-svwXYeq0ogIXHzwS95xvY3npnPAM-NwSzlRRGSjLKQFjoJ04xGoTGGSkm1xbAud7g_4aPPaW_H0eS8bnNhan6I7sHN7Qx_XrsN7h6kNxesoZXKXxFHZ74EKzSxiugSOOJxZ245h59nS7WTYBZKtLxCEdnsml66jVbcwv74E9S8jFz91bN74_8mfRNWG8iJtmoduQVXdHkbrg4bp_odOLeA81AjjE4d40Z5iGRZoKqhtC7qH-vRghUcTQ2yqBH1J-MsQkfllyNlT4UZksffndv-25ntFa1jfvHzV2-4tbeBBu8mtuxsvpdInfm2VftBCKrsidskZ3bjNzFjd-Hj7s7Bdj9s_msI8zjBaSgZVkVmbV4cc82w5iTNE8MyZqKcq0iR2FBmLEIzxprGScxzix5ylamkwFJbYHgPlstpqR8AMprLxNpaRDFO0wKnOTdKYxfgRaTMaQDPWrmJqqblEDUBMxF2iYVf4gBeeIl2NeTsq4tj40x8Gu2JQZIO348_9EQvgLVW5MLuLucykaWezk8Ej5yjmuIA7teasBgtdWRsJApg3Qv879MQ4zfbvvDw36uuwbX-wXBf7L8dDR7B9TpIxcUIP4bl09lcP4Glk2L-1Cv8b8dHAVk
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RVqq4UP5JC9RCCBWJ0Dix40ScStPtomWXwBbBzbJju1TQbLTtInrjEbjxfjwJdv5WlUBC4uaDHVueGfubzMxngMfGYJowpfwwJdQnSsd-kpLAN8YQIYi2GNbVDg-nbPIxyQ4cTc6Lrham4Yfof7g5y6jPa2fglTK7S9LQShbPQ8dmvgJrxMJwR5wfRXnvbbl4X02WatdALZLoaIWCcLcfeukyWnP7-u1PSPMycK1vnsHGf635OlxrASfaazTkBlzR5U1YH7ch9Vvw08LNY40wOnd8G-UxEqVCVUtorZr36tGSExzNDLKYEQ2neRqgk_LTibRnwhyJL19d0P70wn4V7WD26_uPbLx3-AyN3kxt23l8T5G8qMdW3fMgqLLnbVua2c_fZozdhveDg6P9od--1uAXUYwTX1AsVWo9XhwxTbFmYVLEhqbUBAWTgQwjQ6ix-MwY6xjHESssdihkKmOFhbaw8A6slrNS3wNkNBOx9bRCSRlJFE4KZqTGLr0rFKIgHjzqxMarhpSDN_TLIbdbzOst9uBJLdC-h5h_dllsjPIPk0M-ipPx2_xdxjMPtjuJc2tbLmAiSj1bnHEWuDA1wR7cbRRhOVviqNjCwIOdWt5_XwbPX-7Xjc1_77oN63k24K9fTUZbcLXJUHEJwvdh9Xy-0A9g5UwtHtbq_hulxv_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stage+1+testing+and+pharmacodynamic+evaluation+of+the+HSP90+inhibitor+alvespimycin+%2817%E2%80%90DMAG%2C+KOS%E2%80%901022%29+by+the+pediatric+preclinical+testing+program&rft.jtitle=Pediatric+blood+%26+cancer&rft.au=Smith%2C+Malcolm+A.&rft.au=Morton%2C+Christopher+L.&rft.au=Phelps%2C+Doris+A.&rft.au=Kolb%2C+E.+Anders&rft.date=2008-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1545-5009&rft.eissn=1545-5017&rft.volume=51&rft.issue=1&rft.spage=34&rft.epage=41&rft_id=info:doi/10.1002%2Fpbc.21508&rft.externalDBID=10.1002%252Fpbc.21508&rft.externalDocID=PBC21508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5009&client=summon