Tuning the thermoelectric properties of graphene nanoribbons by vacancy defect with Ge-doping
In this work, the influence of vacancy defects and germanium (Ge)-doping on structural stability, electronic and thermoelectric (TE) characteristics of armchair graphene nanoribbons (AGNRs) have been studied by density functional theory (DFT) based tight-binding coupled with nonequilibrium green fun...
Saved in:
Published in: | Chemical physics impact Vol. 7; p. 100367 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier
01-12-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this work, the influence of vacancy defects and germanium (Ge)-doping on structural stability, electronic and thermoelectric (TE) characteristics of armchair graphene nanoribbons (AGNRs) have been studied by density functional theory (DFT) based tight-binding coupled with nonequilibrium green function (NEGF) calculations. Three concentrations of Ge impurities, single, two, and three, are identified at different sites with vacancy defects. As a result, the DFT calculations suggest that the defected AGNRs with three Ge impurities are structurally favorable configurations due to the lowest required cohesive energy. At low doping ratio, small bandgap for defected AGNRs is predicted leading to high Seebeck coefficient and figure of merit. In contrast, at high doping ratio, low Seebeck coefficient and figure of merit are noticed. The results show that the TE properties of AGNRs do not only depend on the Ge concentrations with vacancy defect but also depend on the geometrical pattern of Ge impurities. As a result, exploiting the electronic and thermoelectric properties of AGNRs to create nanostructure, which can be used in many important applications for nanoelectronics and spintronics. |
---|---|
AbstractList | In this work, the influence of vacancy defects and germanium (Ge)-doping on structural stability, electronic and thermoelectric (TE) characteristics of armchair graphene nanoribbons (AGNRs) have been studied by density functional theory (DFT) based tight-binding coupled with nonequilibrium green function (NEGF) calculations. Three concentrations of Ge impurities, single, two, and three, are identified at different sites with vacancy defects. As a result, the DFT calculations suggest that the defected AGNRs with three Ge impurities are structurally favorable configurations due to the lowest required cohesive energy. At low doping ratio, small bandgap for defected AGNRs is predicted leading to high Seebeck coefficient and figure of merit. In contrast, at high doping ratio, low Seebeck coefficient and figure of merit are noticed. The results show that the TE properties of AGNRs do not only depend on the Ge concentrations with vacancy defect but also depend on the geometrical pattern of Ge impurities. As a result, exploiting the electronic and thermoelectric properties of AGNRs to create nanostructure, which can be used in many important applications for nanoelectronics and spintronics. |
ArticleNumber | 100367 |
Author | Ajeel, Fouad N. Ahmed, Ali Ben |
Author_xml | – sequence: 1 givenname: Fouad N. orcidid: 0000-0003-2406-0836 surname: Ajeel fullname: Ajeel, Fouad N. – sequence: 2 givenname: Ali Ben surname: Ahmed fullname: Ahmed, Ali Ben |
BookMark | eNpNkNFKwzAUhoNMcM49gTd5gc6TpEuaSxk6BwNv5qWEJD1dW7akpFXZ29s5ES8O5_DD_8H5bskkxICE3DNYMGDyoV34uqubBQcuxgSEVFdkyqVUGXCeT_7dN2Te9y0A8CUTTOVT8r77CE3Y06HG86RjxAP6ITWedil2mIYGexoruk-2qzEgDTbE1DgXQ0_diX5ab4M_0RKrsUe_mqGma8zK2I3YO3Jd2UOP8989I2_PT7vVS7Z9XW9Wj9vMCwlDpkShCiktV9xp50vJlHZaOqecXUqJuahUxUvmSwDHlNISCyiQe615DlUhZmRz4ZbRtqZLzdGmk4m2MT9BTHtjx0_8AQ0voAQFrHKFzDnnunCQ49JqPVKFw5ElLiyfYt8nrP54DMxZuGnNj3BzFm4uwsU3lnp3FA |
CitedBy_id | crossref_primary_10_1088_1402_4896_ad406b crossref_primary_10_1016_j_chphi_2023_100413 crossref_primary_10_1007_s11051_024_05963_y crossref_primary_10_1088_1402_4896_ad514f crossref_primary_10_1016_j_nanoso_2024_101164 |
Cites_doi | 10.1016/j.matpr.2021.11.078 10.1016/j.cjph.2019.01.009 10.1103/PhysRevB.86.115438 10.1038/s41598-017-02230-0 10.1063/1.3689780 10.1016/j.apsusc.2022.153722 10.1007/s00894-023-05545-0 10.1038/nature06381 10.1016/j.revip.2023.100082 10.1116/1.2885203 10.1016/j.physe.2016.03.006 10.1016/j.nanoen.2021.106188 10.1038/s41598-021-94842-w 10.1016/j.elspec.2018.08.005 10.1007/s00894-012-1612-z 10.1007/s00894-010-0818-1 10.1007/s11664-016-4725-9 10.1103/PhysRevB.83.235426 10.1155/2021/8110754 10.1016/j.nanoen.2022.106943 10.1038/s42254-021-00370-x 10.1103/PhysRevB.84.041412 10.1038/s41598-020-67964-w 10.1063/1.3171933 10.1016/j.chphi.2023.100240 10.1140/epjb/e2010-10725-4 10.1016/j.ijhydene.2022.10.211 10.1134/S1990793117050025 10.1016/j.jallcom.2020.155983 10.1016/j.ijleo.2020.164605 10.1038/s41598-022-22379-7 10.1140/epjb/s10051-023-00597-w 10.1016/j.cjph.2017.05.031 10.1016/j.nanoen.2017.03.019 10.1016/j.rinp.2021.104318 10.1103/PhysRevB.81.113401 10.1103/PhysRevB.79.035415 10.1016/j.nanoen.2018.10.015 10.1016/j.jnoncrysol.2021.120726 10.1088/0953-8984/27/13/133204 10.1039/C4RA02485K 10.1103/PhysRevB.65.165401 10.1038/srep13706 10.1088/2053-1583/aa57fc 10.1016/j.physe.2020.114160 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.chphi.2023.100367 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2667-0224 |
ExternalDocumentID | oai_doaj_org_article_280d0701fb86422298b04e5a9996e3be 10_1016_j_chphi_2023_100367 |
GroupedDBID | 0R~ AAEDW AAFWJ AALRI AAXUO AAYXX ADVLN AEXQZ AFJKZ AFPKN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ CITATION EBS FDB GROUPED_DOAJ M~E OK1 ROL 0SF |
ID | FETCH-LOGICAL-c360t-7387866a272b9bcd6179b96bb7ba566e43f7f2d1cd00b17796e808e2c99240f83 |
IEDL.DBID | DOA |
ISSN | 2667-0224 |
IngestDate | Tue Oct 22 15:09:45 EDT 2024 Thu Nov 21 22:13:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-7387866a272b9bcd6179b96bb7ba566e43f7f2d1cd00b17796e808e2c99240f83 |
ORCID | 0000-0003-2406-0836 |
OpenAccessLink | https://doaj.org/article/280d0701fb86422298b04e5a9996e3be |
ParticipantIDs | doaj_primary_oai_doaj_org_article_280d0701fb86422298b04e5a9996e3be crossref_primary_10_1016_j_chphi_2023_100367 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Chemical physics impact |
PublicationYear | 2023 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Zeng (10.1016/j.chphi.2023.100367_bib0029) 2018; 54 Hernández Rosas (10.1016/j.chphi.2023.100367_bib0004) 2011; 17 Ajeel (10.1016/j.chphi.2023.100367_bib0003) 2023; 29 Ramezani Akbarabadi (10.1016/j.chphi.2023.100367_bib0045) 2020; 10 Dollfus (10.1016/j.chphi.2023.100367_bib0006) 2015; 27 Tran (10.1016/j.chphi.2023.100367_bib0033) 2017; 7 Ling (10.1016/j.chphi.2023.100367_bib0037) 2014; 4 Deji (10.1016/j.chphi.2023.100367_bib0051) 2022; 1209 Dresselhaus (10.1016/j.chphi.2023.100367_bib0019) 2008; 26 Arab (10.1016/j.chphi.2023.100367_bib0044) 2015; 5 Kara (10.1016/j.chphi.2023.100367_bib0021) 2020; 210 Ajeel (10.1016/j.chphi.2023.100367_bib0028) 2017; 11 Oh (10.1016/j.chphi.2023.100367_bib0038) 2017; 35 Brandbyge (10.1016/j.chphi.2023.100367_bib0048) 2002; 65 Liang (10.1016/j.chphi.2023.100367_bib0007) 2012; 86 Gholami (10.1016/j.chphi.2023.100367_bib0032) 2021; 11 Zeng (10.1016/j.chphi.2023.100367_bib0052) 2011; 79 Sevinçli (10.1016/j.chphi.2023.100367_bib0024) 2010; 81 Ajeel (10.1016/j.chphi.2023.100367_bib0046) 2023; 96 D'Souza (10.1016/j.chphi.2023.100367_bib0012) 2018; 124 Zhang (10.1016/j.chphi.2023.100367_bib0047) 2021; 26 Wang (10.1016/j.chphi.2023.100367_bib0026) 2021; 3 Arab (10.1016/j.chphi.2023.100367_bib0043) 2016; 45 Ouyang (10.1016/j.chphi.2023.100367_bib0002) 2009; 94 Mazzamuto (10.1016/j.chphi.2023.100367_bib0009) 2011; 83 Hochbaum (10.1016/j.chphi.2023.100367_bib0022) 2008; 451 Ajeel (10.1016/j.chphi.2023.100367_bib0027) 2017; 55 Deji (10.1016/j.chphi.2023.100367_bib0050) 2022; 54 Ghosh (10.1016/j.chphi.2023.100367_bib0013) 2020; 18 Nimr Ajeel (10.1016/j.chphi.2023.100367_bib0041) 2017; 7 Ramezani Akbarabadi (10.1016/j.chphi.2023.100367_bib0014) 2021; 2021 D'Souza (10.1016/j.chphi.2023.100367_bib0039) 2016; 81 Zheng (10.1016/j.chphi.2023.100367_bib0010) 2012; 100 Zhang (10.1016/j.chphi.2023.100367_bib0015) 2022; 597 Sevinçli (10.1016/j.chphi.2023.100367_bib0025) 2013; 3 Deji (10.1016/j.chphi.2023.100367_bib0049) 2022; 111 Gayner (10.1016/j.chphi.2023.100367_bib0016) 2022; 94 Saha (10.1016/j.chphi.2023.100367_bib0017) 2011; 84 Chigo Anota (10.1016/j.chphi.2023.100367_bib0005) 2013; 19 Lee (10.1016/j.chphi.2023.100367_bib0031) 2021; 87 Kurban (10.1016/j.chphi.2023.100367_bib0036) 2021; 560 Muz (10.1016/j.chphi.2023.100367_bib0020) 2020; 842 Bazrafshan (10.1016/j.chphi.2023.100367_bib0030) 2022; 12 Chodvadiya (10.1016/j.chphi.2023.100367_bib0035) 2023; 48 Ajeel (10.1016/j.chphi.2023.100367_bib0008) 2023 Anno (10.1016/j.chphi.2023.100367_bib0011) 2017; 4 Gholami (10.1016/j.chphi.2023.100367_bib0034) 2021; 11 Peng (10.1016/j.chphi.2023.100367_bib0018) 2020; 122 Tian (10.1016/j.chphi.2023.100367_bib0001) 2023 Mohammed (10.1016/j.chphi.2023.100367_bib0042) 2018; 228 Markussen (10.1016/j.chphi.2023.100367_bib0023) 2009; 79 Ajeel (10.1016/j.chphi.2023.100367_bib0040) 2019; 58 |
References_xml | – volume: 54 start-page: 771 year: 2022 ident: 10.1016/j.chphi.2023.100367_bib0050 article-title: Density functional theory study of carbon monoxide adsorption on transition metal doped armchair graphene nanoribbon publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.11.078 contributor: fullname: Deji – volume: 58 start-page: 109 year: 2019 ident: 10.1016/j.chphi.2023.100367_bib0040 article-title: Effects of lithium impurities on electronic and optical properties of graphene nanoflakes: a DFT–TDDFT study publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2019.01.009 contributor: fullname: Ajeel – volume: 86 issue: 11 year: 2012 ident: 10.1016/j.chphi.2023.100367_bib0007 article-title: Enhanced thermoelectric figure of merit in assembled graphene nanoribbons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.115438 contributor: fullname: Liang – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.chphi.2023.100367_bib0033 article-title: Optimizing the thermoelectric performance of graphene nano-ribbons without degrading the electronic properties publication-title: Sci. Rep. doi: 10.1038/s41598-017-02230-0 contributor: fullname: Tran – volume: 100 issue: 9 year: 2012 ident: 10.1016/j.chphi.2023.100367_bib0010 article-title: Enhanced thermoelectric performance of graphene nanoribbons publication-title: Appl. Phys. Lett. doi: 10.1063/1.3689780 contributor: fullname: Zheng – volume: 597 year: 2022 ident: 10.1016/j.chphi.2023.100367_bib0015 article-title: Significantly enhanced thermoelectric performance of Van der Waals interface coupling molecular junction with nitrogen-doped graphene nanoribbon electrodes publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153722 contributor: fullname: Zhang – volume: 29 start-page: 145 issue: 5 year: 2023 ident: 10.1016/j.chphi.2023.100367_bib0003 article-title: Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons publication-title: J. Mol. Model. doi: 10.1007/s00894-023-05545-0 contributor: fullname: Ajeel – volume: 451 start-page: 163 issue: 7175 year: 2008 ident: 10.1016/j.chphi.2023.100367_bib0022 article-title: Enhanced thermoelectric performance of rough silicon nanowires publication-title: Nature doi: 10.1038/nature06381 contributor: fullname: Hochbaum – volume: 3 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.chphi.2023.100367_bib0025 article-title: A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons publication-title: Sci. Rep. contributor: fullname: Sevinçli – year: 2023 ident: 10.1016/j.chphi.2023.100367_bib0001 article-title: Graphene nanoribbons: current status and challenges as quasi-one-dimensional nanomaterials publication-title: Rev. Phys. doi: 10.1016/j.revip.2023.100082 contributor: fullname: Tian – volume: 26 start-page: 1613 issue: 4 year: 2008 ident: 10.1016/j.chphi.2023.100367_bib0019 article-title: Other one-dimensional systems and thermal properties publication-title: J. Vac. Sci. Technol., B doi: 10.1116/1.2885203 contributor: fullname: Dresselhaus – volume: 81 start-page: 96 year: 2016 ident: 10.1016/j.chphi.2023.100367_bib0039 article-title: Thermoelectric transport in graphene/h-BN/graphene heterostructures: a computational study publication-title: Phys. E doi: 10.1016/j.physe.2016.03.006 contributor: fullname: D'Souza – volume: 87 year: 2021 ident: 10.1016/j.chphi.2023.100367_bib0031 article-title: Significant thermoelectric conversion efficiency enhancement of single layer graphene with substitutional silicon dopants publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106188 contributor: fullname: Lee – volume: 18 year: 2020 ident: 10.1016/j.chphi.2023.100367_bib0013 article-title: Thermoelectric figure of merit enhancement in cement composites with graphene and transition metal oxides publication-title: Mater. Today Energy contributor: fullname: Ghosh – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.chphi.2023.100367_bib0032 article-title: Vacancy tuned thermoelectric properties and high spin filtering performance in graphene/silicene heterostructures publication-title: Sci. Rep. doi: 10.1038/s41598-021-94842-w contributor: fullname: Gholami – volume: 228 start-page: 20 year: 2018 ident: 10.1016/j.chphi.2023.100367_bib0042 article-title: Analysis the electronic properties of the zigzag and armchair single wall boron nitride nanotubes with single Li impurity in the various sites publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2018.08.005 contributor: fullname: Mohammed – volume: 19 start-page: 839 year: 2013 ident: 10.1016/j.chphi.2023.100367_bib0005 article-title: On the influence of point defects on the structural and electronic properties of graphene-like sheets: a molecular simulation study publication-title: J. Mol. Model. doi: 10.1007/s00894-012-1612-z contributor: fullname: Chigo Anota – volume: 17 start-page: 1133 year: 2011 ident: 10.1016/j.chphi.2023.100367_bib0004 article-title: First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide publication-title: J. Mol. Model. doi: 10.1007/s00894-010-0818-1 contributor: fullname: Hernández Rosas – volume: 45 start-page: 5253 issue: 10 year: 2016 ident: 10.1016/j.chphi.2023.100367_bib0043 article-title: Monolayer MoS2 nanoribbons as a promising material for both n-type and p-type legs in thermoelectric generators publication-title: J. Electron. Mater. doi: 10.1007/s11664-016-4725-9 contributor: fullname: Arab – volume: 83 issue: 23 year: 2011 ident: 10.1016/j.chphi.2023.100367_bib0009 article-title: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.235426 contributor: fullname: Mazzamuto – volume: 11 start-page: 15320 issue: 1 year: 2021 ident: 10.1016/j.chphi.2023.100367_bib0034 article-title: Vacancy tuned thermoelectric properties and high spin filtering performance in graphene/silicene heterostructures publication-title: Sci. Rep. doi: 10.1038/s41598-021-94842-w contributor: fullname: Gholami – volume: 111 year: 2022 ident: 10.1016/j.chphi.2023.100367_bib0049 article-title: New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: a DFT approach publication-title: J. Mol. Graphics Model. contributor: fullname: Deji – volume: 2021 year: 2021 ident: 10.1016/j.chphi.2023.100367_bib0014 article-title: Impurity substitution enhances thermoelectric figure of merit in zigzag graphene nanoribbons publication-title: Adv. Condens. Matter Phys. doi: 10.1155/2021/8110754 contributor: fullname: Ramezani Akbarabadi – volume: 94 year: 2022 ident: 10.1016/j.chphi.2023.100367_bib0016 article-title: Enhanced thermoelectric performance of PbSe-graphene nanocomposite manufactured with acoustic cavitation induced defects publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106943 contributor: fullname: Gayner – volume: 124 issue: 12 year: 2018 ident: 10.1016/j.chphi.2023.100367_bib0012 article-title: Enhancement of thermoelectric figure-of-merit of graphene upon BN-doping and sample length reduction publication-title: J. Appl. Phys. contributor: fullname: D'Souza – volume: 3 start-page: 791 issue: 12 year: 2021 ident: 10.1016/j.chphi.2023.100367_bib0026 article-title: Graphene nanoribbons for quantum electronics publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00370-x contributor: fullname: Wang – volume: 84 issue: 4 year: 2011 ident: 10.1016/j.chphi.2023.100367_bib0017 article-title: Multiterminal single-molecule–graphene-nanoribbon junctions with the thermoelectric figure of merit optimized via evanescent mode transport and gate voltage publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.041412 contributor: fullname: Saha – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.chphi.2023.100367_bib0045 article-title: Enhanced thermoelectric properties in anthracene molecular device with graphene electrodes: the role of phononic thermal conductance publication-title: Sci. Rep. doi: 10.1038/s41598-020-67964-w contributor: fullname: Ramezani Akbarabadi – volume: 94 issue: 26 year: 2009 ident: 10.1016/j.chphi.2023.100367_bib0002 article-title: A theoretical study on thermoelectric properties of graphene nanoribbons publication-title: Appl. Phys. Lett. doi: 10.1063/1.3171933 contributor: fullname: Ouyang – year: 2023 ident: 10.1016/j.chphi.2023.100367_bib0008 article-title: Enhancement of the thermoelectric performance of a single-walled carbon nanotube via Al, Si, P, and S impurities publication-title: Chem. Phys. Impact doi: 10.1016/j.chphi.2023.100240 contributor: fullname: Ajeel – volume: 79 start-page: 335 issue: 3 year: 2011 ident: 10.1016/j.chphi.2023.100367_bib0052 article-title: Effect of n doping and stone-wales defects on the electronic properties of graphene nanoribbons publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2010-10725-4 contributor: fullname: Zeng – volume: 48 start-page: 5138 issue: 13 year: 2023 ident: 10.1016/j.chphi.2023.100367_bib0035 article-title: Defects and doping engineered two-dimensional o-B2N2 for hydrogen evolution reaction catalyst: insights from DFT simulation publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2022.10.211 contributor: fullname: Chodvadiya – volume: 11 start-page: 850 year: 2017 ident: 10.1016/j.chphi.2023.100367_bib0028 article-title: Tuning the electronic properties of the fullerene C 20 cage via silicon impurities publication-title: Russ. J. Phys. Chem. B doi: 10.1134/S1990793117050025 contributor: fullname: Ajeel – volume: 1209 year: 2022 ident: 10.1016/j.chphi.2023.100367_bib0051 article-title: A theoretical study of HCN adsorption and width effect on co-doped armchair graphene nanoribbon publication-title: Comput. Theor. Chem. contributor: fullname: Deji – volume: 842 year: 2020 ident: 10.1016/j.chphi.2023.100367_bib0020 article-title: The electronic structure, transport and structural properties of nitrogen-decorated graphdiyne nanomaterials publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155983 contributor: fullname: Muz – volume: 210 year: 2020 ident: 10.1016/j.chphi.2023.100367_bib0021 article-title: Evaluation of electronic transport and optical response of two-dimensional Fe-doped TiO2 thin films for photodetector applications publication-title: Optik doi: 10.1016/j.ijleo.2020.164605 contributor: fullname: Kara – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.chphi.2023.100367_bib0030 article-title: Tuning phononic and electronic contributions of thermoelectric in defected S-shape graphene nanoribbons publication-title: Sci. Rep. doi: 10.1038/s41598-022-22379-7 contributor: fullname: Bazrafshan – volume: 96 start-page: 127 issue: 10 year: 2023 ident: 10.1016/j.chphi.2023.100367_bib0046 article-title: Influence of the boron doping and Stone–Wales defects on the thermoelectric performance of graphene nanoribbons publication-title: Eur. Phys. J. B doi: 10.1140/epjb/s10051-023-00597-w contributor: fullname: Ajeel – volume: 55 start-page: 2134 issue: 5 year: 2017 ident: 10.1016/j.chphi.2023.100367_bib0027 article-title: Engineering electronic structure of a fullerene C20 bowl with germanium impurities publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2017.05.031 contributor: fullname: Ajeel – volume: 35 start-page: 26 year: 2017 ident: 10.1016/j.chphi.2023.100367_bib0038 article-title: Significantly reduced thermal conductivity and enhanced thermoelectric properties of single-and bi-layer graphene nanomeshes with sub-10nm neck-width publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.03.019 contributor: fullname: Oh – volume: 26 year: 2021 ident: 10.1016/j.chphi.2023.100367_bib0047 article-title: Modulation of thermoelectric performance of Cn-BTBT molecular junctions by engineering contact geometry publication-title: Results Phys. doi: 10.1016/j.rinp.2021.104318 contributor: fullname: Zhang – volume: 81 issue: 11 year: 2010 ident: 10.1016/j.chphi.2023.100367_bib0024 article-title: Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.113401 contributor: fullname: Sevinçli – volume: 79 issue: 3 year: 2009 ident: 10.1016/j.chphi.2023.100367_bib0023 article-title: Electron and phonon transport in silicon nanowires: atomistic approach to thermoelectric properties publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.035415 contributor: fullname: Markussen – volume: 54 start-page: 163 year: 2018 ident: 10.1016/j.chphi.2023.100367_bib0029 article-title: Defect-engineered reduced graphene oxide sheets with high electric conductivity and controlled thermal conductivity for soft and flexible wearable thermoelectric generators publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.015 contributor: fullname: Zeng – volume: 7 start-page: 39 issue: 1 year: 2017 ident: 10.1016/j.chphi.2023.100367_bib0041 article-title: Improvement of the optoelectronic properties of organic molecules for nanoelectronics and solar cells applications: via DFT-B3LYP investigations publication-title: Curr. Phys. Chem. contributor: fullname: Nimr Ajeel – volume: 