The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data

The technology, which plays a significant role in our lives, has made it possible for many of the appliances and gadgets we use on a daily basis to be monitored and controlled remotely. Health and fitness data is collected by wearable devices attached to patients' bodies. A number of parties co...

Full description

Saved in:
Bibliographic Details
Published in:Journal of King Saud University. Science Vol. 35; no. 9; p. 102927
Main Authors: Zamani, Abu Sarwar, Hashim, Aisha Hassan Abdalla, Akhtar, Md. Mobin, Samdani, Faizan, Siddiqui, Ahmad Talha, Alluhayb, Adel, Hamza, Manar Ahmed, Ahmad, Naved
Format: Journal Article
Language:English
Published: Elsevier 01-12-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The technology, which plays a significant role in our lives, has made it possible for many of the appliances and gadgets we use on a daily basis to be monitored and controlled remotely. Health and fitness data is collected by wearable devices attached to patients' bodies. A number of parties could benefit from this technology, including doctors, insurers, and health providers. This technology, including smartwatches, smart ring, smart cloth wristbands, and GPS shoes, is frequently used for fitness and wellness since it allows users to track their day-to-day health. Devices that compute the sleep characteristics by storing sleep movements fall within the category of wearables worn on the wrist. In order to lead a healthy lifestyle, sleep is crucial. Inadequate sleep can harm one's physical, mental, and emotional well-being and increase the risk of developing a number of ailments, including stress, heart disease, high blood pressure, insulin resistance, and other conditions. Deep learning (DL) models have recently been used to forecast sleep-quality based on wearables information from the awake hours. Deep learning has been demonstrated to be capable of predicting sleep efficiency based on wearable data obtained during awake periods. In this regard, this study creates a novel deep learning model for wearables-enabled smart health monitoring system (DLM-WESHMS) for the prediction of sleep quality. The wearables are initially able to collect data linked to sleep-activity using the described DLM-WESHMS approach. The data is then put through pre-processing to create a standard format. Using the DLM-WESHMS, sleep quality is predicted using the deep belief network (DBN) model. The DBN model uses the auto-encoders algorithm (AEA) to predict popularity, which improves the accuracy of its predictions of sleep quality. The experimental outcomes of the DLM-WESHMS approach are investigated using several metrics. The DLM-WESHMS model performs significantly better than other models, according to a thorough comparison analysis.
AbstractList The technology, which plays a significant role in our lives, has made it possible for many of the appliances and gadgets we use on a daily basis to be monitored and controlled remotely. Health and fitness data is collected by wearable devices attached to patients' bodies. A number of parties could benefit from this technology, including doctors, insurers, and health providers. This technology, including smartwatches, smart ring, smart cloth wristbands, and GPS shoes, is frequently used for fitness and wellness since it allows users to track their day-to-day health. Devices that compute the sleep characteristics by storing sleep movements fall within the category of wearables worn on the wrist. In order to lead a healthy lifestyle, sleep is crucial. Inadequate sleep can harm one's physical, mental, and emotional well-being and increase the risk of developing a number of ailments, including stress, heart disease, high blood pressure, insulin resistance, and other conditions. Deep learning (DL) models have recently been used to forecast sleep-quality based on wearables information from the awake hours. Deep learning has been demonstrated to be capable of predicting sleep efficiency based on wearable data obtained during awake periods. In this regard, this study creates a novel deep learning model for wearables-enabled smart health monitoring system (DLM-WESHMS) for the prediction of sleep quality. The wearables are initially able to collect data linked to sleep-activity using the described DLM-WESHMS approach. The data is then put through pre-processing to create a standard format. Using the DLM-WESHMS, sleep quality is predicted using the deep belief network (DBN) model. The DBN model uses the auto-encoders algorithm (AEA) to predict popularity, which improves the accuracy of its predictions of sleep quality. The experimental outcomes of the DLM-WESHMS approach are investigated using several metrics. The DLM-WESHMS model performs significantly better than other models, according to a thorough comparison analysis.
ArticleNumber 102927
Author Hamza, Manar Ahmed
Siddiqui, Ahmad Talha
Ahmad, Naved
Zamani, Abu Sarwar
Samdani, Faizan
Akhtar, Md. Mobin
Alluhayb, Adel
Hashim, Aisha Hassan Abdalla
Author_xml – sequence: 1
  givenname: Abu Sarwar
  surname: Zamani
  fullname: Zamani, Abu Sarwar
– sequence: 2
  givenname: Aisha Hassan Abdalla
  surname: Hashim
  fullname: Hashim, Aisha Hassan Abdalla
– sequence: 3
  givenname: Md. Mobin
  surname: Akhtar
  fullname: Akhtar, Md. Mobin
– sequence: 4
  givenname: Faizan
  surname: Samdani
  fullname: Samdani, Faizan
– sequence: 5
  givenname: Ahmad Talha
  surname: Siddiqui
  fullname: Siddiqui, Ahmad Talha
– sequence: 6
  givenname: Adel
  surname: Alluhayb
  fullname: Alluhayb, Adel
– sequence: 7
  givenname: Manar Ahmed
  surname: Hamza
  fullname: Hamza, Manar Ahmed
– sequence: 8
  givenname: Naved
  surname: Ahmad
  fullname: Ahmad, Naved
BookMark eNo9kMFu2zAMhnXogLXdnmAXvYBTSVRk-zgUW1egwC7dWaAkqpHnWKmloMjbV2mGnQj8_PmR_G_Y1ZIXYuybFBsppLmbNtPfciwbJRQ0RY2qv2LXrTV0YHT_md2UMglhBjDmmr0-74gfVgrJ15QXniMvM9GBvx5xTvXEjyUtL_yNcEU3U4elpFIp8LLHtfId4Vx3fJ-XVPN6dpZTa-8Ld1iaqxFLxdpGkseZB6z4hX2KOBf6-q_esj8_fzzf_-qefj883n9_6jwYUTvYKtJCgsatVkrEIdAoe-dDAI_RBKWlJ6-NNqCMFltpXI-jxzE6MEMAuGWPF27IONnDmtrBJ5sx2Q8hry-2fZD8TFY7qfsoCVTUGsat80DUSxhcbDscNhZcWH7NpawU__OksOfU7WQ_Urfn1O0ldXgHs5x-OQ
CitedBy_id crossref_primary_10_1007_s42979_024_02894_2
Cites_doi 10.1007/s13239-022-00615-5
10.1007/s10865-015-9617-6
10.1109/EMBC44109.2020.9175629
10.1109/ICoICT.2018.8528750
10.21203/rs.3.rs-1208553/v1
10.1016/j.sleep.2004.06.003
10.1038/ijo.2014.157
10.3390/healthcare9070914
10.3390/app11115228
10.1016/j.jsmc.2014.11.009
10.1145/3418094.3418114
10.1016/j.smrv.2014.06.008
10.1007/s10578-014-0478-y
10.2741/1061
10.1016/j.jacc.2003.07.050
10.1109/MPRV.2022.3164334
10.1145/3512731.3534207
10.5664/jcsm.5866
10.1109/ISCAS51556.2021.9401300
10.1038/s41746-019-0126-9
10.3390/su15021084
10.3389/fdgth.2021.665946
10.1109/JIOT.2022.3195777
10.1016/j.compbiomed.2019.05.010
10.1001/archinte.166.16.1768
10.1097/01.smj.0000197705.99639.50
10.1007/s13369-020-04877-w
10.1016/j.jksus.2022.101940
10.3390/electronics8121461
10.2337/diacare.27.10.2464
10.1155/2022/4477507
10.1007/s13369-021-06078-5
10.1016/j.knosys.2018.11.024
10.3390/app12168000
10.2174/1381612811319130009
10.1001/archinternmed.2008.505
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.jksus.2023.102927
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
ExternalDocumentID oai_doaj_org_article_4b147f1e32f44395bc3ee7138bfcecba
10_1016_j_jksus_2023_102927
GroupedDBID --K
-~X
0R~
0SF
1B1
4.4
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAQFI
AAXUO
AAYXX
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CITATION
EBS
EJD
EP3
FDB
FEDTE
FNPLU
GROUPED_DOAJ
HH5
HVGLF
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
OZT
RIG
ROL
SES
SSZ
XH2
