A rigorous derivation of the Hamiltonian structure for the Vlasov equation

We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is of Lie–Poisson type. In parallel, it is classical that the Vlasov equation is a mean-field limit for a pairwise i...

Full description

Saved in:
Bibliographic Details
Published in:Forum of mathematics. Sigma Vol. 11
Main Authors: Miller, Joseph K., Nahmod, Andrea R., Pavlović, Nataša, Rosenzweig, Matthew, Staffilani, Gigliola
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 05-09-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is of Lie–Poisson type. In parallel, it is classical that the Vlasov equation is a mean-field limit for a pairwise interacting Newtonian system. Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation, both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this work as a classical counterpart to [MNP+20], which provided a rigorous derivation of the Hamiltonian structure of the cubic nonlinear Schrödinger equation from the many-body problem for interacting bosons in a certain infinite particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation.
AbstractList We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is of Lie–Poisson type. In parallel, it is classical that the Vlasov equation is a mean-field limit for a pairwise interacting Newtonian system. Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation, both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this work as a classical counterpart to [MNP+20], which provided a rigorous derivation of the Hamiltonian structure of the cubic nonlinear Schrödinger equation from the many-body problem for interacting bosons in a certain infinite particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation.
We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is of Lie–Poisson type . In parallel, it is classical that the Vlasov equation is a mean-field limit for a pairwise interacting Newtonian system. Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation, both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this work as a classical counterpart to [MNP + 20], which provided a rigorous derivation of the Hamiltonian structure of the cubic nonlinear Schrödinger equation from the many-body problem for interacting bosons in a certain infinite particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation.
ArticleNumber e77
Author Rosenzweig, Matthew
Staffilani, Gigliola
Nahmod, Andrea R.
Pavlović, Nataša
Miller, Joseph K.
Author_xml – sequence: 1
  givenname: Joseph K.
  orcidid: 0000-0002-6916-5773
  surname: Miller
  fullname: Miller, Joseph K.
  email: jkmiller@utexas.edu
  organization: 1Department of Mathematics, University of Texas at Austin, 2515 Speedway, Austin, 78712, United States of America; E-mail: jkmiller@utexas.edu
– sequence: 2
  givenname: Andrea R.
  surname: Nahmod
  fullname: Nahmod, Andrea R.
  email: nahmod@umass.edu
  organization: 2Department of Mathematics and Statistics, University of Massachusetts Amherst, 710 North Pleasant St, Amherst, 01003, United States of America; E-mail: nahmod@umass.edu
– sequence: 3
  givenname: Nataša
  surname: Pavlović
  fullname: Pavlović, Nataša
  email: natasa@math.utexas.edu
  organization: 3Department of Mathematics, University of Texas at Austin, 2515 Speedway, Austin, 78712, United States of America; E-mail: natasa@math.utexas.edu
– sequence: 4
  givenname: Matthew
  orcidid: 0000-0001-8842-9263
  surname: Rosenzweig
  fullname: Rosenzweig, Matthew
  email: mrosenz2@andrew.cmu.edu
  organization: 4Department of Mathematical Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, 15213, United States of America; E-mail: mrosenz2@andrew.cmu.edu
– sequence: 5
  givenname: Gigliola
  surname: Staffilani
  fullname: Staffilani, Gigliola
  email: gigliola@math.mit.edu
  organization: 5Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, 02139, United States of America; E-mail: gigliola@math.mit.edu
BookMark eNptkM1OwzAQhC1UJErpiReIxBGlrO04To5VBbSoEhfgatmxXVylcWsnlXh70h8BB0472v12djXXaND4xiB0i2GCAfMHu4kTAoROOLlAQwIMUgZlNvijr9A4xjUAYEw443yIXqZJcCsffBcTbYLby9b5JvE2aT9NMpcbV7e-cbJJYhu6qu2CSawPx-lHLaPfJ2bXHZdu0KWVdTTjcx2h96fHt9k8Xb4-L2bTZVrRHNqUcaJp3j-aKaoIpxJrmVHNS5XzDGcZ0Aw4JVRpRXXFi8IUGlRlCyJzKi3QEVqcfLWXa7ENbiPDl_DSiWPDh5WQoXVVbURegGZSqdJymVnVixJbjk3BLKsU2N7r7uS1DX7XmdiKte9C078vSJEDyzGjZU_dn6gq-BiDsT9XMYhD9qLPXhyyF5z0dHqm5UYFp1fm1_Q__hu2qYcF
Cites_doi 10.1016/0003-4916(80)90155-4
10.1007/s00220-008-0426-4
