Shuttling an Electron Spin through a Silicon Quantum Dot Array
Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which can help to alleviat...
Saved in:
Published in: | PRX quantum Vol. 4; no. 3; p. 030303 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Physical Society
01-07-2023
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which can help to alleviate the so-called wiring bottleneck. A promising method of achieving coherent links between distant spin qubits consists of shuttling the spin through an array of quantum dots. Here, we use a linear array of four tunnel-coupled quantum dots in a ^{28}Si/SiGe heterostructure to create a short quantum link. We move an electron spin through the quantum dot array by adjusting the electrochemical potential for each quantum dot sequentially. By pulsing the gates repeatedly, we shuttle an electron forward and backward through the array up to 250 times, which corresponds to a total distance of approximately 80μm. We make an estimate of the spin-flip probability per hop in these experiments and conclude that this is well below 0.01% per hop. |
---|---|
AbstractList | Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which can help to alleviate the so-called wiring bottleneck. A promising method of achieving coherent links between distant spin qubits consists of shuttling the spin through an array of quantum dots. Here, we use a linear array of four tunnel-coupled quantum dots in a ^{28}Si/SiGe heterostructure to create a short quantum link. We move an electron spin through the quantum dot array by adjusting the electrochemical potential for each quantum dot sequentially. By pulsing the gates repeatedly, we shuttle an electron forward and backward through the array up to 250 times, which corresponds to a total distance of approximately 80μm. We make an estimate of the spin-flip probability per hop in these experiments and conclude that this is well below 0.01% per hop. |
ArticleNumber | 030303 |
Author | Amitonov, S.V. Vandersypen, L.M.K. Rimbach-Russ, M. Scappucci, G. Zwerver, A.M.J. Mądzik, M.T. Sammak, A. de Snoo, S.L. |
Author_xml | – sequence: 1 givenname: A.M.J. orcidid: 0000-0002-2514-2529 surname: Zwerver fullname: Zwerver, A.M.J. – sequence: 2 givenname: S.V. orcidid: 0000-0002-3562-8426 surname: Amitonov fullname: Amitonov, S.V. – sequence: 3 givenname: S.L. orcidid: 0000-0003-4525-4023 surname: de Snoo fullname: de Snoo, S.L. – sequence: 4 givenname: M.T. orcidid: 0000-0003-4857-3257 surname: Mądzik fullname: Mądzik, M.T. – sequence: 5 givenname: M. orcidid: 0000-0001-9775-0323 surname: Rimbach-Russ fullname: Rimbach-Russ, M. – sequence: 6 givenname: A. orcidid: 0000-0002-9776-9099 surname: Sammak fullname: Sammak, A. – sequence: 7 givenname: G. orcidid: 0000-0003-2512-0079 surname: Scappucci fullname: Scappucci, G. – sequence: 8 givenname: L.M.K. orcidid: 0000-0003-4346-7877 surname: Vandersypen fullname: Vandersypen, L.M.K. |
BookMark | eNpNkM1KAzEUhYNUsNY-gZu8wNSbn5lMNkKpVQsFf0bBXUgzSTtlOimZzKJv79QWlbs4l7P4DnzXaND4xiJ0S2BCCLC71_evt043sdtN-ATY8S7QkGaSJIxJOfj3X6Fx224BgKaEES6H6L7YdDHWVbPGusHz2poYfIOLfdXguAm-W2-wxkVVV6avzzv4wUc8DUEfbtCl03Vrx-ccoc_H-cfsOVm-PC1m02ViWAYxWdEyc5CDpBaEFWXpBIhU21xwJ63jQjJh09QC1-BstnKOgpErLYjIKFjCRmhx4pZeb9U-VDsdDsrrSv0UPqyVDrEytVWECmIyTaQ1OU97dAY8Lw2kVPB-XfYsdmKZ4Ns2WPfLI6CORtWfUcXVySj7BtyDbA4 |