ID FETCH-LOGICAL-c360t-352e40134a54220f8de917bcdd3caf6d241cec464632640516b7a9ca9fb368d33
IEDL.DBID DOA
ISSN 1018-3647
IngestDate Tue Oct 22 14:53:05 EDT 2024
Thu Sep 26 19:05:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-352e40134a54220f8de917bcdd3caf6d241cec464632640516b7a9ca9fb368d33
OpenAccessLink https://doaj.org/article/4b147f1e32f44395bc3ee7138bfcecba
ParticipantIDs doaj_primary_oai_doaj_org_article_4b147f1e32f44395bc3ee7138bfcecba
crossref_primary_10_1016_j_jksus_2023_102927
PublicationCentury 2000
PublicationDate 2023-12-00
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Journal of King Saud University. Science
PublicationYear 2023
Publisher Elsevier
Publisher_xml – name: Elsevier
References Cho (10.1016/j.jksus.2023.102927_b0050) 2019; 8
Al Duhayyim (10.1016/j.jksus.2023.102927_b0010) 2022; 73
Strine (10.1016/j.jksus.2023.102927_b0200) 2005; 6
Paruthi (10.1016/j.jksus.2023.102927_b0160) 2016; 12
Arora (10.1016/j.jksus.2023.102927_b0020) 2020; 45
Sadeghi (10.1016/j.jksus.2023.102927_b0180) 2019; 110
10.1016/j.jksus.2023.102927_b0185
10.1016/j.jksus.2023.102927_b0085
Dhiman (10.1016/j.jksus.2023.102927_b0065) 2019; 165
Bahrami (10.1016/j.jksus.2023.102927_b0040) 2022; 13
10.1016/j.jksus.2023.102927_b0060
Palagini (10.1016/j.jksus.2023.102927_b0140) 2013; 19
Kredlow (10.1016/j.jksus.2023.102927_b0110) 2015; 38
Arora (10.1016/j.jksus.2023.102927_b0025) 2022; 47
10.1016/j.jksus.2023.102927_b0155
Ramachandran (10.1016/j.jksus.2023.102927_b0175) 2021; 9
Kasasbeh (10.1016/j.jksus.2023.102927_b0095) 2006; 99
Akhtar (10.1016/j.jksus.2023.102927_b0005) 2022; 34
Asiri (10.1016/j.jksus.2023.102927_b0035) 2022; 12
Opp (10.1016/j.jksus.2023.102927_b0135) 2003; 01
Chennaoui (10.1016/j.jksus.2023.102927_b0045) 2015; 20
Palotti (10.1016/j.jksus.2023.102927_b0145) 2019; 2
Arora (10.1016/j.jksus.2023.102927_b0030) 2015; 39
10.1016/j.jksus.2023.102927_b0090
Peterman (10.1016/j.jksus.2023.102927_b0165) 2015; 46
Hamza (10.1016/j.jksus.2023.102927_b0080) 2023; 15
Nilsson (10.1016/j.jksus.2023.102927_b0130) 2004; 27
Almanaseer (10.1016/j.jksus.2023.102927_b0015) 2021; 11
Shen (10.1016/j.jksus.2023.102927_b0195) 2022; 9
10.1016/j.jksus.2023.102927_b0170
Liang (10.1016/j.jksus.2023.102927_b0115) 2021; 3
10.1016/j.jksus.2023.102927_b0150
Cohen (10.1016/j.jksus.2023.102927_b0055) 2009; 169
10.1016/j.jksus.2023.102927_b0100
Meier-Ewert (10.1016/j.jksus.2023.102927_b0120) 2004; 43
Knutson (10.1016/j.jksus.2023.102927_b0105) 2006; 166
Murphy (10.1016/j.jksus.2023.102927_b0125) 2015; 10
Sathyanarayana (10.1016/j.jksus.2023.102927_b0190) 2016; 4
Gashi (10.1016/j.jksus.2023.102927_b0075) 2022; 21
References_xml – volume: 13
  start-page: 809
  year: 2022
  ident: 10.1016/j.jksus.2023.102927_b0040
  article-title: Deep learning forecasts the occurrence of sleep apnea from single-lead ECG
  publication-title: Cardiovasc. Eng. Technol.
  doi: 10.1007/s13239-022-00615-5
  contributor:
    fullname: Bahrami
– volume: 38
  start-page: 427
  issue: 3
  year: 2015
  ident: 10.1016/j.jksus.2023.102927_b0110
  article-title: The effects of physical activity on sleep: a meta-analytic review
  publication-title: J. Behav. Med.
  doi: 10.1007/s10865-015-9617-6
  contributor:
    fullname: Kredlow
– ident: 10.1016/j.jksus.2023.102927_b0185
  doi: 10.1109/EMBC44109.2020.9175629
– ident: 10.1016/j.jksus.2023.102927_b0085
  doi: 10.1109/ICoICT.2018.8528750
– ident: 10.1016/j.jksus.2023.102927_b0150
  doi: 10.21203/rs.3.rs-1208553/v1
– volume: 6
  start-page: 23
  issue: 1
  year: 2005
  ident: 10.1016/j.jksus.2023.102927_b0200
  article-title: Associations of frequent sleep insufficiency with health-related quality of life and health behaviors
  publication-title: Sleep Med.
  doi: 10.1016/j.sleep.2004.06.003
  contributor:
    fullname: Strine
– volume: 39
  start-page: 39
  issue: 1
  year: 2015
  ident: 10.1016/j.jksus.2023.102927_b0030
  article-title: Associations among late chronotype, body mass index and dietary behaviors in young adolescents
  publication-title: Int. J. Obes. (Lond)
  doi: 10.1038/ijo.2014.157
  contributor:
    fullname: Arora
– volume: 9
  start-page: 914
  year: 2021
  ident: 10.1016/j.jksus.2023.102927_b0175
  article-title: A survey on recent advances in machine learning based sleep apnea detection systems
  publication-title: Healthcare
  doi: 10.3390/healthcare9070914
  contributor:
    fullname: Ramachandran
– volume: 11
  start-page: 5228
  year: 2021
  ident: 10.1016/j.jksus.2023.102927_b0015
  article-title: A deep belief network classification approach for automatic diacritization of arabic text
  publication-title: Appl. Sci.
  doi: 10.3390/app11115228
  contributor:
    fullname: Almanaseer
– ident: 10.1016/j.jksus.2023.102927_b0060
– volume: 73
  start-page: 5011
  year: 2022
  ident: 10.1016/j.jksus.2023.102927_b0010
  article-title: Hyperparameter tuned deep learning enabled cyberbullying classification in social media
  publication-title: Comput. Mater. Contin
  contributor:
    fullname: Al Duhayyim
– volume: 10
  start-page: 17
  issue: 1
  year: 2015
  ident: 10.1016/j.jksus.2023.102927_b0125
  article-title: Sleep disturbances in depression
  publication-title: Sleep Med. Clin.
  doi: 10.1016/j.jsmc.2014.11.009
  contributor:
    fullname: Murphy
– ident: 10.1016/j.jksus.2023.102927_b0170
  doi: 10.1145/3418094.3418114
– volume: 20
  start-page: 59
  year: 2015
  ident: 10.1016/j.jksus.2023.102927_b0045
  article-title: Sleep and exercise: a reciprocal issue?
  publication-title: Sleep Med Rev
  doi: 10.1016/j.smrv.2014.06.008
  contributor:
    fullname: Chennaoui
– volume: 46
  start-page: 376
  issue: 3
  year: 2015
  ident: 10.1016/j.jksus.2023.102927_b0165
  article-title: Anxiety disorders and comorbid sleep problems in school-aged youth: review and future research directions
  publication-title: Child Psychiatry Hum. Dev.
  doi: 10.1007/s10578-014-0478-y
  contributor:
    fullname: Peterman
– volume: 01
  start-page: d768
  issue: 8
  year: 2003
  ident: 10.1016/j.jksus.2023.102927_b0135
  article-title: Neural-immune interactions in the regulation of sleep
  publication-title: Front. Biosci.
  doi: 10.2741/1061
  contributor:
    fullname: Opp
– volume: 43
  start-page: 678
  issue: 4
  year: 2004
  ident: 10.1016/j.jksus.2023.102927_b0120
  article-title: Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2003.07.050
  contributor:
    fullname: Meier-Ewert
– volume: 21
  start-page: 69
  year: 2022
  ident: 10.1016/j.jksus.2023.102927_b0075
  article-title: The role of model personalization for sleep stage and sleep quality recognition using wearables
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2022.3164334
  contributor:
    fullname: Gashi
– ident: 10.1016/j.jksus.2023.102927_b0100
  doi: 10.1145/3512731.3534207
– volume: 12
  start-page: 785
  issue: 6
  year: 2016
  ident: 10.1016/j.jksus.2023.102927_b0160
  article-title: Recommended amount of sleep for pediatric populations: a consensus statement of the American Academy of Sleep Medicine
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.5866
  contributor:
    fullname: Paruthi
– ident: 10.1016/j.jksus.2023.102927_b0090
  doi: 10.1109/ISCAS51556.2021.9401300
– volume: 2
  start-page: 50
  year: 2019
  ident: 10.1016/j.jksus.2023.102927_b0145
  article-title: Benchmark on a large cohort for sleep-wake classification with machine learning techniques
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0126-9
  contributor:
    fullname: Palotti
– volume: 15
  start-page: 1084
  year: 2023
  ident: 10.1016/j.jksus.2023.102927_b0080
  article-title: Wearables-assisted smart health monitoring for sleep quality prediction using optimal deep learning
  publication-title: Sustainability
  doi: 10.3390/su15021084
  contributor:
    fullname: Hamza
– volume: 3
  year: 2021
  ident: 10.1016/j.jksus.2023.102927_b0115
  article-title: A multi-Level classification approach for sleep stage prediction with processed data derived from consumer wearable activity trackers
  publication-title: Front. Digit. Health
  doi: 10.3389/fdgth.2021.665946
  contributor:
    fullname: Liang
– volume: 9
  start-page: 25207
  year: 2022
  ident: 10.1016/j.jksus.2023.102927_b0195
  article-title: Multi-task multi-attention residual shrinkage convolutional neural network for sleep apnea detection based on wearable bracelet photoplethysmography
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3195777
  contributor:
    fullname: Shen
– volume: 110
  start-page: 276
  year: 2019
  ident: 10.1016/j.jksus.2023.102927_b0180
  article-title: Sleep quality prediction in caregivers using physiological signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.05.010
  contributor:
    fullname: Sadeghi
– volume: 166
  start-page: 1768
  issue: 16
  year: 2006
  ident: 10.1016/j.jksus.2023.102927_b0105
  article-title: Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.166.16.1768
  contributor:
    fullname: Knutson
– volume: 99
  start-page: 58
  issue: 1
  year: 2006
  ident: 10.1016/j.jksus.2023.102927_b0095
  article-title: Inflammatory aspects of sleep apnea and their cardiovascular consequences
  publication-title: South Med. J.
  doi: 10.1097/01.smj.0000197705.99639.50
  contributor:
    fullname: Kasasbeh
– volume: 45
  start-page: 10793
  year: 2020
  ident: 10.1016/j.jksus.2023.102927_b0020
  article-title: Analysis of data from wearable sensors for sleep quality estimation and prediction using deep learning
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04877-w
  contributor:
    fullname: Arora
– volume: 34
  issue: 4
  year: 2022
  ident: 10.1016/j.jksus.2023.102927_b0005
  article-title: Stock market prediction based on statistical data using machine learning algorithms
  publication-title: J. King Saud Univ.-Sci.
  doi: 10.1016/j.jksus.2022.101940
  contributor:
    fullname: Akhtar
– volume: 8
  start-page: 1461
  year: 2019
  ident: 10.1016/j.jksus.2023.102927_b0050
  article-title: Deep-ACTINet: End-to-end deep learning architecture for automatic sleep-wake detection using wrist actigraphy
  publication-title: Electronics
  doi: 10.3390/electronics8121461
  contributor:
    fullname: Cho
– volume: 27
  start-page: 2464
  issue: 10
  year: 2004
  ident: 10.1016/j.jksus.2023.102927_b0130
  article-title: Incidence of diabetes in middle-aged men is related to sleep disturbances
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.10.2464
  contributor:
    fullname: Nilsson
– ident: 10.1016/j.jksus.2023.102927_b0155
  doi: 10.1155/2022/4477507
– volume: 47
  start-page: 1999
  year: 2022
  ident: 10.1016/j.jksus.2023.102927_b0025
  article-title: Intervention of wearables and smartphones in real time monitoring of sleep and behavioral health: an assessment using adaptive neuro-fuzzy technique
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-06078-5
  contributor:
    fullname: Arora
– volume: 165
  start-page: 169
  year: 2019
  ident: 10.1016/j.jksus.2023.102927_b0065
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.11.024
  contributor:
    fullname: Dhiman
– volume: 4
  start-page: e6562
  year: 2016
  ident: 10.1016/j.jksus.2023.102927_b0190
  article-title: Sleep quality prediction from wearable data using deep learning
  publication-title: JMIR Mhealth Uhealth
  contributor:
    fullname: Sathyanarayana
– volume: 12
  start-page: 8000
  year: 2022
  ident: 10.1016/j.jksus.2023.102927_b0035
  article-title: Enhanced seagull optimization with natural language processing based hate speech detection and classification
  publication-title: Appl. Sci.
  doi: 10.3390/app12168000
  contributor:
    fullname: Asiri
– volume: 19
  start-page: 2409
  issue: 13
  year: 2013
  ident: 10.1016/j.jksus.2023.102927_b0140
  article-title: Sleep loss and hypertension: a systematic review
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612811319130009
  contributor:
    fullname: Palagini
– volume: 169
  start-page: 62
  issue: 1
  year: 2009
  ident: 10.1016/j.jksus.2023.102927_b0055
  article-title: Sleep habits and susceptibility to the common cold
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinternmed.2008.505
  contributor:
    fullname: Cohen
SSID ssj0068366
Score 2.3345206
Snippet The technology, which plays a significant role in our lives, has made it possible for many of the appliances and gadgets we use on a daily basis to be...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 102927
SubjectTerms Deep learning
Healthcare
Sleep-quality prediction
Wearables
Title The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data
URI https://doaj.org/article/4b147f1e32f44395bc3ee7138bfcecba
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwuiPER5yQMDSFgkseM4I49WnVgAiS2KX0iFPmhaIf49d3ZadWNhtSLr8p2d7y6--0zIJTByXUtrmDE8ZyJ3mpWQaLG00CoptFA-x37n4XPx9KYe-yiTs77qC2vCojxwBO5W6FQUPnU88wLIM9eGOweZldLeOKNjaJTIVTIVv8FS8XBKiXJUDBXSV3pDobJr9NEsUak74yhcUOKFMhuctCHdHzhmsEd22-CQ3kWjumTLTfZJt91-Db1qNaKvD8gXuJfO5njKgsjSqafNp3MzGpskfyjWs7_Tb1jH2BvFIERGf1rajOGVaex-pOOwofHPHo2Kzg1FVrMUZsROoyDiDAZhGekheR30Xx6GrL09gRkukwWDyMph8iTqXGRZ4pV1kJppYy03tZcWqBsAFFJIiOAgbEulLurS1KXXXCrL-RHpTKYTd0wo16o2xri60CUSvualT2HI5RmmT0mP3Kzwq2ZRJKNaVY-NqgB3hXBXEe4euUeM14-iwnUYAL9Xrd-rv_x-8h-TnJIdtCuWp5yRzmK-dOdku7HLi7CefgGACNGQ
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+prediction+of+sleep+quality+using+wearable-assisted+smart+health+monitoring+systems+based+on+statistical+data&rft.jtitle=Journal+of+King+Saud+University.+Science&rft.au=Zamani%2C+Abu+Sarwar&rft.au=Hashim%2C+Aisha+Hassan+Abdalla&rft.au=Akhtar%2C+Md.+Mobin&rft.au=Samdani%2C+Faizan&rft.date=2023-12-01&rft.issn=1018-3647&rft.volume=35&rft.issue=9&rft.spage=102927&rft_id=info:doi/10.1016%2Fj.jksus.2023.102927&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jksus_2023_102927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1018-3647&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1018-3647&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1018-3647&client=summon