10.1002/cpa.20123
10.1016/j.jde.2021.10.042
10.1007/s00222-006-0022-1
10.1016/j.matpur.2006.01.005
10.1016/0167-2789(81)90036-1
10.1080/00411458608212706
10.1007/BF01208282
10.1016/j.jfa.2014.02.030
10.1090/conm/028/751977
10.1007/s10955-006-9271-z
10.1007/s42543-021-00041-x
10.3934/krm.2014.7.661
10.5802/aif.233
10.4310/MRL.2021.v28.n6.a3
10.1088/1751-8113/40/12/S09
10.1215/00127094-2020-0019
10.1090/bull/1728
10.1137/21M1392553
10.1080/03605302.2011.606863
10.1007/s00222-019-00868-3
10.1090/S0002-9947-1984-0719663-1
10.1007/s00220-009-0754-z
10.1103/PhysRevLett.45.790
10.1016/j.physd.2022.133164
10.1007/s00205-019-01397-2
10.1007/s11511-011-0068-9
10.1088/0951-7715/29/9/2755
10.2307/1970699
10.1016/j.aim.2020.107054
10.3934/krm.2013.6.919
10.1007/s00205-017-1125-0
10.1016/s0294-1449(16)30405-x
10.1007/BF01232273
10.1007/978-4-431-55285-7_8
10.1007/BFb0060678
10.1007/978-1-4684-9409-9
10.1090/S0894-0347-09-00635-3
10.1007/s00220-021-03978-3
10.1002/mma.1670030131
10.4007/annals.2010.172.291
10.1002/cpa.3160330205
10.1007/s40818-016-0008-2
10.1007/978-3-540-85332-9_16
10.1007/s00205-018-1275-8
10.1007/s00205-021-01705-9
10.1016/S0764-4442(97)86961-3
10.1103/RevModPhys.52.569
10.1093/mnras/76.2.70
10.1002/mma.1670060118
10.1007/s10955-019-02438-6
10.1016/0022-0396(92)90033-J
10.1016/j.jfa.2004.02.012
10.1016/j.jfa.2016.09.014
10.1007/s00205-015-0911-9
10.1007/BF01611497
10.1007/s10955-015-1351-5
10.1007/978-3-0346-0422-2_3
10.1007/s00205-006-0021-9
10.1007/s40818-021-00110-5
10.1016/0375-9601(80)90776-8
10.24033/asens.2261
10.1007/978-3-319-26883-5_1
10.1016/0022-0396(77)90049-3
10.1007/s00220-021-04117-8
10.1007/s00220-003-0948-8
10.1016/0167-2789(82)90043-4
10.1017/S0305004100042900
10.1007/s00220-016-2583-1
10.1093/imrn/rnab155
10.1007/s00220-016-2707-7
10.1080/03605309108820801
10.1002/mma.1670160202
ContentType Journal Article
Copyright The Author(s), 2023. Published by Cambridge University Press
The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2023. Published by Cambridge University Press
– notice: The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.1017/fms.2023.72
DatabaseName Cambridge Open Access Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Engineering Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Engineering Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 2050-5094
ExternalDocumentID oai_doaj_org_article_680d5abb9f7a4fbbb991f71e85f5cb0f
10_1017_fms_2023_72
GroupedDBID 09C
09E
0E1
0R~
5VS
8FE
8FG
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AANRG
AARAB
AASVR
ABBXD
ABDBF
ABGDZ
ABJCF
ABKKG
ABMWE
ABQTM
ABROB
ACBMC
ACGFS
ACIMK
ACIWK
ACREK
ACUIJ
ACUYZ
ACWGA
ACZBM
ACZUX
ACZWT
ADBBV
ADCGK
ADDNB
ADFEC
ADKIL
ADVJH
AEBAK
AEGXH
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
AUXHV
BBLKV
BCNDV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CJCSC
DOHLZ
EBS
GROUPED_DOAJ
HCIFZ
HG-
HZ~
I.6
IKXGN
IOEEP
IPYYG
IS6
I~P
JHPGK
JQKCU
KCGVB
KFECR
KQ8
L6V
LW7
M-V
M48
M7S
M~E
NIKVX
O9-
OK1
PTHSS
PYCCK
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
WXY
ZYDXJ
AAYXX
ABVZP
ADOVH
AEHGV
CHEAL
CITATION
CTKSN
EJD
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c360t-572d362024b3b273a1da43d79b67414403407323bdb3dc788e8d0bcf82a63af03
IEDL.DBID DOA
ISSN 2050-5094
IngestDate Tue Oct 22 15:15:05 EDT 2024
Thu Oct 10 19:11:03 EDT 2024
Thu Nov 21 21:20:18 EST 2024
Wed Mar 13 05:55:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 70S05
82C05
82C22
37K06
35Q83
35Q70
Language English
License https://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-572d362024b3b273a1da43d79b67414403407323bdb3dc788e8d0bcf82a63af03
ORCID 0000-0001-8842-9263
0000-0002-6916-5773
OpenAccessLink https://doaj.org/article/680d5abb9f7a4fbbb991f71e85f5cb0f
PQID 2860561539
PQPubID 2035935
PageCount 64
ParticipantIDs doaj_primary_oai_doaj_org_article_680d5abb9f7a4fbbb991f71e85f5cb0f
proquest_journals_2860561539
crossref_primary_10_1017_fms_2023_72
cambridge_journals_10_1017_fms_2023_72
PublicationCentury 2000
PublicationDate 2023-09-05
PublicationDateYYYYMMDD 2023-09-05
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-05
  day: 05
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Forum of mathematics. Sigma
PublicationTitleAlternate Forum of Mathematics, Sigma
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 1984; 281
1966; 16
1991; 16
2007; 183
1977; 25
1980; 45
1975; 15
1974
2020; 365
2016; 347
2016; 346
2020; 169
2013; 6
1992; 95
1968; 64
2022; 244
2015; 48