CitedBy_id | crossref_primary_10_1103_PhysRevB_108_235308 crossref_primary_10_1038_s41467_024_46519_x crossref_primary_10_1063_5_0207162 crossref_primary_10_1063_5_0179700 crossref_primary_10_1103_PhysRevB_109_245401 crossref_primary_10_1360_SSI_2023_0333 crossref_primary_10_35848_1347_4065_ad38f7 crossref_primary_10_1038_s41534_024_00826_9 crossref_primary_10_1038_s41467_024_49358_y crossref_primary_10_1038_s41534_024_00823_y crossref_primary_10_1103_PRXQuantum_5_020353 crossref_primary_10_1016_j_inoche_2024_112279 crossref_primary_10_1038_s41467_024_49182_4 crossref_primary_10_1103_PhysRevB_109_125405 |
Cites_doi | 10.1103/PRXQuantum.4.020305 10.1103/PhysRevB.97.235409 10.1038/s41467-017-00534-3 10.1038/s41928-019-0234-1 10.1038/s41467-021-24371-7 10.1038/s41586-019-1566-8 10.1038/s41534-017-0038-y 10.1038/nnano.2014.216 10.1103/PRXQuantum.2.030331 10.1038/s41467-023-39334-3 10.1038/s41534-019-0225-0 10.1103/PhysRevB.75.115318 10.1103/RevModPhys.85.961 10.1038/s41586-021-03332-6 10.1038/s41534-020-0276-2 10.1038/s41586-021-04182-y 10.1126/science.aar4054 10.1016/j.micpro.2019.02.006 10.1088/1367-2630/13/1/013009 10.1038/s41586-021-04273-w 10.1038/s41565-017-0014-x 10.1038/s41467-019-08970-z 10.1126/sciadv.abn5130 10.1038/s41567-022-01870-y 10.1038/s41586-019-1197-0 10.1088/2058-9565/aaf3c4 10.1038/nature25766 10.1038/s41586-018-0365-y 10.1038/s41534-022-00615-2 10.1038/nature02693 10.1038/ncomms13575 10.1103/PhysRevB.104.075439 10.1038/s41467-022-33453-z 10.1038/nature10444 10.1063/1.5031034 10.1103/PhysRevApplied.18.024053 10.1063/5.0002013 10.1038/s41928-022-00727-9 10.1103/PhysRevLett.122.217702 10.1038/s41565-021-00846-y 10.1038/ncomms3069 10.1038/nature25769 10.1103/PhysRevLett.92.226801 10.1103/PhysRevLett.98.230503 10.1038/s41534-017-0024-4 10.1038/s41534-019-0146-y 10.1038/s41467-022-35458-0 10.1038/s41586-019-1867-y 10.1038/nphys174 10.1038/s41586-022-05117-x 10.1063/5.0062491 10.1073/pnas.1619152114 10.1038/nnano.2015.291 10.1126/sciadv.aar3960 10.1103/PhysRevX.12.021026 10.1103/PhysRevApplied.11.044063 10.1038/nature10416 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PRXQuantum.4.030303 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2691-3399 |
ExternalDocumentID | oai_doaj_org_article_1271c6a19ec8454796048dc05274e079 10_1103_PRXQuantum_4_030303 |
GroupedDBID | 3MX AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E OK1 ROL |
ID | FETCH-LOGICAL-c360t-b2d6f08092e07e7ddf7075ae874f9ef47937e55e04a0fe6bff20c9ba717620e13 |
IEDL.DBID | DOA |
ISSN | 2691-3399 |
IngestDate | Tue Oct 22 15:09:16 EDT 2024 Fri Aug 23 03:11:01 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-b2d6f08092e07e7ddf7075ae874f9ef47937e55e04a0fe6bff20c9ba717620e13 |
ORCID | 0000-0003-4346-7877 0000-0003-2512-0079 0000-0002-9776-9099 0000-0002-3562-8426 0000-0002-2514-2529 0000-0001-9775-0323 0000-0003-4857-3257 0000-0003-4525-4023 |
OpenAccessLink | https://doaj.org/article/1271c6a19ec8454796048dc05274e079 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1271c6a19ec8454796048dc05274e079 crossref_primary_10_1103_PRXQuantum_4_030303 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | PRX quantum |