560 year: 2021 ident: 10.1016/j.chphi.2023.100367_bib0036 article-title: Effect of Mg content on electronic structure, optical and structural properties of amorphous ZnO nanoparticles: a DFTB study publication-title: J. Non Cryst. Solids doi: 10.1016/j.jnoncrysol.2021.120726 contributor: fullname: Kurban – volume: 27 issue: 13 year: 2015 ident: 10.1016/j.chphi.2023.100367_bib0006 article-title: Thermoelectric effects in graphene nanostructures publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/27/13/133204 contributor: fullname: Dollfus – volume: 4 start-page: 22411 issue: 43 year: 2014 ident: 10.1016/j.chphi.2023.100367_bib0037 article-title: DFT study on the effects of defect and metal-doping on the decomposition of H 2 S on the α-Fe 2 O 3 (0001) surface publication-title: RSC Adv. doi: 10.1039/C4RA02485K contributor: fullname: Ling – volume: 65 issue: 16 year: 2002 ident: 10.1016/j.chphi.2023.100367_bib0048 article-title: Density-functional method for nonequilibrium electron transport publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.165401 contributor: fullname: Brandbyge – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.chphi.2023.100367_bib0044 article-title: Anisotropic thermoelectric behavior in armchair and zigzag mono-and fewlayer MoS2 in thermoelectric generator applications publication-title: Sci. Rep. doi: 10.1038/srep13706 contributor: fullname: Arab – volume: 4 issue: 2 year: 2017 ident: 10.1016/j.chphi.2023.100367_bib0011 article-title: Enhancement of graphene thermoelectric performance through defect engineering publication-title: 2D Mater. doi: 10.1088/2053-1583/aa57fc contributor: fullname: Anno – volume: 122 year: 2020 ident: 10.1016/j.chphi.2023.100367_bib0018 article-title: An efficient mechanism for enhancing the thermoelectricity of twin graphene nanoribbons by introducing defects publication-title: Phys. E doi: 10.1016/j.physe.2020.114160 contributor: fullname: Peng |
SSID | ssj0002513174 |
Score | 2.3312907 |
Snippet | In this work, the influence of vacancy defects and germanium (Ge)-doping on structural stability, electronic and thermoelectric (TE) characteristics of... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 100367 |
SubjectTerms | DFT Figure of merit Graphene NEGF Thermoelectric |
Title | Tuning the thermoelectric properties of graphene nanoribbons by vacancy defect with Ge-doping |
URI | https://doaj.org/article/280d0701fb86422298b04e5a9996e3be |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagCyyIpygveWAk4Map44xQWphYKBILinJ-qEUiqUKLxL_nzmlKNxaGLFFkWZ_P99Ll-xi7BIzaqYwBbxpggSKhwCuVyEhlWR-U73npg4jtc_r0qu-HRJOzkvqimbCGHrgB7ibWwqJZ9jxoRe2KTINIXL-gRN1JcMH7CrVWTJEPxqiNgTFpaYbCQJeZzCbTa5ILp9EAGZTlf0PRGmN_CC2jXbazzAn5bbOXPbbhyn22NWil2A7Y23hB7QuOyRo99UfVqNdMDZ9RM70mVlReeR7op9F78bIoq3oKgDbF4Zt_FYa8KLeOpjc4NV_5g4ts-FvqkL2MhuPBY7TURYiMVGIepVKnWqkiTmPIwFhMQjLIFEAKBWZnLpE-9bHtGSsEsUshUFpoF5sMiy3htTxinbIq3THjykowELRg48SpPi4gDJVhPtPOJq7LrlqI8llDf5G3c2HveUA0J0TzBtEuuyMYV58Sd3V4gSeaL080_-tET_5jkVO2TftqBk_OWGdeL9w52_y0i4tgKT_v8sFU |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+thermoelectric+properties+of+graphene+nanoribbons+by+vacancy+defect+with+Ge-doping&rft.jtitle=Chemical+physics+impact&rft.au=Fouad+N.+Ajeel&rft.au=Ali+Ben+Ahmed&rft.date=2023-12-01&rft.pub=Elsevier&rft.eissn=2667-0224&rft.volume=7&rft.spage=100367&rft_id=info:doi/10.1016%2Fj.chphi.2023.100367&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_280d0701fb86422298b04e5a9996e3be |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-0224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-0224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-0224&client=summon |