A rigorous derivation of the Hamiltonian structure for the Vlasov equation
We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is of Lie–Poisson type. In parallel, it is classical that the Vlasov equation is a mean-field limit for a pairwise i...
Saved in:
Published in: | Forum of mathematics. Sigma Vol. 11 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cambridge, UK
Cambridge University Press
05-09-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is of Lie–Poisson type. In parallel, it is classical that the Vlasov equation is a mean-field limit for a pairwise interacting Newtonian system. Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation, both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this work as a classical counterpart to [MNP+20], which provided a rigorous derivation of the Hamiltonian structure of the cubic nonlinear Schrödinger equation from the many-body problem for interacting bosons in a certain infinite particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation. |
---|---|
AbstractList | We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is of Lie–Poisson type. In parallel, it is classical that the Vlasov equation is a mean-field limit for a pairwise interacting Newtonian system. Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation, both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this work as a classical counterpart to [MNP+20], which provided a rigorous derivation of the Hamiltonian structure of the cubic nonlinear Schrödinger equation from the many-body problem for interacting bosons in a certain infinite particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation. We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is of Lie–Poisson type . In parallel, it is classical that the Vlasov equation is a mean-field limit for a pairwise interacting Newtonian system. Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation, both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this work as a classical counterpart to [MNP + 20], which provided a rigorous derivation of the Hamiltonian structure of the cubic nonlinear Schrödinger equation from the many-body problem for interacting bosons in a certain infinite particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation. |
ArticleNumber | e77 |
Author | Rosenzweig, Matthew Staffilani, Gigliola Nahmod, Andrea R. Pavlović, Nataša Miller, Joseph K. |
Author_xml | – sequence: 1 givenname: Joseph K. orcidid: 0000-0002-6916-5773 surname: Miller fullname: Miller, Joseph K. email: jkmiller@utexas.edu organization: 1Department of Mathematics, University of Texas at Austin, 2515 Speedway, Austin, 78712, United States of America; E-mail: jkmiller@utexas.edu – sequence: 2 givenname: Andrea R. surname: Nahmod fullname: Nahmod, Andrea R. email: nahmod@umass.edu organization: 2Department of Mathematics and Statistics, University of Massachusetts Amherst, 710 North Pleasant St, Amherst, 01003, United States of America; E-mail: nahmod@umass.edu – sequence: 3 givenname: Nataša surname: Pavlović fullname: Pavlović, Nataša email: natasa@math.utexas.edu organization: 3Department of Mathematics, University of Texas at Austin, 2515 Speedway, Austin, 78712, United States of America; E-mail: natasa@math.utexas.edu – sequence: 4 givenname: Matthew orcidid: 0000-0001-8842-9263 surname: Rosenzweig fullname: Rosenzweig, Matthew email: mrosenz2@andrew.cmu.edu organization: 4Department of Mathematical Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, 15213, United States of America; E-mail: mrosenz2@andrew.cmu.edu – sequence: 5 givenname: Gigliola surname: Staffilani fullname: Staffilani, Gigliola email: gigliola@math.mit.edu organization: 5Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, 02139, United States of America; E-mail: gigliola@math.mit.edu |
BookMark | eNptkM1OwzAQhC1UJErpiReIxBGlrO04To5VBbSoEhfgatmxXVylcWsnlXh70h8BB0472v12djXXaND4xiB0i2GCAfMHu4kTAoROOLlAQwIMUgZlNvijr9A4xjUAYEw443yIXqZJcCsffBcTbYLby9b5JvE2aT9NMpcbV7e-cbJJYhu6qu2CSawPx-lHLaPfJ2bXHZdu0KWVdTTjcx2h96fHt9k8Xb4-L2bTZVrRHNqUcaJp3j-aKaoIpxJrmVHNS5XzDGcZ0Aw4JVRpRXXFi8IUGlRlCyJzKi3QEVqcfLWXa7ENbiPDl_DSiWPDh5WQoXVVbURegGZSqdJymVnVixJbjk3BLKsU2N7r7uS1DX7XmdiKte9C078vSJEDyzGjZU_dn6gq-BiDsT9XMYhD9qLPXhyyF5z0dHqm5UYFp1fm1_Q__hu2qYcF |
Cites_doi | 10.1016/0003-4916(80)90155-4 10.1007/s00220-008-0426-4 10.1002/cpa.20123 10.1016/j.jde.2021.10.042 10.1007/s00222-006-0022-1 10.1016/j.matpur.2006.01.005 10.1016/0167-2789(81)90036-1 10.1080/00411458608212706 10.1007/BF01208282 10.1016/j.jfa.2014.02.030 10.1090/conm/028/751977 10.1007/s10955-006-9271-z 10.1007/s42543-021-00041-x 10.3934/krm.2014.7.661 10.5802/aif.233 10.4310/MRL.2021.v28.n6.a3 10.1088/1751-8113/40/12/S09 10.1215/00127094-2020-0019 10.1090/bull/1728 10.1137/21M1392553 10.1080/03605302.2011.606863 10.1007/s00222-019-00868-3 10.1090/S0002-9947-1984-0719663-1 10.1007/s00220-009-0754-z 10.1103/PhysRevLett.45.790 10.1016/j.physd.2022.133164 10.1007/s00205-019-01397-2 10.1007/s11511-011-0068-9 10.1088/0951-7715/29/9/2755 10.2307/1970699 10.1016/j.aim.2020.107054 10.3934/krm.2013.6.919 10.1007/s00205-017-1125-0 10.1016/s0294-1449(16)30405-x 10.1007/BF01232273 10.1007/978-4-431-55285-7_8 10.1007/BFb0060678 10.1007/978-1-4684-9409-9 10.1090/S0894-0347-09-00635-3 10.1007/s00220-021-03978-3 10.1002/mma.1670030131 10.4007/annals.2010.172.291 10.1002/cpa.3160330205 10.1007/s40818-016-0008-2 10.1007/978-3-540-85332-9_16 10.1007/s00205-018-1275-8 10.1007/s00205-021-01705-9 10.1016/S0764-4442(97)86961-3 10.1103/RevModPhys.52.569 10.1093/mnras/76.2.70 10.1002/mma.1670060118 10.1007/s10955-019-02438-6 10.1016/0022-0396(92)90033-J 10.1016/j.jfa.2004.02.012 10.1016/j.jfa.2016.09.014 10.1007/s00205-015-0911-9 10.1007/BF01611497 10.1007/s10955-015-1351-5 10.1007/978-3-0346-0422-2_3 10.1007/s00205-006-0021-9 10.1007/s40818-021-00110-5 10.1016/0375-9601(80)90776-8 10.24033/asens.2261 10.1007/978-3-319-26883-5_1 10.1016/0022-0396(77)90049-3 10.1007/s00220-021-04117-8 10.1007/s00220-003-0948-8 10.1016/0167-2789(82)90043-4 10.1017/S0305004100042900 10.1007/s00220-016-2583-1 10.1093/imrn/rnab155 10.1007/s00220-016-2707-7 10.1080/03605309108820801 10.1002/mma.1670160202 |
ContentType | Journal Article |
Copyright | The Author(s), 2023. Published by Cambridge University Press The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), 2023. Published by Cambridge University Press – notice: The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | IKXGN AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.1017/fms.2023.72 |
DatabaseName | Cambridge Open Access Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection ProQuest Engineering Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Engineering Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Physics |
EISSN | 2050-5094 |
ExternalDocumentID | oai_doaj_org_article_680d5abb9f7a4fbbb991f71e85f5cb0f 10_1017_fms_2023_72 |
GroupedDBID | 09C 09E 0E1 0R~ 5VS 8FE 8FG AABES AABWE AACJH AAEED AAGFV AAKTX AANRG AARAB AASVR ABBXD ABDBF ABGDZ ABJCF ABKKG ABMWE ABQTM ABROB ACBMC ACGFS ACIMK ACIWK ACREK ACUIJ ACUYZ ACWGA ACZBM ACZUX ACZWT ADBBV ADCGK ADDNB ADFEC ADKIL ADVJH AEBAK AEGXH AENGE AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE AUXHV BBLKV BCNDV BENPR BGHMG BGLVJ BLZWO BMAJL C0O CBIIA CCPQU CCQAD CFAFE CJCSC DOHLZ EBS GROUPED_DOAJ HCIFZ HG- HZ~ I.6 IKXGN IOEEP IPYYG IS6 I~P JHPGK JQKCU KCGVB KFECR KQ8 L6V LW7 M-V M48 M7S M~E NIKVX O9- OK1 PTHSS PYCCK RAMDC RCA ROL RR0 S6- S6U SAAAG T9M UT1 WFFJZ WXY ZYDXJ AAYXX ABVZP ADOVH AEHGV CHEAL CITATION CTKSN EJD DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c360t-572d362024b3b273a1da43d79b67414403407323bdb3dc788e8d0bcf82a63af03 |
IEDL.DBID | DOA |
ISSN | 2050-5094 |
IngestDate | Tue Oct 22 15:15:05 EDT 2024 Thu Oct 10 19:11:03 EDT 2024 Thu Nov 21 21:20:18 EST 2024 Wed Mar 13 05:55:06 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 70S05 82C05 82C22 37K06 35Q83 35Q70 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-572d362024b3b273a1da43d79b67414403407323bdb3dc788e8d0bcf82a63af03 |
ORCID | 0000-0001-8842-9263 0000-0002-6916-5773 |
OpenAccessLink | https://doaj.org/article/680d5abb9f7a4fbbb991f71e85f5cb0f |
PQID | 2860561539 |
PQPubID | 2035935 |
PageCount | 64 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_680d5abb9f7a4fbbb991f71e85f5cb0f proquest_journals_2860561539 crossref_primary_10_1017_fms_2023_72 cambridge_journals_10_1017_fms_2023_72 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-05 |
PublicationDateYYYYMMDD | 2023-09-05 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Forum of mathematics. Sigma |
PublicationTitleAlternate | Forum of Mathematics, Sigma |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 1984; 281 1966; 16 1991; 16 2007; 183 1977; 25 1980; 45 1975; 15 1974 2020; 365 2016; 347 2016; 346 2020; 169 2013; 6 1992; 95 1968; 64 2022; 244 2015; 48 2011; 207 1980; 33 1915; 76 2014; 15 1981; 79 2009; 288 2019; 234 2020; 178 2008; 279 1980; 80 2014; 7 1991; 105 2004; 217 2003; 243 2016; 271 2019; 231 2009; 22 2007; 167 2021; 7 1979; 13 2004; 40 2007; 127 1985; 2 1981; 3 2006; 59 1981; 4 1986; 15 2021; 382 1978; 15 2012; 37 2021; 385 1938; 8 2016; 164 1976; 4 2022; 433 2021; 58 1980; 127 1997; 324 2006; 86 2016; 2 1993; 16 1970; 92 2016; 219 1980; 52 1984; 2 1984; 6 1982; 88 2022; 12 1961; 60 1969; 24 2010; 172 2007; 40 2022; 54 1977; 56 2019; 217 2016; 29 2017; 225 2014; 266 1998; 9 S2050509423000725_r53 S2050509423000725_r10 S2050509423000725_r54 S2050509423000725_r52 Bardos (S2050509423000725_r7) 1985; 2 S2050509423000725_r50 S2050509423000725_r94 S2050509423000725_r92 Iordanskiĭ (S2050509423000725_r46) 1961; 60 Arsenev (S2050509423000725_r5) 1975; 15 Dobrušin (S2050509423000725_r16) 1979; 13 S2050509423000725_r48 S2050509423000725_r49 S2050509423000725_r47 S2050509423000725_r44 S2050509423000725_r45 S2050509423000725_r89 S2050509423000725_r86 S2050509423000725_r42 Köthe (S2050509423000725_r51) 1969 S2050509423000725_r43 S2050509423000725_r87 S2050509423000725_r40 Weinstein (S2050509423000725_r93) 1998; 9 S2050509423000725_r84 S2050509423000725_r41 S2050509423000725_r85 S2050509423000725_r82 S2050509423000725_r83 Turski (S2050509423000725_r95) 1976; 4 S2050509423000725_r80 S2050509423000725_r81 Arnold (S2050509423000725_r4) 1969; 24 Morrison (S2050509423000725_r67) 1982; 88 S2050509423000725_r39 Ukai (S2050509423000725_r90) 1978; 15 S2050509423000725_r37 S2050509423000725_r35 S2050509423000725_r79 S2050509423000725_r36 S2050509423000725_r77 Marsden (S2050509423000725_r68) 2013 S2050509423000725_r33 S2050509423000725_r78 S2050509423000725_r34 S2050509423000725_r75 S2050509423000725_r31 S2050509423000725_r32 S2050509423000725_r76 S2050509423000725_r73 S2050509423000725_r30 S2050509423000725_r74 S2050509423000725_r71 S2050509423000725_r8 S2050509423000725_r72 S2050509423000725_r9 S2050509423000725_r70 S2050509423000725_r6 S2050509423000725_r2 S2050509423000725_r3 Hauray (S2050509423000725_r38) 2014 Vlasov (S2050509423000725_r91) 1938; 8 S2050509423000725_r28 S2050509423000725_r29 S2050509423000725_r26 S2050509423000725_r27 S2050509423000725_r24 S2050509423000725_r25 S2050509423000725_r69 S2050509423000725_r22 S2050509423000725_r66 S2050509423000725_r23 S2050509423000725_r64 S2050509423000725_r20 S2050509423000725_r21 S2050509423000725_r65 S2050509423000725_r62 S2050509423000725_r63 S2050509423000725_r60 Engelking (S2050509423000725_r19) 1989; 6 Adami (S2050509423000725_r1) 2004; 40 Milnor (S2050509423000725_r61) 1984; 2 Chen (S2050509423000725_r15) 2014; 15 S2050509423000725_r17 S2050509423000725_r18 Schaefer (S2050509423000725_r88) 1999 S2050509423000725_r59 S2050509423000725_r13 S2050509423000725_r57 S2050509423000725_r58 S2050509423000725_r14 S2050509423000725_r11 S2050509423000725_r55 S2050509423000725_r12 S2050509423000725_r56 |
References_xml | – volume: 4 start-page: 394 issue: 3 year: 1981 end-page: 406 article-title: The Hamiltonian structure of the Maxwell–Vlasov equations publication-title: Phys. D – volume: 217 start-page: 433 issue: 2 year: 2019 end-page: 547 publication-title: Invent. Math – volume: 29 start-page: 2755 issue: 9 year: 2016 end-page: 2774 article-title: Modified scattering for the Vlasov–Poisson system’ publication-title: Nonlinearity – volume: 13 start-page: 48 issue: 2 year: 1979 end-page: 58 article-title: Vlasov equations publication-title: Funktsional. Anal. i Prilozhen. – volume: 16 start-page: 1313 issue: 8–9 year: 1991 end-page: 1335 article-title: Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions publication-title: Comm. Partial Differential Equations – volume: 64 start-page: 341 year: 1968 end-page: 364 article-title: Sequential convergence in locally convex spaces publication-title: Proc. Cambridge Philos. Soc. – volume: 183 start-page: 489 issue: 3 year: 2007 end-page: 524 publication-title: Arch. Ration. Mech. Anal. – volume: 95 start-page: 281 issue: 2 year: 1992 end-page: 303 article-title: Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data publication-title: J. Differential Equations – volume: 385 start-page: 1741 issue: 3 year: 2021 end-page: 1769 article-title: Stability of a point charge for the Vlasov–Poisson system: The radial case publication-title: Comm. Math. Phys. – volume: 2 start-page: 101 issue: 2 year: 1985 end-page: 118 article-title: Global existence for the Vlasov–Poisson equation in $3$ space variables with small initial data publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire – volume: 231 start-page: 115 issue: 1 year: 2019 end-page: 151 article-title: Generalized symplectization of Vlasov dynamics and application to the Vlasov–Poisson system’ publication-title: Arch. Ration. Mech. Anal. – volume: 281 start-page: 147 issue: 1 year: 1984 end-page: 177 article-title: Semidirect products and reduction in mechanics publication-title: Trans. Amer. Math. Soc. – volume: 79 start-page: 9 issue: 1 year: 1981 end-page: 24 article-title: Vlasov hydrodynamics of a quantum mechanical model publication-title: Comm. Math. Phys. – volume: 48 start-page: 891 issue: 4 year: 2015 end-page: 940 article-title: Particle approximation of Vlasov equations with singular forces: Propagation of chaos publication-title: Ann. Sci. Éc. Norm. Supér (4) – volume: 56 start-page: 101 issue: 2 year: 1977 end-page: 113 publication-title: Comm. Math. Phys. – volume: 3 start-page: 503 issue: 3 year: 1981 end-page: 511 article-title: Collisionless Boltzmann equations and integrable moment equations publication-title: Phys. D – volume: 9 start-page: 213 issue: 1 year: 1998 end-page: 238 article-title: Poisson geometry publication-title: Symplectic Geometry. – volume: 15 year: 2014 publication-title: Ann. Henri Poincaré – volume: 88 start-page: 13 year: 1982 end-page: 46 article-title: Poisson brackets for fluids and plasmas publication-title: AIP Conference Proceedings – volume: 40 start-page: 3033 issue: 12 year: 2007 end-page: 3045 article-title: Atomism and quantization publication-title: J. Phys. A – volume: 15 start-page: 245 issue: 2 year: 1978 end-page: 261 article-title: On classical solutions in the large in time of two-dimensional Vlasov’s equation publication-title: Osaka Math. J. – volume: 219 start-page: 887 issue: 2 year: 2016 end-page: 902 article-title: Landau damping in Sobolev spaces for the Vlasov-HMF model publication-title: Arch. Ration. Mech. Anal. – volume: 25 start-page: 342 issue: 3 year: 1977 end-page: 364 article-title: Global symmetric solutions of the initial value problem of stellar dynamics publication-title: J. Differential Equations – volume: 6 start-page: 262 issue: 2 year: 1984 end-page: 279 article-title: Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation publication-title: Math. Methods Appl. Sci. – volume: 243 start-page: 1 issue: 1 year: 2003 end-page: 54 article-title: Banach Lie–Poisson spaces and reduction’ publication-title: Comm. Math. Phys. – volume: 76 start-page: 70 issue: 2 year: 1915 end-page: 84 article-title: On the theory of star-streaming and the structure of the universe publication-title: Monthly Notices of the Royal Astronomical Society – volume: 271 start-page: 3588 issue: 12 year: 2016 end-page: 3627 article-title: Mean field limit and propagation of chaos for Vlasov systems with bounded forces publication-title: J. Funct. Anal. – volume: 40 start-page: 93 issue: 2 year: 2004 end-page: 108 article-title: Towards a rigorous derivation of the cubic NLSE in dimension one publication-title: Asymptotic Analysis – volume: 15 start-page: 136 year: 1975 end-page: 147 article-title: Existence in the large of a weak solution of Vlasov’s system of equations publication-title: Ž. Vyčisl. Mat i Mat. Fiz. – volume: 266 start-page: 6055 issue: 10 year: 2014 end-page: 6157 article-title: On Kac’s chaos and related problems publication-title: J. Funct. Anal. – volume: 60 start-page: 181 year: 1961 end-page: 194 article-title: The Cauchy problem for the kinetic equation of plasma publication-title: Trudy Mat. Inst. Steklov. – volume: 12 start-page: 8865 year: 2022 end-page: 8889 article-title: On the asymptotic behavior of solutions to the Vlasov–Poisson system publication-title: Int. Math. Res. Not. IMRN – volume: 382 start-page: 613 issue: 1 year: 2021 end-page: 653 article-title: On the size of chaos via Glauber calculus in the classical mean-field dynamics publication-title: Comm. Math. Phys. – volume: 365 year: 2020 article-title: A rigorous derivation of the Hamiltonian structure for the nonlinear Schrödinger equation publication-title: Adv. Math – volume: 16 start-page: 319 year: 1966 end-page: 361 article-title: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits publication-title: Ann. Inst. Fourier (Grenoble) – volume: 16 start-page: 75 issue: 2 year: 1993 end-page: 86 article-title: On the asymptotic growth of the solutions of the Vlasov–Poisson system publication-title: Math. Methods Appl. Sci. – volume: 33 start-page: 173 issue: 2 year: 1980 end-page: 197 article-title: Global-in-time solutions of the two-dimensional Vlasov–Poisson systems publication-title: Comm. Pure Appl. Math. – volume: 105 start-page: 415 issue: 2 year: 1991 end-page: 430 article-title: Propagation of moments and regularity for the $3$ -dimensional Vlasov–Poisson system publication-title: Invent. Math. – volume: 4 start-page: 179 year: 1976 end-page: 191 article-title: Canonical theories of systems interacting electromagnetically publication-title: Letters in Applied and Engineering Sciences – volume: 92 start-page: 102 year: 1970 end-page: 163 article-title: Groups of diffeomorphisms and the motion of an incompressible fluid’ publication-title: Ann. of Math. (2) – volume: 225 start-page: 1201 issue: 3 year: 2017 end-page: 1231 article-title: A mean field limit for the Vlasov–Poisson system publication-title: Arch. Ration. Mech. Anal. – volume: 279 start-page: 169 issue: 1 year: 2008 end-page: 185 article-title: On the uniqueness of solutions to the Gross–Pitaevskii hierarchy publication-title: Comm. Math. Phys. – volume: 288 start-page: 1023 issue: 3 year: 2009 end-page: 1059 article-title: On the mean-field limit of bosons with Coulomb two-body interaction publication-title: Comm. Math. Phys. – volume: 80 start-page: 383 issue: 5–6 year: 1980 end-page: 386 article-title: The Maxwell–Vlasov equations as a continuous Hamiltonian system’ publication-title: Phys. Lett. A – volume: 59 start-page: 1659 issue: 12 year: 2006 end-page: 1741 article-title: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate publication-title: Comm. Pure Appl. Math. – volume: 127 start-page: 220 issue: 1 year: 1980 end-page: 253 article-title: The moment map and collective motion publication-title: Ann. Physics – volume: 52 start-page: 569 issue: 3 year: 1980 end-page: 615 article-title: Kinetic equations from Hamiltonian dynamics: Markovian limits publication-title: Rev. Mod. Phys. – volume: 45 start-page: 790 issue: 10 year: 1980 end-page: 794 article-title: Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics publication-title: Phys. Rev. Lett. – volume: 217 start-page: 103 issue: 1 year: 2004 end-page: 125 article-title: Extensions of Banach Lie–Poisson spaces publication-title: J. Funct. Anal. – volume: 6 start-page: 919 issue: 4 year: 2013 end-page: 943 article-title: Empirical measures and Vlasov hierarchies publication-title: Kinet. Relat. Models – volume: 58 start-page: 377 issue: 3 year: 2021 end-page: 442 article-title: Geometric hydrodynamics and infinite-dimensional Newton’s equations publication-title: Bull. Amer. Math. Soc. (N.S.) – volume: 207 start-page: 29 issue: 1 year: 2011 end-page: 201 article-title: On Landau damping publication-title: Acta Math. – volume: 127 start-page: 1193 issue: 6 year: 2007 end-page: 1220 article-title: Rigorous derivation of the cubic NLS in dimension one publication-title: Journal of Statistical Physics – volume: 37 start-page: 1273 issue: 7 year: 2012 end-page: 1285 article-title: Moment propagation for weak solutions to the Vlasov–Poisson system publication-title: Comm. Partial Differential Equations – volume: 2 year: 1984 article-title: ‘Remarks on infinite-dimensional Lie groups’, in Relativ publication-title: Groups Topol. – volume: 234 start-page: 549 issue: 2 year: 2019 end-page: 573 article-title: Geometry of the Madelung transform publication-title: Arch. Ration. Mech. Anal. – volume: 244 start-page: 27 issue: 1 year: 2022 end-page: 50 article-title: A new perspective on Wasserstein distances for kinetic problems publication-title: Arch. Ration. Mech. Anal. – volume: 8 start-page: 291 issue: 3 year: 1938 end-page: 318 article-title: On high-frequency properties of electron gas publication-title: Journal of Experimental and Theoretical Physics – volume: 164 start-page: 1 issue: 1 year: 2016 end-page: 16 article-title: On mean field limits for dynamical systems publication-title: J. Stat. Phys. – volume: 172 start-page: 291 issue: 1 year: 2010 end-page: 370 article-title: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose-Einstein condensate publication-title: Ann. Math. – volume: 7 issue: 2 year: 2021 article-title: Asymptotic stability of equilibria for screened Vlasov–Poisson systems via pointwise dispersive estimates’ publication-title: Ann. PDE – volume: 15 start-page: 597 issue: 5 year: 1986 end-page: 628 article-title: On the derivation of the one-dimensional Vlasov equation publication-title: Transport Theory Statist. Phys. – volume: 3 start-page: 445 issue: 4 year: 1981 end-page: 455 article-title: On the Vlasov hierarchy publication-title: Math. Methods Appl. Sci. – volume: 22 year: 2009 article-title: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential publication-title: J. Amer. Math. Soc. – volume: 433 year: 2022 article-title: A Poisson map from kinetic theory to hydrodynamics with non-constant entropy publication-title: Phys. D – volume: 54 start-page: 940 issue: 1 year: 2022 end-page: 953 article-title: Plasma echoes near stable Penrose data publication-title: SIAM J. Math. Anal. – volume: 24 start-page: 225 issue: 3 year: 1969 end-page: 226 article-title: The Hamiltonian nature of the Euler equations in the dynamics of a rigid body and of an ideal fluid publication-title: Uspehi Mat. Nauk – volume: 2 issue: 1 year: 2016 article-title: Landau damping: Paraproducts and Gevrey regularity publication-title: Ann. PDE – volume: 178 start-page: 472 issue: 2 year: 2020 end-page: 498 article-title: A mean field limit for the Hamiltonian Vlasov system publication-title: J. Stat. Phys. – volume: 169 start-page: 2887 issue: 15 year: 2020 end-page: 2935 article-title: Mean field limit for Coulomb-type flows publication-title: Duke Math. J – start-page: 275 year: 1974 end-page: 290 article-title: Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen’ publication-title: Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen (Tagung, Math. Forschungsinst., Oberwolfach, 1973) – volume: 7 start-page: 661 issue: 4 year: 2014 end-page: 711 article-title: A review of the mean field limits for Vlasov equations publication-title: Kinet. Relat. Models – volume: 346 start-page: 469 issue: 2 year: 2016 end-page: 482 article-title: A uniqueness criterion for unbounded solutions to the Vlasov–Poisson system publication-title: Comm. Math. Phys. – volume: 167 start-page: 515 issue: 3 year: 2007 end-page: 614 article-title: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems publication-title: Inven. Math. – volume: 86 start-page: 68 issue: 1 year: 2006 end-page: 79 article-title: Uniqueness of the solution to the Vlasov–Poisson system with bounded density’ publication-title: J. Math. Pures Appl. (9) – volume: 324 start-page: 873 issue: 8 year: 1997 end-page: 877 article-title: Unicité de la solution faible à support compact de l’équation de Vlasov–Poisson publication-title: C. R. Acad. Sci. Paris Sér. I Math. – volume: 347 start-page: 271 issue: 1 year: 2016 end-page: 289 article-title: The Vlasov–Poisson dynamics as the mean field limit of extended charges publication-title: Comm. Math. Phys. – volume: 15 year: 2014 ident: S2050509423000725_r15 publication-title: Ann. Henri Poincaré contributor: fullname: Chen – ident: S2050509423000725_r37 doi: 10.1016/0003-4916(80)90155-4 – ident: S2050509423000725_r53 doi: 10.1007/s00220-008-0426-4 – ident: S2050509423000725_r20 doi: 10.1002/cpa.20123 – volume: 9 start-page: 213 year: 1998 ident: S2050509423000725_r93 article-title: Poisson geometry publication-title: Symplectic Geometry. contributor: fullname: Weinstein – ident: S2050509423000725_r13 doi: 10.1016/j.jde.2021.10.042 – ident: S2050509423000725_r21 doi: 10.1007/s00222-006-0022-1 – ident: S2050509423000725_r57 doi: 10.1016/j.matpur.2006.01.005 – ident: S2050509423000725_r29 doi: 10.1016/0167-2789(81)90036-1 – ident: S2050509423000725_r89 doi: 10.1080/00411458608212706 – ident: S2050509423000725_r74 doi: 10.1007/BF01208282 – ident: S2050509423000725_r43 doi: 10.1016/j.jfa.2014.02.030 – ident: S2050509423000725_r63 doi: 10.1090/conm/028/751977 – ident: S2050509423000725_r2 doi: 10.1007/s10955-006-9271-z – ident: S2050509423000725_r26 doi: 10.1007/s42543-021-00041-x – ident: S2050509423000725_r48 doi: 10.3934/krm.2014.7.661 – volume: 13 start-page: 48 year: 1979 ident: S2050509423000725_r16 article-title: Vlasov equations publication-title: Funktsional. Anal. i Prilozhen. contributor: fullname: Dobrušin – ident: S2050509423000725_r3 doi: 10.5802/aif.233 – ident: S2050509423000725_r32 doi: 10.4310/MRL.2021.v28.n6.a3 – volume-title: Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2012–2013 year: 2014 ident: S2050509423000725_r38 contributor: fullname: Hauray – ident: S2050509423000725_r24 doi: 10.1088/1751-8113/40/12/S09 – volume-title: Graduate Texts in Mathematics year: 1999 ident: S2050509423000725_r88 contributor: fullname: Schaefer – ident: S2050509423000725_r85 doi: 10.1215/00127094-2020-0019 – ident: S2050509423000725_r55 doi: 10.1090/bull/1728 – volume-title: Topological Vector Spaces. I year: 1969 ident: S2050509423000725_r51 contributor: fullname: Köthe – ident: S2050509423000725_r33 doi: 10.1137/21M1392553 – ident: S2050509423000725_r79 doi: 10.1080/03605302.2011.606863 – ident: S2050509423000725_r11 doi: 10.1007/s00222-019-00868-3 – ident: S2050509423000725_r69 doi: 10.1090/S0002-9947-1984-0719663-1 – ident: S2050509423000725_r25 doi: 10.1007/s00220-009-0754-z – ident: S2050509423000725_r60 doi: 10.1103/PhysRevLett.45.790 – ident: S2050509423000725_r12 doi: 10.1016/j.physd.2022.133164 – ident: S2050509423000725_r54 doi: 10.1007/s00205-019-01397-2 – ident: S2050509423000725_r70 doi: 10.1007/s11511-011-0068-9 – ident: S2050509423000725_r14 doi: 10.1088/0951-7715/29/9/2755 – ident: S2050509423000725_r64 – ident: S2050509423000725_r18 doi: 10.2307/1970699 – ident: S2050509423000725_r65 doi: 10.1016/j.aim.2020.107054 – volume: 8 start-page: 291 year: 1938 ident: S2050509423000725_r91 article-title: On high-frequency properties of electron gas publication-title: Journal of Experimental and Theoretical Physics contributor: fullname: Vlasov – ident: S2050509423000725_r31 doi: 10.3934/krm.2013.6.919 – ident: S2050509423000725_r59 doi: 10.1007/s00205-017-1125-0 – volume-title: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems year: 2013 ident: S2050509423000725_r68 contributor: fullname: Marsden – volume: 40 start-page: 93 year: 2004 ident: S2050509423000725_r1 article-title: Towards a rigorous derivation of the cubic NLSE in dimension one publication-title: Asymptotic Analysis contributor: fullname: Adami – volume: 2 start-page: 101 year: 1985 ident: S2050509423000725_r7 article-title: Global existence for the Vlasov–Poisson equation in $3$ space variables with small initial data publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/s0294-1449(16)30405-x contributor: fullname: Bardos – volume: 24 start-page: 225 year: 1969 ident: S2050509423000725_r4 article-title: The Hamiltonian nature of the Euler equations in the dynamics of a rigid body and of an ideal fluid publication-title: Uspehi Mat. Nauk contributor: fullname: Arnold – ident: S2050509423000725_r58 doi: 10.1007/BF01232273 – ident: S2050509423000725_r75 doi: 10.1007/978-4-431-55285-7_8 – volume: 15 start-page: 245 year: 1978 ident: S2050509423000725_r90 article-title: On classical solutions in the large in time of two-dimensional Vlasov’s equation publication-title: Osaka Math. J. contributor: fullname: Ukai – ident: S2050509423000725_r76 doi: 10.1007/BFb0060678 – ident: S2050509423000725_r52 doi: 10.1007/978-1-4684-9409-9 – ident: S2050509423000725_r22 doi: 10.1090/S0894-0347-09-00635-3 – ident: S2050509423000725_r36 – ident: S2050509423000725_r17 doi: 10.1007/s00220-021-03978-3 – volume: 88 start-page: 13 year: 1982 ident: S2050509423000725_r67 article-title: Poisson brackets for fluids and plasmas publication-title: AIP Conference Proceedings contributor: fullname: Morrison – ident: S2050509423000725_r87 doi: 10.1002/mma.1670030131 – ident: S2050509423000725_r23 doi: 10.4007/annals.2010.172.291 – ident: S2050509423000725_r94 doi: 10.1002/cpa.3160330205 – ident: S2050509423000725_r9 doi: 10.1007/s40818-016-0008-2 – ident: S2050509423000725_r30 doi: 10.1007/978-3-540-85332-9_16 – ident: S2050509423000725_r72 doi: 10.1007/s00205-018-1275-8 – ident: S2050509423000725_r45 doi: 10.1007/s00205-021-01705-9 – ident: S2050509423000725_r82 doi: 10.1016/S0764-4442(97)86961-3 – ident: S2050509423000725_r86 doi: 10.1103/RevModPhys.52.569 – volume: 15 start-page: 136 year: 1975 ident: S2050509423000725_r5 article-title: Existence in the large of a weak solution of Vlasov’s system of equations publication-title: Ž. Vyčisl. Mat i Mat. Fiz. contributor: fullname: Arsenev – ident: S2050509423000725_r49 doi: 10.1093/mnras/76.2.70 – ident: S2050509423000725_r39 doi: 10.1002/mma.1670060118 – ident: S2050509423000725_r73 doi: 10.1007/s10955-019-02438-6 – ident: S2050509423000725_r80 doi: 10.1016/0022-0396(92)90033-J – volume: 6 volume-title: General Topology year: 1989 ident: S2050509423000725_r19 contributor: fullname: Engelking – ident: S2050509423000725_r78 doi: 10.1016/j.jfa.2004.02.012 – ident: S2050509423000725_r50 doi: 10.1016/j.jfa.2016.09.014 – ident: S2050509423000725_r27 doi: 10.1007/s00205-015-0911-9 – ident: S2050509423000725_r8 doi: 10.1007/BF01611497 – ident: S2050509423000725_r10 doi: 10.1007/s10955-015-1351-5 – volume: 2 year: 1984 ident: S2050509423000725_r61 article-title: ‘Remarks on infinite-dimensional Lie groups’, in Relativ publication-title: Groups Topol. contributor: fullname: Milnor – ident: S2050509423000725_r28 doi: 10.1007/978-3-0346-0422-2_3 – ident: S2050509423000725_r40 doi: 10.1007/s00205-006-0021-9 – volume: 60 start-page: 181 year: 1961 ident: S2050509423000725_r46 article-title: The Cauchy problem for the kinetic equation of plasma publication-title: Trudy Mat. Inst. Steklov. contributor: fullname: Iordanskiĭ – volume: 4 start-page: 179 year: 1976 ident: S2050509423000725_r95 article-title: Canonical theories of systems interacting electromagnetically publication-title: Letters in Applied and Engineering Sciences contributor: fullname: Turski – ident: S2050509423000725_r42 doi: 10.1007/s40818-021-00110-5 – ident: S2050509423000725_r66 doi: 10.1016/0375-9601(80)90776-8 – ident: S2050509423000725_r41 doi: 10.24033/asens.2261 – ident: S2050509423000725_r34 doi: 10.1007/978-3-319-26883-5_1 – ident: S2050509423000725_r6 doi: 10.1016/0022-0396(77)90049-3 – ident: S2050509423000725_r81 doi: 10.1007/s00220-021-04117-8 – ident: S2050509423000725_r77 doi: 10.1007/s00220-003-0948-8 – ident: S2050509423000725_r83 – ident: S2050509423000725_r71 doi: 10.1016/0167-2789(82)90043-4 – ident: S2050509423000725_r92 doi: 10.1017/S0305004100042900 – ident: S2050509423000725_r56 doi: 10.1007/s00220-016-2583-1 – ident: S2050509423000725_r47 doi: 10.1093/imrn/rnab155 – ident: S2050509423000725_r62 doi: 10.1007/s00220-016-2707-7 – ident: S2050509423000725_r84 doi: 10.1080/03605309108820801 – ident: S2050509423000725_r35 – ident: S2050509423000725_r44 doi: 10.1002/mma.1670160202 |
SSID | ssj0001127577 |
Score | 2.2827387 |
Snippet | We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system... |
SourceID | doaj proquest crossref cambridge |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | 35Q70 35Q83 37K06 70S05 82C05 82C22 Algebra Analysis Bosons Brackets Derivation Hamiltonian functions Mathematical functions Ordinary differential equations Partial differential equations Physics Random variables Schrodinger equation Vlasov equations |
Title | A rigorous derivation of the Hamiltonian structure for the Vlasov equation |
URI | https://www.cambridge.org/core/product/identifier/S2050509423000725/type/journal_article https://www.proquest.com/docview/2860561539 https://doaj.org/article/680d5abb9f7a4fbbb991f71e85f5cb0f |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwyIpygU5AGxBdzYju2xQKsKCRYeYov83Gigofx-zk5IQSCxsEXxST7dd_bdWefPCJ1YrXXOuMysKnjGGCwp43Vs-1MQbiWxWsW7w9M7cfskr8aRJqd76iv2hDX0wI3hzkHecW2MCkKzYOBDDYMYeskDt4aEtPuS4ksxlU5XIm-5EO2FvMgRHZ4jOXdOzyIX8JJG4Vs4Sqz9PzblFGkmm2ijTRHxqFFtC6342TZav-n4VesddD3CUFVXcyjbsQMfas5VcRUwCOFpPLSAnA6Qxw0_7GLuMWSnafQR8uXqHfvXhuR7Fz1MxveX06x9FSGztCBvGRe5g6gDsdVQA8mHHjrNqBPKFJAdMEYo1Gg0p8YZ6ixUuF46YmyQuS6oDoTuod6smvl9hFUgRhvJC-YpkzDqiSNOeR4C9bSwfXTaGapsfbsum74wAaugLqNFS5H3AfTWiuVLw5Lxu9hFtHAnEqmt0w8AvGwBL_8CvI8Gn_gsdcplEUshTtXBf8xxiNaiyqmXjA9QD6DyR2i1dovj5GcfAwjZDg |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rigorous+derivation+of+the+Hamiltonian+structure+for+the+Vlasov+equation&rft.jtitle=Forum+of+mathematics.+Sigma&rft.au=Miller%2C+Joseph+K.&rft.au=Nahmod%2C+Andrea+R.&rft.au=Pavlovi%C4%87%2C+Nata%C5%A1a&rft.au=Rosenzweig%2C+Matthew&rft.date=2023-09-05&rft.pub=Cambridge+University+Press&rft.eissn=2050-5094&rft.volume=11&rft_id=info:doi/10.1017%2Ffms.2023.72&rft.externalDocID=10_1017_fms_2023_72 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-5094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-5094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-5094&client=summon |