PublicationYear | 2023 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PRXQuantum.4.030303Cc5R1 PRXQuantum.4.030303Cc7R1 PRXQuantum.4.030303Cc9R1 PRXQuantum.4.030303Cc1R1 PRXQuantum.4.030303Cc16R1 PRXQuantum.4.030303Cc3R1 PRXQuantum.4.030303Cc18R1 PRXQuantum.4.030303Cc39R1 PRXQuantum.4.030303Cc12R1 PRXQuantum.4.030303Cc37R1 PRXQuantum.4.030303Cc58R1 PRXQuantum.4.030303Cc14R1 PRXQuantum.4.030303Cc35R1 PRXQuantum.4.030303Cc56R1 PRXQuantum.4.030303Cc33R1 PRXQuantum.4.030303Cc54R1 PRXQuantum.4.030303Cc10R1 PRXQuantum.4.030303Cc31R1 PRXQuantum.4.030303Cc52R1 PRXQuantum.4.030303Cc50R1 PRXQuantum.4.030303Cc28R1 PRXQuantum.4.030303Cc49R1 PRXQuantum.4.030303Cc26R1 PRXQuantum.4.030303Cc47R1 PRXQuantum.4.030303Cc45R1 PRXQuantum.4.030303Cc24R1 PRXQuantum.4.030303Cc43R1 PRXQuantum.4.030303Cc22R1 PRXQuantum.4.030303Cc41R1 PRXQuantum.4.030303Cc20R1 PRXQuantum.4.030303Cc6R1 PRXQuantum.4.030303Cc8R1 PRXQuantum.4.030303Cc2R1 PRXQuantum.4.030303Cc17R1 PRXQuantum.4.030303Cc4R1 PRXQuantum.4.030303Cc19R1 PRXQuantum.4.030303Cc38R1 PRXQuantum.4.030303Cc13R1 PRXQuantum.4.030303Cc36R1 PRXQuantum.4.030303Cc15R1 PRXQuantum.4.030303Cc34R1 PRXQuantum.4.030303Cc57R1 PRXQuantum.4.030303Cc32R1 PRXQuantum.4.030303Cc11R1 PRXQuantum.4.030303Cc30R1 PRXQuantum.4.030303Cc53R1 PRXQuantum.4.030303Cc51R1 PRXQuantum.4.030303Cc29R1 PRXQuantum.4.030303Cc27R1 PRXQuantum.4.030303Cc25R1 PRXQuantum.4.030303Cc48R1 PRXQuantum.4.030303Cc23R1 PRXQuantum.4.030303Cc46R1 PRXQuantum.4.030303Cc21R1 PRXQuantum.4.030303Cc44R1 PRXQuantum.4.030303Cc42R1 PRXQuantum.4.030303Cc40R1 |
References_xml | – ident: PRXQuantum.4.030303Cc31R1 doi: 10.1103/PRXQuantum.4.020305 – ident: PRXQuantum.4.030303Cc21R1 doi: 10.1103/PhysRevB.97.235409 – ident: PRXQuantum.4.030303Cc35R1 doi: 10.1038/s41467-017-00534-3 – ident: PRXQuantum.4.030303Cc5R1 doi: 10.1038/s41928-019-0234-1 – ident: PRXQuantum.4.030303Cc41R1 doi: 10.1038/s41467-021-24371-7 – ident: PRXQuantum.4.030303Cc20R1 doi: 10.1038/s41586-019-1566-8 – ident: PRXQuantum.4.030303Cc2R1 doi: 10.1038/s41534-017-0038-y – ident: PRXQuantum.4.030303Cc3R1 doi: 10.1038/nnano.2014.216 – ident: PRXQuantum.4.030303Cc36R1 doi: 10.1103/PRXQuantum.2.030331 – ident: PRXQuantum.4.030303Cc6R1 doi: 10.1038/s41467-023-39334-3 – ident: PRXQuantum.4.030303Cc52R1 doi: 10.1038/s41534-019-0225-0 – ident: PRXQuantum.4.030303Cc39R1 doi: 10.1103/PhysRevB.75.115318 – ident: PRXQuantum.4.030303Cc38R1 doi: 10.1103/RevModPhys.85.961 – ident: PRXQuantum.4.030303Cc10R1 doi: 10.1038/s41586-021-03332-6 – ident: PRXQuantum.4.030303Cc54R1 doi: 10.1038/s41534-020-0276-2 – ident: PRXQuantum.4.030303Cc8R1 doi: 10.1038/s41586-021-04182-y – ident: PRXQuantum.4.030303Cc23R1 doi: 10.1126/science.aar4054 – ident: PRXQuantum.4.030303Cc18R1 doi: 10.1016/j.micpro.2019.02.006 – ident: PRXQuantum.4.030303Cc50R1 doi: 10.1088/1367-2630/13/1/013009 – ident: PRXQuantum.4.030303Cc7R1 doi: 10.1038/s41586-021-04273-w – ident: PRXQuantum.4.030303Cc4R1 doi: 10.1038/s41565-017-0014-x – ident: PRXQuantum.4.030303Cc40R1 doi: 10.1038/s41467-019-08970-z – ident: PRXQuantum.4.030303Cc9R1 doi: 10.1126/sciadv.abn5130 – ident: PRXQuantum.4.030303Cc49R1 doi: 10.1038/s41567-022-01870-y – ident: PRXQuantum.4.030303Cc53R1 doi: 10.1038/s41586-019-1197-0 – ident: PRXQuantum.4.030303Cc16R1 doi: 10.1088/2058-9565/aaf3c4 – ident: PRXQuantum.4.030303Cc47R1 doi: 10.1038/nature25766 – ident: PRXQuantum.4.030303Cc24R1 doi: 10.1038/s41586-018-0365-y – ident: PRXQuantum.4.030303Cc32R1 doi: 10.1038/s41534-022-00615-2 – ident: PRXQuantum.4.030303Cc45R1 doi: 10.1038/nature02693 – ident: PRXQuantum.4.030303Cc12R1 doi: 10.1038/ncomms13575 – ident: PRXQuantum.4.030303Cc37R1 doi: 10.1103/PhysRevB.104.075439 – ident: PRXQuantum.4.030303Cc42R1 doi: 10.1038/s41467-022-33453-z – ident: PRXQuantum.4.030303Cc27R1 doi: 10.1038/nature10444 – ident: PRXQuantum.4.030303Cc58R1 doi: 10.1063/1.5031034 – ident: PRXQuantum.4.030303Cc17R1 doi: 10.1103/PhysRevApplied.18.024053 – ident: PRXQuantum.4.030303Cc56R1 doi: 10.1063/5.0002013 – ident: PRXQuantum.4.030303Cc13R1 doi: 10.1038/s41928-022-00727-9 – ident: PRXQuantum.4.030303Cc51R1 doi: 10.1103/PhysRevLett.122.217702 – ident: PRXQuantum.4.030303Cc29R1 doi: 10.1038/s41565-021-00846-y – ident: PRXQuantum.4.030303Cc46R1 doi: 10.1038/ncomms3069 – ident: PRXQuantum.4.030303Cc22R1 doi: 10.1038/nature25769 – ident: PRXQuantum.4.030303Cc57R1 doi: 10.1103/PhysRevLett.92.226801 – ident: PRXQuantum.4.030303Cc19R1 doi: 10.1103/PhysRevLett.98.230503 – ident: PRXQuantum.4.030303Cc34R1 doi: 10.1038/s41534-017-0024-4 – ident: PRXQuantum.4.030303Cc44R1 doi: 10.1038/s41534-019-0146-y – ident: PRXQuantum.4.030303Cc43R1 doi: 10.1038/s41467-022-35458-0 – ident: PRXQuantum.4.030303Cc25R1 doi: 10.1038/s41586-019-1867-y – ident: PRXQuantum.4.030303Cc14R1 doi: 10.1038/nphys174 – ident: PRXQuantum.4.030303Cc11R1 doi: 10.1038/s41586-022-05117-x – ident: PRXQuantum.4.030303Cc30R1 doi: 10.1063/5.0062491 – ident: PRXQuantum.4.030303Cc1R1 doi: 10.1073/pnas.1619152114 – ident: PRXQuantum.4.030303Cc33R1 doi: 10.1038/nnano.2015.291 – ident: PRXQuantum.4.030303Cc15R1 doi: 10.1126/sciadv.aar3960 – ident: PRXQuantum.4.030303Cc26R1 doi: 10.1103/PhysRevX.12.021026 – ident: PRXQuantum.4.030303Cc48R1 doi: 10.1103/PhysRevApplied.11.044063 – ident: PRXQuantum.4.030303Cc28R1 doi: 10.1038/nature10416 |
SSID | ssj0002513149 |
Score | 2.3674953 |
Snippet | Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 030303 |
Title | Shuttling an Electron Spin through a Silicon Quantum Dot Array |
URI | https://doaj.org/article/1271c6a19ec8454796048dc05274e079 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWgEhIL4inKSx4YSetXYntBAtqqEwIKUrfI8UNUgrRqk4G_x07cwsbCGlmOfa6Ve290fA4A16pIlS2cSwqpfIPCDEuUsSSRFguhVYp1Q8YcT_jjVAyGQSZnY_UVOGGtPHALXB8TjnWmsLRaBPGpICYijEapb6cs4u3VPSR-NVPhG-yzNvW1f5QZwoj2n16mz7VfbP3ZYz1_sunaJiumol-K_U1qGe2DvVgTwrt2LQdgy5aHYKfhZurVEbidvNdVFa6NQ1XCYfStgZPFrITRZgcqOJl9-KCWML4eDuaVn3Gpvo7B22j4-jBOou1BommGqqQgJnO-kJPE789yYxz3eV1ZwZmT1oVfYdymqUVMIWczDzRBWhbKN2YZQRbTE9Ap56U9BRAHdoOWGTE8Y5xSRYkpKPURcMwKibrgZo1AvmjVLfKmK0A0_wEsZ3kLWBfcB5Q2Q4M0dfPAByyPAcv_CtjZf0xyDnaD73vLm70AnWpZ20uwvTL1VXMQvgEsp7Ur |
link.rule.ids | 315,782,786,866,2108,27935,27936 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shuttling+an+Electron+Spin+through+a+Silicon+Quantum+Dot+Array&rft.jtitle=PRX+quantum&rft.au=Zwerver%2C+A.M.J.&rft.au=Amitonov%2C+S.V.&rft.au=de+Snoo%2C+S.L.&rft.au=M%C4%85dzik%2C+M.T.&rft.date=2023-07-01&rft.issn=2691-3399&rft.eissn=2691-3399&rft.volume=4&rft.issue=3&rft_id=info:doi/10.1103%2FPRXQuantum.4.030303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PRXQuantum_4_030303 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon |