Shuttling an Electron Spin through a Silicon Quantum Dot Array

Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which can help to alleviat...

Full description

Saved in:
Bibliographic Details
Published in:PRX quantum Vol. 4; no. 3; p. 030303
Main Authors: Zwerver, A.M.J., Amitonov, S.V., de Snoo, S.L., Mądzik, M.T., Rimbach-Russ, M., Sammak, A., Scappucci, G., Vandersypen, L.M.K.
Format: Journal Article
Language:English
Published: American Physical Society 01-07-2023
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which can help to alleviate the so-called wiring bottleneck. A promising method of achieving coherent links between distant spin qubits consists of shuttling the spin through an array of quantum dots. Here, we use a linear array of four tunnel-coupled quantum dots in a ^{28}Si/SiGe heterostructure to create a short quantum link. We move an electron spin through the quantum dot array by adjusting the electrochemical potential for each quantum dot sequentially. By pulsing the gates repeatedly, we shuttle an electron forward and backward through the array up to 250 times, which corresponds to a total distance of approximately 80μm. We make an estimate of the spin-flip probability per hop in these experiments and conclude that this is well below 0.01% per hop.
AbstractList Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which can help to alleviate the so-called wiring bottleneck. A promising method of achieving coherent links between distant spin qubits consists of shuttling the spin through an array of quantum dots. Here, we use a linear array of four tunnel-coupled quantum dots in a ^{28}Si/SiGe heterostructure to create a short quantum link. We move an electron spin through the quantum dot array by adjusting the electrochemical potential for each quantum dot sequentially. By pulsing the gates repeatedly, we shuttle an electron forward and backward through the array up to 250 times, which corresponds to a total distance of approximately 80μm. We make an estimate of the spin-flip probability per hop in these experiments and conclude that this is well below 0.01% per hop.
ArticleNumber 030303
Author Amitonov, S.V.
Vandersypen, L.M.K.
Rimbach-Russ, M.
Scappucci, G.
Zwerver, A.M.J.
Mądzik, M.T.
Sammak, A.
de Snoo, S.L.
Author_xml – sequence: 1
  givenname: A.M.J.
  orcidid: 0000-0002-2514-2529
  surname: Zwerver
  fullname: Zwerver, A.M.J.
– sequence: 2
  givenname: S.V.
  orcidid: 0000-0002-3562-8426
  surname: Amitonov
  fullname: Amitonov, S.V.
– sequence: 3
  givenname: S.L.
  orcidid: 0000-0003-4525-4023
  surname: de Snoo
  fullname: de Snoo, S.L.
– sequence: 4
  givenname: M.T.
  orcidid: 0000-0003-4857-3257
  surname: Mądzik
  fullname: Mądzik, M.T.
– sequence: 5
  givenname: M.
  orcidid: 0000-0001-9775-0323
  surname: Rimbach-Russ
  fullname: Rimbach-Russ, M.
– sequence: 6
  givenname: A.
  orcidid: 0000-0002-9776-9099
  surname: Sammak
  fullname: Sammak, A.
– sequence: 7
  givenname: G.
  orcidid: 0000-0003-2512-0079
  surname: Scappucci
  fullname: Scappucci, G.
– sequence: 8
  givenname: L.M.K.
  orcidid: 0000-0003-4346-7877
  surname: Vandersypen
  fullname: Vandersypen, L.M.K.
BookMark eNpNkM1KAzEUhYNUsNY-gZu8wNSbn5lMNkKpVQsFf0bBXUgzSTtlOimZzKJv79QWlbs4l7P4DnzXaND4xiJ0S2BCCLC71_evt043sdtN-ATY8S7QkGaSJIxJOfj3X6Fx224BgKaEES6H6L7YdDHWVbPGusHz2poYfIOLfdXguAm-W2-wxkVVV6avzzv4wUc8DUEfbtCl03Vrx-ccoc_H-cfsOVm-PC1m02ViWAYxWdEyc5CDpBaEFWXpBIhU21xwJ63jQjJh09QC1-BstnKOgpErLYjIKFjCRmhx4pZeb9U-VDsdDsrrSv0UPqyVDrEytVWECmIyTaQ1OU97dAY8Lw2kVPB-XfYsdmKZ4Ns2WPfLI6CORtWfUcXVySj7BtyDbA4
CitedBy_id crossref_primary_10_1103_PhysRevB_108_235308
crossref_primary_10_1038_s41467_024_46519_x
crossref_primary_10_1063_5_0207162
crossref_primary_10_1063_5_0179700
crossref_primary_10_1103_PhysRevB_109_245401
crossref_primary_10_1360_SSI_2023_0333
crossref_primary_10_35848_1347_4065_ad38f7
crossref_primary_10_1038_s41534_024_00826_9
crossref_primary_10_1038_s41467_024_49358_y
crossref_primary_10_1038_s41534_024_00823_y
crossref_primary_10_1103_PRXQuantum_5_020353
crossref_primary_10_1016_j_inoche_2024_112279
crossref_primary_10_1038_s41467_024_49182_4
crossref_primary_10_1103_PhysRevB_109_125405
Cites_doi 10.1103/PRXQuantum.4.020305
10.1103/PhysRevB.97.235409
10.1038/s41467-017-00534-3
10.1038/s41928-019-0234-1
10.1038/s41467-021-24371-7
10.1038/s41586-019-1566-8
10.1038/s41534-017-0038-y
10.1038/nnano.2014.216
10.1103/PRXQuantum.2.030331
10.1038/s41467-023-39334-3
10.1038/s41534-019-0225-0
10.1103/PhysRevB.75.115318
10.1103/RevModPhys.85.961
10.1038/s41586-021-03332-6
10.1038/s41534-020-0276-2
10.1038/s41586-021-04182-y
10.1126/science.aar4054
10.1016/j.micpro.2019.02.006
10.1088/1367-2630/13/1/013009
10.1038/s41586-021-04273-w
10.1038/s41565-017-0014-x
10.1038/s41467-019-08970-z
10.1126/sciadv.abn5130
10.1038/s41567-022-01870-y
10.1038/s41586-019-1197-0
10.1088/2058-9565/aaf3c4
10.1038/nature25766
10.1038/s41586-018-0365-y
10.1038/s41534-022-00615-2
10.1038/nature02693
10.1038/ncomms13575
10.1103/PhysRevB.104.075439
10.1038/s41467-022-33453-z
10.1038/nature10444
10.1063/1.5031034
10.1103/PhysRevApplied.18.024053
10.1063/5.0002013
10.1038/s41928-022-00727-9
10.1103/PhysRevLett.122.217702
10.1038/s41565-021-00846-y
10.1038/ncomms3069
10.1038/nature25769
10.1103/PhysRevLett.92.226801
10.1103/PhysRevLett.98.230503
10.1038/s41534-017-0024-4
10.1038/s41534-019-0146-y
10.1038/s41467-022-35458-0
10.1038/s41586-019-1867-y
10.1038/nphys174
10.1038/s41586-022-05117-x
10.1063/5.0062491
10.1073/pnas.1619152114
10.1038/nnano.2015.291
10.1126/sciadv.aar3960
10.1103/PhysRevX.12.021026
10.1103/PhysRevApplied.11.044063
10.1038/nature10416
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PRXQuantum.4.030303
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2691-3399
ExternalDocumentID oai_doaj_org_article_1271c6a19ec8454796048dc05274e079
10_1103_PRXQuantum_4_030303
GroupedDBID 3MX
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
OK1
ROL
ID FETCH-LOGICAL-c360t-b2d6f08092e07e7ddf7075ae874f9ef47937e55e04a0fe6bff20c9ba717620e13
IEDL.DBID DOA
ISSN 2691-3399
IngestDate Tue Oct 22 15:09:16 EDT 2024
Fri Aug 23 03:11:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-b2d6f08092e07e7ddf7075ae874f9ef47937e55e04a0fe6bff20c9ba717620e13
ORCID 0000-0003-4346-7877
0000-0003-2512-0079
0000-0002-9776-9099
0000-0002-3562-8426
0000-0002-2514-2529
0000-0001-9775-0323
0000-0003-4857-3257
0000-0003-4525-4023
OpenAccessLink https://doaj.org/article/1271c6a19ec8454796048dc05274e079
ParticipantIDs doaj_primary_oai_doaj_org_article_1271c6a19ec8454796048dc05274e079
crossref_primary_10_1103_PRXQuantum_4_030303
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle PRX quantum
PublicationYear 2023
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PRXQuantum.4.030303Cc5R1
PRXQuantum.4.030303Cc7R1
PRXQuantum.4.030303Cc9R1
PRXQuantum.4.030303Cc1R1
PRXQuantum.4.030303Cc16R1
PRXQuantum.4.030303Cc3R1
PRXQuantum.4.030303Cc18R1
PRXQuantum.4.030303Cc39R1
PRXQuantum.4.030303Cc12R1
PRXQuantum.4.030303Cc37R1
PRXQuantum.4.030303Cc58R1
PRXQuantum.4.030303Cc14R1
PRXQuantum.4.030303Cc35R1
PRXQuantum.4.030303Cc56R1
PRXQuantum.4.030303Cc33R1
PRXQuantum.4.030303Cc54R1
PRXQuantum.4.030303Cc10R1
PRXQuantum.4.030303Cc31R1
PRXQuantum.4.030303Cc52R1
PRXQuantum.4.030303Cc50R1
PRXQuantum.4.030303Cc28R1
PRXQuantum.4.030303Cc49R1
PRXQuantum.4.030303Cc26R1
PRXQuantum.4.030303Cc47R1
PRXQuantum.4.030303Cc45R1
PRXQuantum.4.030303Cc24R1
PRXQuantum.4.030303Cc43R1
PRXQuantum.4.030303Cc22R1
PRXQuantum.4.030303Cc41R1
PRXQuantum.4.030303Cc20R1
PRXQuantum.4.030303Cc6R1
PRXQuantum.4.030303Cc8R1
PRXQuantum.4.030303Cc2R1
PRXQuantum.4.030303Cc17R1
PRXQuantum.4.030303Cc4R1
PRXQuantum.4.030303Cc19R1
PRXQuantum.4.030303Cc38R1
PRXQuantum.4.030303Cc13R1
PRXQuantum.4.030303Cc36R1
PRXQuantum.4.030303Cc15R1
PRXQuantum.4.030303Cc34R1
PRXQuantum.4.030303Cc57R1
PRXQuantum.4.030303Cc32R1
PRXQuantum.4.030303Cc11R1
PRXQuantum.4.030303Cc30R1
PRXQuantum.4.030303Cc53R1
PRXQuantum.4.030303Cc51R1
PRXQuantum.4.030303Cc29R1
PRXQuantum.4.030303Cc27R1
PRXQuantum.4.030303Cc25R1
PRXQuantum.4.030303Cc48R1
PRXQuantum.4.030303Cc23R1
PRXQuantum.4.030303Cc46R1
PRXQuantum.4.030303Cc21R1
PRXQuantum.4.030303Cc44R1
PRXQuantum.4.030303Cc42R1
PRXQuantum.4.030303Cc40R1
References_xml – ident: PRXQuantum.4.030303Cc31R1