2011; 207
1980; 33
1915; 76
2014; 15
1981; 79
2009; 288
2019; 234
2020; 178
2008; 279
1980; 80
2014; 7
1991; 105
2004; 217
2003; 243
2016; 271
2019; 231
2009; 22
2007; 167
2021; 7
1979; 13
2004; 40
2007; 127
1985; 2
1981; 3
2006; 59
1981; 4
1986; 15
2021; 382
1978; 15
2012; 37
2021; 385
1938; 8
2016; 164
1976; 4
2022; 433
2021; 58
1980; 127
1997; 324
2006; 86
2016; 2
1993; 16
1970; 92
2016; 219
1980; 52
1984; 2
1984; 6
1982; 88
2022; 12
1961; 60
1969; 24
2010; 172
2007; 40
2022; 54
1977; 56
2019; 217
2016; 29
2017; 225
2014; 266
1998; 9
S2050509423000725_r53
S2050509423000725_r10
S2050509423000725_r54
S2050509423000725_r52
Bardos (S2050509423000725_r7) 1985; 2
S2050509423000725_r50
S2050509423000725_r94
S2050509423000725_r92
Iordanskiĭ (S2050509423000725_r46) 1961; 60
Arsenev (S2050509423000725_r5) 1975; 15
Dobrušin (S2050509423000725_r16) 1979; 13
S2050509423000725_r48
S2050509423000725_r49
S2050509423000725_r47
S2050509423000725_r44
S2050509423000725_r45
S2050509423000725_r89
S2050509423000725_r86
S2050509423000725_r42
Köthe (S2050509423000725_r51) 1969
S2050509423000725_r43
S2050509423000725_r87
S2050509423000725_r40
Weinstein (S2050509423000725_r93) 1998; 9
S2050509423000725_r84
S2050509423000725_r41
S2050509423000725_r85
S2050509423000725_r82
S2050509423000725_r83
Turski (S2050509423000725_r95) 1976; 4
S2050509423000725_r80
S2050509423000725_r81
Arnold (S2050509423000725_r4) 1969; 24
Morrison (S2050509423000725_r67) 1982; 88
S2050509423000725_r39
Ukai (S2050509423000725_r90) 1978; 15
S2050509423000725_r37
S2050509423000725_r35
S2050509423000725_r79
S2050509423000725_r36
S2050509423000725_r77
Marsden (S2050509423000725_r68) 2013
S2050509423000725_r33
S2050509423000725_r78
S2050509423000725_r34
S2050509423000725_r75
S2050509423000725_r31
S2050509423000725_r32
S2050509423000725_r76
S2050509423000725_r73
S2050509423000725_r30
S2050509423000725_r74
S2050509423000725_r71
S2050509423000725_r8
S2050509423000725_r72
S2050509423000725_r9
S2050509423000725_r70
S2050509423000725_r6
S2050509423000725_r2
S2050509423000725_r3
Hauray (S2050509423000725_r38) 2014
Vlasov (S2050509423000725_r91) 1938; 8
S2050509423000725_r28
S2050509423000725_r29
S2050509423000725_r26
S2050509423000725_r27
S2050509423000725_r24
S2050509423000725_r25
S2050509423000725_r69
S2050509423000725_r22
S2050509423000725_r66
S2050509423000725_r23
S2050509423000725_r64
S2050509423000725_r20
S2050509423000725_r21
S2050509423000725_r65
S2050509423000725_r62
S2050509423000725_r63
S2050509423000725_r60
Engelking (S2050509423000725_r19) 1989; 6
Adami (S2050509423000725_r1) 2004; 40
Milnor (S2050509423000725_r61) 1984; 2
Chen (S2050509423000725_r15) 2014; 15
S2050509423000725_r17
S2050509423000725_r18
Schaefer (S2050509423000725_r88) 1999
S2050509423000725_r59
S2050509423000725_r13
S2050509423000725_r57
S2050509423000725_r58
S2050509423000725_r14
S2050509423000725_r11
S2050509423000725_r55
S2050509423000725_r12
S2050509423000725_r56
References_xml – volume: 4
  start-page: 394
  issue: 3
  year: 1981
  end-page: 406
  article-title: The Hamiltonian structure of the Maxwell–Vlasov equations
  publication-title: Phys. D
– volume: 217
  start-page: 433
  issue: 2
  year: 2019
  end-page: 547
  publication-title: Invent. Math
– volume: 29
  start-page: 2755
  issue: 9
  year: 2016
  end-page: 2774
  article-title: Modified scattering for the Vlasov–Poisson system’
  publication-title: Nonlinearity
– volume: 13
  start-page: 48
  issue: 2
  year: 1979
  end-page: 58
  article-title: Vlasov equations
  publication-title: Funktsional. Anal. i Prilozhen.
– volume: 16
  start-page: 1313
  issue: 8–9
  year: 1991
  end-page: 1335
  article-title: Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions
  publication-title: Comm. Partial Differential Equations
– volume: 64
  start-page: 341
  year: 1968
  end-page: 364
  article-title: Sequential convergence in locally convex spaces
  publication-title: Proc. Cambridge Philos. Soc.
– volume: 183
  start-page: 489
  issue: 3
  year: 2007
  end-page: 524
  publication-title: Arch. Ration. Mech. Anal.
– volume: 95
  start-page: 281
  issue: 2
  year: 1992
  end-page: 303
  article-title: Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data
  publication-title: J. Differential Equations
– volume: 385
  start-page: 1741
  issue: 3
  year: 2021
  end-page: 1769
  article-title: Stability of a point charge for the Vlasov–Poisson system: The radial case
  publication-title: Comm. Math. Phys.
– volume: 2
  start-page: 101
  issue: 2
  year: 1985
  end-page: 118
  article-title: Global existence for the Vlasov–Poisson equation in $3$ space variables with small initial data
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
– volume: 231
  start-page: 115
  issue: 1
  year: 2019
  end-page: 151
  article-title: Generalized symplectization of Vlasov dynamics and application to the Vlasov–Poisson system’
  publication-title: Arch. Ration. Mech. Anal.
– volume: 281
  start-page: 147
  issue: 1
  year: 1984
  end-page: 177
  article-title: Semidirect products and reduction in mechanics
  publication-title: Trans. Amer. Math. Soc.
– volume: 79
  start-page: 9
  issue: 1
  year: 1981
  end-page: 24
  article-title: Vlasov hydrodynamics of a quantum mechanical model
  publication-title: Comm. Math. Phys.
– volume: 48
  start-page: 891
  issue: 4
  year: 2015
  end-page: 940
  article-title: Particle approximation of Vlasov equations with singular forces: Propagation of chaos
  publication-title: Ann. Sci. Éc. Norm. Supér (4)
– volume: 56
  start-page: 101
  issue: 2
  year: 1977
  end-page: 113
  publication-title: Comm. Math. Phys.
– volume: 3
  start-page: 503
  issue: 3
  year: 1981
  end-page: 511
  article-title: Collisionless Boltzmann equations and integrable moment equations
  publication-title: Phys. D
– volume: 9
  start-page: 213
  issue: 1
  year: 1998
  end-page: 238
  article-title: Poisson geometry
  publication-title: Symplectic Geometry.
– volume: 15
  year: 2014
  publication-title: Ann. Henri Poincaré
– volume: 88
  start-page: 13
  year: 1982
  end-page: 46
  article-title: Poisson brackets for fluids and plasmas
  publication-title: AIP Conference Proceedings
– volume: 40
  start-page: 3033
  issue: 12
  year: 2007
  end-page: 3045
  article-title: Atomism and quantization
  publication-title: J. Phys. A
– volume: 15
  start-page: 245
  issue: 2
  year: 1978
  end-page: 261
  article-title: On classical solutions in the large in time of two-dimensional Vlasov’s equation
  publication-title: Osaka Math. J.
– volume: 219
  start-page: 887
  issue: 2
  year: 2016
  end-page: 902
  article-title: Landau damping in Sobolev spaces for the Vlasov-HMF model
  publication-title: Arch. Ration. Mech. Anal.
– volume: 25
  start-page: 342
  issue: 3
  year: 1977
  end-page: 364
  article-title: Global symmetric solutions of the initial value problem of stellar dynamics
  publication-title: J. Differential Equations
– volume: 6
  start-page: 262
  issue: 2
  year: 1984
  end-page: 279
  article-title: Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation
  publication-title: Math. Methods Appl. Sci.
– volume: 243
  start-page: 1
  issue: 1
  year: 2003
  end-page: 54
  article-title: Banach Lie–Poisson spaces and reduction’
  publication-title: Comm. Math. Phys.
– volume: 76
  start-page: 70
  issue: 2
  year: 1915
  end-page: 84
  article-title: On the theory of star-streaming and the structure of the universe
  publication-title: Monthly Notices of the Royal Astronomical Society
– volume: 271
  start-page: 3588
  issue: 12
  year: 2016
  end-page: 3627
  article-title: Mean field limit and propagation of chaos for Vlasov systems with bounded forces
  publication-title: J. Funct. Anal.
– volume: 40
  start-page: 93
  issue: 2
  year: 2004
  end-page: 108
  article-title: Towards a rigorous derivation of the cubic NLSE in dimension one
  publication-title: Asymptotic Analysis
– volume: 15
  start-page: 136
  year: 1975
  end-page: 147
  article-title: Existence in the large of a weak solution of Vlasov’s system of equations
  publication-title: Ž. Vyčisl. Mat i Mat. Fiz.
– volume: 266
  start-page: 6055
  issue: 10
  year: 2014
  end-page: 6157
  article-title: On Kac’s chaos and related problems
  publication-title: J. Funct. Anal.
– volume: 60
  start-page: 181
  year: 1961
  end-page: 194
  article-title: The Cauchy problem for the kinetic equation of plasma
  publication-title: Trudy Mat. Inst. Steklov.
– volume: 12
  start-page: 8865
  year: 2022
  end-page: 8889
  article-title: On the asymptotic behavior of solutions to the Vlasov–Poisson system
  publication-title: Int. Math. Res. Not. IMRN
– volume: 382
  start-page: 613
  issue: 1
  year: 2021
  end-page: 653
  article-title: On the size of chaos via Glauber calculus in the classical mean-field dynamics
  publication-title: Comm. Math. Phys.
– volume: 365
  year: 2020
  article-title: A rigorous derivation of the Hamiltonian structure for the nonlinear Schrödinger equation
  publication-title: Adv. Math
– volume: 16
  start-page: 319
  year: 1966
  end-page: 361
  article-title: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits
  publication-title: Ann. Inst. Fourier (Grenoble)
– volume: 16
  start-page: 75
  issue: 2
  year: 1993
  end-page: 86
  article-title: On the asymptotic growth of the solutions of the Vlasov–Poisson system
  publication-title: Math. Methods Appl. Sci.
– volume: 33
  start-page: 173
  issue: 2
  year: 1980
  end-page: 197
  article-title: Global-in-time solutions of the two-dimensional Vlasov–Poisson systems
  publication-title: Comm. Pure Appl. Math.
– volume: 105
  start-page: 415
  issue: 2
  year: 1991
  end-page: 430
  article-title: Propagation of moments and regularity for the $3$ -dimensional Vlasov–Poisson system
  publication-title: Invent. Math.
– volume: 4
  start-page: 179
  year: 1976
  end-page: 191
  article-title: Canonical theories of systems interacting electromagnetically
  publication-title: Letters in Applied and Engineering Sciences
– volume: 92
  start-page: 102
  year: 1970
  end-page: 163
  article-title: Groups of diffeomorphisms and the motion of an incompressible fluid’
  publication-title: Ann. of Math. (2)
– volume: 225
  start-page: 1201
  issue: 3
  year: 2017
  end-page: 1231
  article-title: A mean field limit for the Vlasov–Poisson system
  publication-title: Arch. Ration. Mech. Anal.
– volume: 279
  start-page: 169
  issue: 1
  year: 2008
  end-page: 185
  article-title: On the uniqueness of solutions to the Gross–Pitaevskii hierarchy
  publication-title: Comm. Math. Phys.
– volume: 288
  start-page: 1023
  issue: 3
  year: 2009
  end-page: 1059
  article-title: On the mean-field limit of bosons with Coulomb two-body interaction
  publication-title: Comm. Math. Phys.
– volume: 80
  start-page: 383
  issue: 5–6
  year: 1980
  end-page: 386
  article-title: The Maxwell–Vlasov equations as a continuous Hamiltonian system’
  publication-title: Phys. Lett. A
– volume: 59
  start-page: 1659
  issue: 12
  year: 2006
  end-page: 1741
  article-title: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate
  publication-title: Comm. Pure Appl. Math.
– volume: 127
  start-page: 220
  issue: 1
  year: 1980
  end-page: 253
  article-title: The moment map and collective motion
  publication-title: Ann. Physics
– volume: 52
  start-page: 569
  issue: 3
  year: 1980
  end-page: 615
  article-title: Kinetic equations from Hamiltonian dynamics: Markovian limits
  publication-title: Rev. Mod. Phys.
– volume: 45
  start-page: 790
  issue: 10
  year: 1980
  end-page: 794
  article-title: Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics
  publication-title: Phys. Rev. Lett.
– volume: 217
  start-page: 103
  issue: 1
  year: 2004
  end-page: 125
  article-title: Extensions of Banach Lie–Poisson spaces
  publication-title: J. Funct. Anal.
– volume: 6
  start-page: 919
  issue: 4
  year: 2013
  end-page: 943
  article-title: Empirical measures and Vlasov hierarchies
  publication-title: Kinet. Relat. Models
– volume: 58
  start-page: 377
  issue: 3
  year: 2021
  end-page: 442
  article-title: Geometric hydrodynamics and infinite-dimensional Newton’s equations
  publication-title: Bull. Amer. Math. Soc. (N.S.)
– volume: 207
  start-page: 29
  issue: 1
  year: 2011
  end-page: 201
  article-title: On Landau damping
  publication-title: Acta Math.
– volume: 127
  start-page: 1193
  issue: 6
  year: 2007
  end-page: 1220
  article-title: Rigorous derivation of the cubic NLS in dimension one
  publication-title: Journal of Statistical Physics
– volume: 37
  start-page: 1273
  issue: 7
  year: 2012
  end-page: 1285
  article-title: Moment propagation for weak solutions to the Vlasov–Poisson system
  publication-title: Comm. Partial Differential Equations
– volume: 2
  year: 1984
  article-title: ‘Remarks on infinite-dimensional Lie groups’, in Relativ
  publication-title: Groups Topol.
– volume: 234
  start-page: 549
  issue: 2
  year: 2019
  end-page: 573
  article-title: Geometry of the Madelung transform
  publication-title: Arch. Ration. Mech. Anal.
– volume: 244
  start-page: 27
  issue: 1
  year: 2022
  end-page: 50
  article-title: A new perspective on Wasserstein distances for kinetic problems
  publication-title: Arch. Ration. Mech. Anal.
– volume: 8
  start-page: 291
  issue: 3
  year: 1938
  end-page: 318
  article-title: On high-frequency properties of electron gas
  publication-title: Journal of Experimental and Theoretical Physics
– volume: 164
  start-page: 1
  issue: 1
  year: 2016
  end-page: 16
  article-title: On mean field limits for dynamical systems
  publication-title: J. Stat. Phys.
– volume: 172
  start-page: 291
  issue: 1
  year: 2010
  end-page: 370
  article-title: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose-Einstein condensate
  publication-title: Ann. Math.
– volume: 7
  issue: 2
  year: 2021
  article-title: Asymptotic stability of equilibria for screened Vlasov–Poisson systems via pointwise dispersive estimates’
  publication-title: Ann. PDE
– volume: 15
  start-page: 597
  issue: 5
  year: 1986
  end-page: 628
  article-title: On the derivation of the one-dimensional Vlasov equation
  publication-title: Transport Theory Statist. Phys.