  doi: 10.1103/PRXQuantum.4.020305
– ident: PRXQuantum.4.030303Cc21R1
  doi: 10.1103/PhysRevB.97.235409
– ident: PRXQuantum.4.030303Cc35R1
  doi: 10.1038/s41467-017-00534-3
– ident: PRXQuantum.4.030303Cc5R1
  doi: 10.1038/s41928-019-0234-1
– ident: PRXQuantum.4.030303Cc41R1
  doi: 10.1038/s41467-021-24371-7
– ident: PRXQuantum.4.030303Cc20R1
  doi: 10.1038/s41586-019-1566-8
– ident: PRXQuantum.4.030303Cc2R1
  doi: 10.1038/s41534-017-0038-y
– ident: PRXQuantum.4.030303Cc3R1
  doi: 10.1038/nnano.2014.216
– ident: PRXQuantum.4.030303Cc36R1
  doi: 10.1103/PRXQuantum.2.030331
– ident: PRXQuantum.4.030303Cc6R1
  doi: 10.1038/s41467-023-39334-3
– ident: PRXQuantum.4.030303Cc52R1
  doi: 10.1038/s41534-019-0225-0
– ident: PRXQuantum.4.030303Cc39R1
  doi: 10.1103/PhysRevB.75.115318
– ident: PRXQuantum.4.030303Cc38R1
  doi: 10.1103/RevModPhys.85.961
– ident: PRXQuantum.4.030303Cc10R1
  doi: 10.1038/s41586-021-03332-6
– ident: PRXQuantum.4.030303Cc54R1
  doi: 10.1038/s41534-020-0276-2
– ident: PRXQuantum.4.030303Cc8R1
  doi: 10.1038/s41586-021-04182-y
– ident: PRXQuantum.4.030303Cc23R1
  doi: 10.1126/science.aar4054
– ident: PRXQuantum.4.030303Cc18R1
  doi: 10.1016/j.micpro.2019.02.006
– ident: PRXQuantum.4.030303Cc50R1
  doi: 10.1088/1367-2630/13/1/013009
– ident: PRXQuantum.4.030303Cc7R1
  doi: 10.1038/s41586-021-04273-w
– ident: PRXQuantum.4.030303Cc4R1
  doi: 10.1038/s41565-017-0014-x
– ident: PRXQuantum.4.030303Cc40R1
  doi: 10.1038/s41467-019-08970-z
– ident: PRXQuantum.4.030303Cc9R1
  doi: 10.1126/sciadv.abn5130
– ident: PRXQuantum.4.030303Cc49R1
  doi: 10.1038/s41567-022-01870-y
– ident: PRXQuantum.4.030303Cc53R1
  doi: 10.1038/s41586-019-1197-0
– ident: PRXQuantum.4.030303Cc16R1
  doi: 10.1088/2058-9565/aaf3c4
– ident: PRXQuantum.4.030303Cc47R1
  doi: 10.1038/nature25766
– ident: PRXQuantum.4.030303Cc24R1
  doi: 10.1038/s41586-018-0365-y
– ident: PRXQuantum.4.030303Cc32R1
  doi: 10.1038/s41534-022-00615-2
– ident: PRXQuantum.4.030303Cc45R1
  doi: 10.1038/nature02693
– ident: PRXQuantum.4.030303Cc12R1
  doi: 10.1038/ncomms13575
– ident: PRXQuantum.4.030303Cc37R1
  doi: 10.1103/PhysRevB.104.075439
– ident: PRXQuantum.4.030303Cc42R1
  doi: 10.1038/s41467-022-33453-z
– ident: PRXQuantum.4.030303Cc27R1
  doi: 10.1038/nature10444
– ident: PRXQuantum.4.030303Cc58R1
  doi: 10.1063/1.5031034
– ident: PRXQuantum.4.030303Cc17R1
  doi: 10.1103/PhysRevApplied.18.024053
– ident: PRXQuantum.4.030303Cc56R1
  doi: 10.1063/5.0002013
– ident: PRXQuantum.4.030303Cc13R1
  doi: 10.1038/s41928-022-00727-9
– ident: PRXQuantum.4.030303Cc51R1