– volume: 3
  start-page: 445
  issue: 4
  year: 1981
  end-page: 455
  article-title: On the Vlasov hierarchy
  publication-title: Math. Methods Appl. Sci.
– volume: 22
  year: 2009
  article-title: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential
  publication-title: J. Amer. Math. Soc.
– volume: 433
  year: 2022
  article-title: A Poisson map from kinetic theory to hydrodynamics with non-constant entropy
  publication-title: Phys. D
– volume: 54
  start-page: 940
  issue: 1
  year: 2022
  end-page: 953
  article-title: Plasma echoes near stable Penrose data
  publication-title: SIAM J. Math. Anal.
– volume: 24
  start-page: 225
  issue: 3
  year: 1969
  end-page: 226
  article-title: The Hamiltonian nature of the Euler equations in the dynamics of a rigid body and of an ideal fluid
  publication-title: Uspehi Mat. Nauk
– volume: 2
  issue: 1
  year: 2016
  article-title: Landau damping: Paraproducts and Gevrey regularity
  publication-title: Ann. PDE
– volume: 178
  start-page: 472
  issue: 2
  year: 2020
  end-page: 498
  article-title: A mean field limit for the Hamiltonian Vlasov system
  publication-title: J. Stat. Phys.
– volume: 169
  start-page: 2887
  issue: 15
  year: 2020
  end-page: 2935
  article-title: Mean field limit for Coulomb-type flows
  publication-title: Duke Math. J
– start-page: 275
  year: 1974
  end-page: 290
  article-title: Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen’
  publication-title: Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen (Tagung, Math. Forschungsinst., Oberwolfach, 1973)
– volume: 7
  start-page: 661
  issue: 4
  year: 2014
  end-page: 711
  article-title: A review of the mean field limits for Vlasov equations
  publication-title: Kinet. Relat. Models
– volume: 346
  start-page: 469
  issue: 2
  year: 2016
  end-page: 482
  article-title: A uniqueness criterion for unbounded solutions to the Vlasov–Poisson system
  publication-title: Comm. Math. Phys.
– volume: 167
  start-page: 515
  issue: 3
  year: 2007
  end-page: 614
  article-title: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems
  publication-title: Inven. Math.
– volume: 86
  start-page: 68
  issue: 1
  year: 2006
  end-page: 79
  article-title: Uniqueness of the solution to the Vlasov–Poisson system with bounded density’
  publication-title: J. Math. Pures Appl. (9)
– volume: 324
  start-page: 873
  issue: 8
  year: 1997
  end-page: 877
  article-title: Unicité de la solution faible à support compact de l’équation de Vlasov–Poisson
  publication-title: C. R. Acad. Sci. Paris Sér. I Math.
– volume: 347
  start-page: 271
  issue: 1
  year: 2016
  end-page: 289
  article-title: The Vlasov–Poisson dynamics as the mean field limit of extended charges
  publication-title: Comm. Math. Phys.
– volume: 15
  year: 2014
  ident: S2050509423000725_r15
  publication-title: Ann. Henri Poincaré
  contributor:
    fullname: Chen
– ident: S2050509423000725_r37
  doi: 10.1016/0003-4916(80)90155-4
– ident: S2050509423000725_r53
  doi: 10.1007/s00220-008-0426-4
– ident: S2050509423000725_r20
  doi: 10.1002/cpa.20123
– volume: 9
  start-page: 213
  year: 1998
  ident: S2050509423000725_r93
  article-title: Poisson geometry
  publication-title: Symplectic Geometry.
  contributor:
    fullname: Weinstein
– ident: S2050509423000725_r13
  doi: 10.1016/j.jde.2021.10.042
– ident: S2050509423000725_r21
  doi: 10.1007/s00222-006-0022-1
– ident: S2050509423000725_r57
  doi: 10.1016/j.matpur.2006.01.005
– ident: S2050509423000725_r29
  doi: 10.1016/0167-2789(81)90036-1
– ident: S2050509423000725_r89
  doi: 10.1080/00411458608212706
– ident: S2050509423000725_r74
  doi: 10.1007/BF01208282
– ident: S2050509423000725_r43
  doi: 10.1016/j.jfa.2014.02.030
– ident: S2050509423000725_r63
  doi: 10.1090/conm/028/751977
– ident: S2050509423000725_r2
  doi: 10.1007/s10955-006-9271-z
– ident: S2050509423000725_r26
  doi: 10.1007/s42543-021-00041-x
– ident: S2050509423000725_r48
  doi: 10.3934/krm.2014.7.661
– volume: 13
  start-page: 48
  year: 1979
  ident: S2050509423000725_r16
  article-title: Vlasov equations
  publication-title: Funktsional. Anal. i Prilozhen.
  contributor:
    fullname: Dobrušin
– ident: S2050509423000725_r3
  doi: 10.5802/aif.233
– ident: S2050509423000725_r32
  doi: 10.4310/MRL.2021.v28.n6.a3
– volume-title: Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2012–2013
  year: 2014
  ident: S2050509423000725_r38
  contributor:
    fullname: Hauray
– ident: S2050509423000725_r24
  doi: 10.1088/1751-8113/40/12/S09
– volume-title: Graduate Texts in Mathematics
  year: 1999
  ident: S2050509423000725_r88
  contributor:
    fullname: Schaefer
– ident: S2050509423000725_r85
  doi: 10.1215/00127094-2020-0019
– ident: S2050509423000725_r55
  doi: 10.1090/bull/1728
– volume-title: Topological Vector Spaces. I
  year: 1969
  ident: S2050509423000725_r51
  contributor:
    fullname: Köthe
– ident: S2050509423000725_r33
  doi: 10.1137/21M1392553
– ident: S2050509423000725_r79
  doi: 10.1080/03605302.2011.606863
– ident: S2050509423000725_r11
  doi: 10.1007/s00222-019-00868-3
– ident: S2050509423000725_r69
  doi: 10.1090/S0002-9947-1984-0719663-1
– ident: S2050509423000725_r25
  doi: 10.1007/s00220-009-0754-z
– ident: S2050509423000725_r60
  doi: 10.1103/PhysRevLett.45.790
– ident: S2050509423000725_r12
  doi: 10.1016/j.physd.2022.133164
– ident: S2050509423000725_r54
  doi: 10.1007/s00205-019-01397-2
– ident: S2050509423000725_r70
  doi: 10.1007/s11511-011-0068-9
– ident: S2050509423000725_r14
  doi: 10.1088/0951-7715/29/9/2755
– ident: S2050509423000725_r64
– ident: S2050509423000725_r18
  doi: 10.2307/1970699
– ident: S2050509423000725_r65
  doi: 10.1016/j.aim.2020.107054
– volume: 8
  start-page: 291
  year: 1938
  ident: S2050509423000725_r91
  article-title: On high-frequency properties of electron gas
  publication-title: Journal of Experimental and Theoretical Physics
  contributor:
    fullname: Vlasov
– ident: S2050509423000725_r31
  doi: 10.3934/krm.2013.6.919
– ident: S2050509423000725_r59
  doi: 10.1007/s00205-017-1125-0
– volume-title: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems
  year: 2013
  ident: S2050509423000725_r68
  contributor:
    fullname: Marsden
– volume: 40
  start-page: 93
  year: 2004
  ident: S2050509423000725_r1
  article-title: Towards a rigorous derivation of the cubic NLSE in dimension one
  publication-title: Asymptotic Analysis
  contributor:
    fullname: Adami
– volume: 2
  start-page: 101
  year: 1985
  ident: S2050509423000725_r7
  article-title: Global existence for the Vlasov–Poisson equation in $3$ space variables with small initial data
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/s0294-1449(16)30405-x
  contributor:
    fullname: Bardos
– volume: 24
  start-page: 225
  year: 1969
  ident: S2050509423000725_r4
  article-title: The Hamiltonian nature of the Euler equations in the dynamics of a rigid body and of an ideal fluid
  publication-title: Uspehi Mat. Nauk
  contributor:
    fullname: Arnold
– ident: S2050509423000725_r58
  doi: 10.1007/BF01232273
– ident: S2050509423000725_r75
  doi: 10.1007/978-4-431-55285-7_8
– volume: 15
  start-page: 245
  year: 1978
  ident: S2050509423000725_r90
  article-title: On classical solutions in the large in time of two-dimensional Vlasov’s equation
  publication-title: Osaka Math. J.
  contributor:
    fullname: Ukai
– ident: S2050509423000725_r76
  doi: 10.1007/BFb0060678
– ident: S2050509423000725_r52
  doi: 10.1007/978-1-4684-9409-9
– ident: S2050509423000725_r22
  doi: 10.1090/S0894-0347-09-00635-3
– ident: S2050509423000725_r36
– ident: S2050509423000725_r17
  doi: 10.1007/s00220-021-03978-3
– volume: 88
  start-page: 13
  year: 1982
  ident: S2050509423000725_r67
  article-title: Poisson brackets for fluids and plasmas
  publication-title: AIP Conference Proceedings
  contributor:
    fullname: Morrison
– ident: S2050509423000725_r87
  doi: 10.1002/mma.1670030131
– ident: S2050509423000725_r23
  doi: 10.4007/annals.2010.172.291
– ident: S2050509423000725_r94
  doi: 10.1002/cpa.3160330205
– ident: S2050509423000725_r9
  doi: 10.1007/s40818-016-0008-2
– ident: S2050509423000725_r30
  doi: 10.1007/978-3-540-85332-9_16
– ident: S2050509423000725_r72
  doi: 10.1007/s00205-018-1275-8
– ident: S2050509423000725_r45
  doi: 10.1007/s00205-021-01705-9
– ident: S2050509423000725_r82
  doi: 10.1016/S0764-4442(97)86961-3
– ident: S2050509423000725_r86
  doi: 10.1103/RevModPhys.52.569
– volume: 15
  start-page: 136
  year: 1975
  ident: S2050509423000725_r5
  article-title: Existence in the large of a weak solution of Vlasov’s system of equations
  publication-title: Ž. Vyčisl. Mat i Mat. Fiz.
  contributor:
    fullname: Arsenev
– ident: S2050509423000725_r49
  doi: 10.1093/mnras/76.2.70
– ident: S2050509423000725_r39
  doi: 10.1002/mma.1670060118
– ident: S2050509423000725_r73
  doi: 10.1007/s10955-019-02438-6
– ident: S2050509423000725_r80
  doi: 10.1016/0022-0396(92)90033-J
– volume: 6
  volume-title: General Topology
  year: 1989
  ident: S2050509423000725_r19
  contributor:
    fullname: Engelking
– ident: S2050509423000725_r78
  doi: 10.1016/j.jfa.2004.02.012
– ident: S2050509423000725_r50
  doi: 10.1016/j.jfa.2016.09.014
– ident: S2050509423000725_r27
  doi: 10.1007/s00205-015-0911-9
– ident: S2050509423000725_r8
  doi: 10.1007/BF01611497
– ident: S2050509423000725_r10
  doi: 10.1007/s10955-015-1351-5
– volume: 2
  year: 1984
  ident: S2050509423000725_r61
  article-title: ‘Remarks on infinite-dimensional Lie groups’, in Relativ
  publication-title: Groups Topol.
  contributor:
    fullname: Milnor
– ident: S2050509423000725_r28
  doi: 10.1007/978-3-0346-0422-2_3
– ident: S2050509423000725_r40
  doi: 10.1007/s00205-006-0021-9
– volume: 60
  start-page: 181
  year: 1961
  ident: S2050509423000725_r46
  article-title: The Cauchy problem for the kinetic equation of plasma
  publication-title: Trudy Mat. Inst. Steklov.
  contributor:
    fullname: Iordanskiĭ
– volume: 4
  start-page: 179
  year: 1976
  ident: S2050509423000725_r95
  article-title: Canonical theories of systems interacting electromagnetically
  publication-title: Letters in Applied and Engineering Sciences
  contributor:
    fullname: Turski
– ident: S2050509423000725_r42
  doi: 10.1007/s40818-021-00110-5
– ident: S2050509423000725_r66
  doi: 10.1016/0375-9601(80)90776-8
– ident: S2050509423000725_r41
  doi: 10.24033/asens.2261
– ident: S2050509423000725_r34
  doi: 10.1007/978-3-319-26883-5_1
– ident: S2050509423000725_r6
  doi: 10.1016/0022-0396(77)90049-3
– ident: S2050509423000725_r81
  doi: 10.1007/s00220-021-04117-8
– ident: S2050509423000725_r77
  doi: 10.1007/s00220-003-0948-8
– ident: S2050509423000725_r83
– ident: S2050509423000725_r71
  doi: 10.1016/0167-2789(82)90043-4
– ident: S2050509423000725_r92
  doi: 10.1017/S0305004100042900
– ident: S2050509423000725_r56
  doi: 10.1007/s00220-016-2583-1
– ident: S2050509423000725_r47
  doi: 10.1093/imrn/rnab155
– ident: S2050509423000725_r62
  doi: 10.1007/s00220-016-2707-7
– ident: S2050509423000725_r84
  doi: 10.1080/03605309108820801
– ident: S2050509423000725_r35
– ident: S2050509423000725_r44
  doi: 10.1002/mma.1670160202
SSID ssj0001127577
Score 2.2827387
Snippet We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system...
SourceID doaj
proquest
crossref
cambridge
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms 35Q70
35Q83
37K06
70S05
82C05
82C22
Algebra
Analysis
Bosons
Brackets
Derivation
Hamiltonian functions
Mathematical functions
Ordinary differential equations
Partial differential equations
Physics
Random variables
Schrodinger equation
Vlasov equations
Title A rigorous derivation of the Hamiltonian structure for the Vlasov equation
URI https://www.cambridge.org/core/product/identifier/S2050509423000725/type/journal_article
https://www.proquest.com/docview/2860561539
https://doaj.org/article/680d5abb9f7a4fbbb991f71e85f5cb0f
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwyIpygU5AGxBdzYju2xQKsKCRYeYov83Gigofx-zk5IQSCxsEXxST7dd_bdWefPCJ1YrXXOuMysKnjGGCwp43Vs-1MQbiWxWsW7w9M7cfskr8aRJqd76iv2hDX0wI3hzkHecW2MCkKzYOBDDYMYeskDt4aEtPuS4ksxlU5XIm-5EO2FvMgRHZ4jOXdOzyIX8JJG4Vs4Sqz9PzblFGkmm2ijTRHxqFFtC6342TZav-n4VesddD3CUFVXcyjbsQMfas5VcRUwCOFpPLSAnA6Qxw0_7GLuMWSnafQR8uXqHfvXhuR7Fz1MxveX06x9FSGztCBvGRe5g6gDsdVQA8mHHjrNqBPKFJAdMEYo1Gg0p8YZ6ixUuF46YmyQuS6oDoTuod6smvl9hFUgRhvJC-YpkzDqiSNOeR4C9bSwfXTaGapsfbsum74wAaugLqNFS5H3AfTWiuVLw5Lxu9hFtHAnEqmt0w8AvGwBL_8CvI8Gn_gsdcplEUshTtXBf8xxiNaiyqmXjA9QD6DyR2i1dovj5GcfAwjZDg
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rigorous+derivation+of+the+Hamiltonian+structure+for+the+Vlasov+equation&rft.jtitle=Forum+of+mathematics.+Sigma&rft.au=Miller%2C+Joseph+K.&rft.au=Nahmod%2C+Andrea+R.&rft.au=Pavlovi%C4%87%2C+Nata%C5%A1a&rft.au=Rosenzweig%2C+Matthew&rft.date=2023-09-05&rft.pub=Cambridge+University+Press&rft.eissn=2050-5094&rft.volume=11&rft_id=info:doi/10.1017%2Ffms.2023.72&rft.externalDocID=10_1017_fms_2023_72
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-5094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-5094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-5094&client=summon