  doi: 10.1103/PhysRevLett.122.217702
– ident: PRXQuantum.4.030303Cc29R1
  doi: 10.1038/s41565-021-00846-y
– ident: PRXQuantum.4.030303Cc46R1
  doi: 10.1038/ncomms3069
– ident: PRXQuantum.4.030303Cc22R1
  doi: 10.1038/nature25769
– ident: PRXQuantum.4.030303Cc57R1
  doi: 10.1103/PhysRevLett.92.226801
– ident: PRXQuantum.4.030303Cc19R1
  doi: 10.1103/PhysRevLett.98.230503
– ident: PRXQuantum.4.030303Cc34R1
  doi: 10.1038/s41534-017-0024-4
– ident: PRXQuantum.4.030303Cc44R1
  doi: 10.1038/s41534-019-0146-y
– ident: PRXQuantum.4.030303Cc43R1
  doi: 10.1038/s41467-022-35458-0
– ident: PRXQuantum.4.030303Cc25R1
  doi: 10.1038/s41586-019-1867-y
– ident: PRXQuantum.4.030303Cc14R1
  doi: 10.1038/nphys174
– ident: PRXQuantum.4.030303Cc11R1
  doi: 10.1038/s41586-022-05117-x
– ident: PRXQuantum.4.030303Cc30R1
  doi: 10.1063/5.0062491
– ident: PRXQuantum.4.030303Cc1R1
  doi: 10.1073/pnas.1619152114
– ident: PRXQuantum.4.030303Cc33R1
  doi: 10.1038/nnano.2015.291
– ident: PRXQuantum.4.030303Cc15R1
  doi: 10.1126/sciadv.aar3960
– ident: PRXQuantum.4.030303Cc26R1
  doi: 10.1103/PhysRevX.12.021026
– ident: PRXQuantum.4.030303Cc48R1
  doi: 10.1103/PhysRevApplied.11.044063
– ident: PRXQuantum.4.030303Cc28R1
  doi: 10.1038/nature10416
SSID ssj0002513149
Score 2.3674953
Snippet Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 030303
Title Shuttling an Electron Spin through a Silicon Quantum Dot Array
URI https://doaj.org/article/1271c6a19ec8454796048dc05274e079
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWgEhIL4inKSx4YSetXYntBAtqqEwIKUrfI8UNUgrRqk4G_x07cwsbCGlmOfa6Ve290fA4A16pIlS2cSwqpfIPCDEuUsSSRFguhVYp1Q8YcT_jjVAyGQSZnY_UVOGGtPHALXB8TjnWmsLRaBPGpICYijEapb6cs4u3VPSR-NVPhG-yzNvW1f5QZwoj2n16mz7VfbP3ZYz1_sunaJiumol-K_U1qGe2DvVgTwrt2LQdgy5aHYKfhZurVEbidvNdVFa6NQ1XCYfStgZPFrITRZgcqOJl9-KCWML4eDuaVn3Gpvo7B22j4-jBOou1BommGqqQgJnO-kJPE789yYxz3eV1ZwZmT1oVfYdymqUVMIWczDzRBWhbKN2YZQRbTE9Ap56U9BRAHdoOWGTE8Y5xSRYkpKPURcMwKibrgZo1AvmjVLfKmK0A0_wEsZ3kLWBfcB5Q2Q4M0dfPAByyPAcv_CtjZf0xyDnaD73vLm70AnWpZ20uwvTL1VXMQvgEsp7Ur
link.rule.ids 315,782,786,866,2108,27935,27936
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shuttling+an+Electron+Spin+through+a+Silicon+Quantum+Dot+Array&rft.jtitle=PRX+quantum&rft.au=Zwerver%2C+A.M.J.&rft.au=Amitonov%2C+S.V.&rft.au=de+Snoo%2C+S.L.&rft.au=M%C4%85dzik%2C+M.T.&rft.date=2023-07-01&rft.issn=2691-3399&rft.eissn=2691-3399&rft.volume=4&rft.issue=3&rft_id=info:doi/10.1103%2FPRXQuantum.4.030303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PRXQuantum_4_030303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon