The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data
The technology, which plays a significant role in our lives, has made it possible for many of the appliances and gadgets we use on a daily basis to be monitored and controlled remotely. Health and fitness data is collected by wearable devices attached to patients' bodies. A number of parties co...
Saved in:
Published in: | Journal of King Saud University. Science Vol. 35; no. 9; p. 102927 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier
01-12-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The technology, which plays a significant role in our lives, has made it possible for many of the appliances and gadgets we use on a daily basis to be monitored and controlled remotely. Health and fitness data is collected by wearable devices attached to patients' bodies. A number of parties could benefit from this technology, including doctors, insurers, and health providers. This technology, including smartwatches, smart ring, smart cloth wristbands, and GPS shoes, is frequently used for fitness and wellness since it allows users to track their day-to-day health. Devices that compute the sleep characteristics by storing sleep movements fall within the category of wearables worn on the wrist. In order to lead a healthy lifestyle, sleep is crucial. Inadequate sleep can harm one's physical, mental, and emotional well-being and increase the risk of developing a number of ailments, including stress, heart disease, high blood pressure, insulin resistance, and other conditions. Deep learning (DL) models have recently been used to forecast sleep-quality based on wearables information from the awake hours. Deep learning has been demonstrated to be capable of predicting sleep efficiency based on wearable data obtained during awake periods. In this regard, this study creates a novel deep learning model for wearables-enabled smart health monitoring system (DLM-WESHMS) for the prediction of sleep quality. The wearables are initially able to collect data linked to sleep-activity using the described DLM-WESHMS approach. The data is then put through pre-processing to create a standard format. Using the DLM-WESHMS, sleep quality is predicted using the deep belief network (DBN) model. The DBN model uses the auto-encoders algorithm (AEA) to predict popularity, which improves the accuracy of its predictions of sleep quality. The experimental outcomes of the DLM-WESHMS approach are investigated using several metrics. The DLM-WESHMS model performs significantly better than other models, according to a thorough comparison analysis. |
---|---|
AbstractList | The technology, which plays a significant role in our lives, has made it possible for many of the appliances and gadgets we use on a daily basis to be monitored and controlled remotely. Health and fitness data is collected by wearable devices attached to patients' bodies. A number of parties could benefit from this technology, including doctors, insurers, and health providers. This technology, including smartwatches, smart ring, smart cloth wristbands, and GPS shoes, is frequently used for fitness and wellness since it allows users to track their day-to-day health. Devices that compute the sleep characteristics by storing sleep movements fall within the category of wearables worn on the wrist. In order to lead a healthy lifestyle, sleep is crucial. Inadequate sleep can harm one's physical, mental, and emotional well-being and increase the risk of developing a number of ailments, including stress, heart disease, high blood pressure, insulin resistance, and other conditions. Deep learning (DL) models have recently been used to forecast sleep-quality based on wearables information from the awake hours. Deep learning has been demonstrated to be capable of predicting sleep efficiency based on wearable data obtained during awake periods. In this regard, this study creates a novel deep learning model for wearables-enabled smart health monitoring system (DLM-WESHMS) for the prediction of sleep quality. The wearables are initially able to collect data linked to sleep-activity using the described DLM-WESHMS approach. The data is then put through pre-processing to create a standard format. Using the DLM-WESHMS, sleep quality is predicted using the deep belief network (DBN) model. The DBN model uses the auto-encoders algorithm (AEA) to predict popularity, which improves the accuracy of its predictions of sleep quality. The experimental outcomes of the DLM-WESHMS approach are investigated using several metrics. The DLM-WESHMS model performs significantly better than other models, according to a thorough comparison analysis. |
ArticleNumber | 102927 |
Author | Hamza, Manar Ahmed Siddiqui, Ahmad Talha Ahmad, Naved Zamani, Abu Sarwar Samdani, Faizan Akhtar, Md. Mobin Alluhayb, Adel Hashim, Aisha Hassan Abdalla |
Author_xml | – sequence: 1 givenname: Abu Sarwar surname: Zamani fullname: Zamani, Abu Sarwar – sequence: 2 givenname: Aisha Hassan Abdalla surname: Hashim fullname: Hashim, Aisha Hassan Abdalla – sequence: 3 givenname: Md. Mobin surname: Akhtar fullname: Akhtar, Md. Mobin – sequence: 4 givenname: Faizan surname: Samdani fullname: Samdani, Faizan – sequence: 5 givenname: Ahmad Talha surname: Siddiqui fullname: Siddiqui, Ahmad Talha – sequence: 6 givenname: Adel surname: Alluhayb fullname: Alluhayb, Adel – sequence: 7 givenname: Manar Ahmed surname: Hamza fullname: Hamza, Manar Ahmed – sequence: 8 givenname: Naved surname: Ahmad fullname: Ahmad, Naved |
BookMark | eNo9kMFu2zAMhnXogLXdnmAXvYBTSVRk-zgUW1egwC7dWaAkqpHnWKmloMjbV2mGnQj8_PmR_G_Y1ZIXYuybFBsppLmbNtPfciwbJRQ0RY2qv2LXrTV0YHT_md2UMglhBjDmmr0-74gfVgrJ15QXniMvM9GBvx5xTvXEjyUtL_yNcEU3U4elpFIp8LLHtfId4Vx3fJ-XVPN6dpZTa-8Ld1iaqxFLxdpGkseZB6z4hX2KOBf6-q_esj8_fzzf_-qefj883n9_6jwYUTvYKtJCgsatVkrEIdAoe-dDAI_RBKWlJ6-NNqCMFltpXI-jxzE6MEMAuGWPF27IONnDmtrBJ5sx2Q8hry-2fZD8TFY7qfsoCVTUGsat80DUSxhcbDscNhZcWH7NpawU__OksOfU7WQ_Urfn1O0ldXgHs5x-OQ |
CitedBy_id | crossref_primary_10_1007_s42979_024_02894_2 |
Cites_doi | 10.1007/s13239-022-00615-5 10.1007/s10865-015-9617-6 10.1109/EMBC44109.2020.9175629 10.1109/ICoICT.2018.8528750 10.21203/rs.3.rs-1208553/v1 10.1016/j.sleep.2004.06.003 10.1038/ijo.2014.157 10.3390/healthcare9070914 10.3390/app11115228 10.1016/j.jsmc.2014.11.009 10.1145/3418094.3418114 10.1016/j.smrv.2014.06.008 10.1007/s10578-014-0478-y 10.2741/1061 10.1016/j.jacc.2003.07.050 10.1109/MPRV.2022.3164334 10.1145/3512731.3534207 10.5664/jcsm.5866 10.1109/ISCAS51556.2021.9401300 10.1038/s41746-019-0126-9 10.3390/su15021084 10.3389/fdgth.2021.665946 10.1109/JIOT.2022.3195777 10.1016/j.compbiomed.2019.05.010 10.1001/archinte.166.16.1768 10.1097/01.smj.0000197705.99639.50 10.1007/s13369-020-04877-w 10.1016/j.jksus.2022.101940 10.3390/electronics8121461 10.2337/diacare.27.10.2464 10.1155/2022/4477507 10.1007/s13369-021-06078-5 10.1016/j.knosys.2018.11.024 10.3390/app12168000 10.2174/1381612811319130009 10.1001/archinternmed.2008.505 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.jksus.2023.102927 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
ExternalDocumentID | oai_doaj_org_article_4b147f1e32f44395bc3ee7138bfcecba 10_1016_j_jksus_2023_102927 |
GroupedDBID | --K -~X 0R~ 0SF 1B1 4.4 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAQFI AAXUO AAYXX ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CITATION EBS EJD EP3 FDB FEDTE FNPLU GROUPED_DOAJ HH5 HVGLF HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 OZT RIG ROL SES SSZ XH2 |
ID | FETCH-LOGICAL-c360t-352e40134a54220f8de917bcdd3caf6d241cec464632640516b7a9ca9fb368d33 |
IEDL.DBID | DOA |
ISSN | 1018-3647 |
IngestDate | Tue Oct 22 14:53:05 EDT 2024 Thu Sep 26 19:05:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-352e40134a54220f8de917bcdd3caf6d241cec464632640516b7a9ca9fb368d33 |
OpenAccessLink | https://doaj.org/article/4b147f1e32f44395bc3ee7138bfcecba |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4b147f1e32f44395bc3ee7138bfcecba crossref_primary_10_1016_j_jksus_2023_102927 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of King Saud University. Science |
PublicationYear | 2023 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Cho (10.1016/j.jksus.2023.102927_b0050) 2019; 8 Al Duhayyim (10.1016/j.jksus.2023.102927_b0010) 2022; 73 Strine (10.1016/j.jksus.2023.102927_b0200) 2005; 6 Paruthi (10.1016/j.jksus.2023.102927_b0160) 2016; 12 Arora (10.1016/j.jksus.2023.102927_b0020) 2020; 45 Sadeghi (10.1016/j.jksus.2023.102927_b0180) 2019; 110 10.1016/j.jksus.2023.102927_b0185 10.1016/j.jksus.2023.102927_b0085 Dhiman (10.1016/j.jksus.2023.102927_b0065) 2019; 165 Bahrami (10.1016/j.jksus.2023.102927_b0040) 2022; 13 10.1016/j.jksus.2023.102927_b0060 Palagini (10.1016/j.jksus.2023.102927_b0140) 2013; 19 Kredlow (10.1016/j.jksus.2023.102927_b0110) 2015; 38 Arora (10.1016/j.jksus.2023.102927_b0025) 2022; 47 10.1016/j.jksus.2023.102927_b0155 Ramachandran (10.1016/j.jksus.2023.102927_b0175) 2021; 9 Kasasbeh (10.1016/j.jksus.2023.102927_b0095) 2006; 99 Akhtar (10.1016/j.jksus.2023.102927_b0005) 2022; 34 Asiri (10.1016/j.jksus.2023.102927_b0035) 2022; 12 Opp (10.1016/j.jksus.2023.102927_b0135) 2003; 01 Chennaoui (10.1016/j.jksus.2023.102927_b0045) 2015; 20 Palotti (10.1016/j.jksus.2023.102927_b0145) 2019; 2 Arora (10.1016/j.jksus.2023.102927_b0030) 2015; 39 10.1016/j.jksus.2023.102927_b0090 Peterman (10.1016/j.jksus.2023.102927_b0165) 2015; 46 Hamza (10.1016/j.jksus.2023.102927_b0080) 2023; 15 Nilsson (10.1016/j.jksus.2023.102927_b0130) 2004; 27 Almanaseer (10.1016/j.jksus.2023.102927_b0015) 2021; 11 Shen (10.1016/j.jksus.2023.102927_b0195) 2022; 9 10.1016/j.jksus.2023.102927_b0170 Liang (10.1016/j.jksus.2023.102927_b0115) 2021; 3 10.1016/j.jksus.2023.102927_b0150 Cohen (10.1016/j.jksus.2023.102927_b0055) 2009; 169 10.1016/j.jksus.2023.102927_b0100 Meier-Ewert (10.1016/j.jksus.2023.102927_b0120) 2004; 43 Knutson (10.1016/j.jksus.2023.102927_b0105) 2006; 166 Murphy (10.1016/j.jksus.2023.102927_b0125) 2015; 10 Sathyanarayana (10.1016/j.jksus.2023.102927_b0190) 2016; 4 Gashi (10.1016/j.jksus.2023.102927_b0075) 2022; 21 |
References_xml | – volume: 13 start-page: 809 year: 2022 ident: 10.1016/j.jksus.2023.102927_b0040 article-title: Deep learning forecasts the occurrence of sleep apnea from single-lead ECG publication-title: Cardiovasc. Eng. Technol. doi: 10.1007/s13239-022-00615-5 contributor: fullname: Bahrami – volume: 38 start-page: 427 issue: 3 year: 2015 ident: 10.1016/j.jksus.2023.102927_b0110 article-title: The effects of physical activity on sleep: a meta-analytic review publication-title: J. Behav. Med. doi: 10.1007/s10865-015-9617-6 contributor: fullname: Kredlow – ident: 10.1016/j.jksus.2023.102927_b0185 doi: 10.1109/EMBC44109.2020.9175629 – ident: 10.1016/j.jksus.2023.102927_b0085 doi: 10.1109/ICoICT.2018.8528750 – ident: 10.1016/j.jksus.2023.102927_b0150 doi: 10.21203/rs.3.rs-1208553/v1 – volume: 6 start-page: 23 issue: 1 year: 2005 ident: 10.1016/j.jksus.2023.102927_b0200 article-title: Associations of frequent sleep insufficiency with health-related quality of life and health behaviors publication-title: Sleep Med. doi: 10.1016/j.sleep.2004.06.003 contributor: fullname: Strine – volume: 39 start-page: 39 issue: 1 year: 2015 ident: 10.1016/j.jksus.2023.102927_b0030 article-title: Associations among late chronotype, body mass index and dietary behaviors in young adolescents publication-title: Int. J. Obes. (Lond) doi: 10.1038/ijo.2014.157 contributor: fullname: Arora – volume: 9 start-page: 914 year: 2021 ident: 10.1016/j.jksus.2023.102927_b0175 article-title: A survey on recent advances in machine learning based sleep apnea detection systems publication-title: Healthcare doi: 10.3390/healthcare9070914 contributor: fullname: Ramachandran – volume: 11 start-page: 5228 year: 2021 ident: 10.1016/j.jksus.2023.102927_b0015 article-title: A deep belief network classification approach for automatic diacritization of arabic text publication-title: Appl. Sci. doi: 10.3390/app11115228 contributor: fullname: Almanaseer – ident: 10.1016/j.jksus.2023.102927_b0060 – volume: 73 start-page: 5011 year: 2022 ident: 10.1016/j.jksus.2023.102927_b0010 article-title: Hyperparameter tuned deep learning enabled cyberbullying classification in social media publication-title: Comput. Mater. Contin contributor: fullname: Al Duhayyim – volume: 10 start-page: 17 issue: 1 year: 2015 ident: 10.1016/j.jksus.2023.102927_b0125 article-title: Sleep disturbances in depression publication-title: Sleep Med. Clin. doi: 10.1016/j.jsmc.2014.11.009 contributor: fullname: Murphy – ident: 10.1016/j.jksus.2023.102927_b0170 doi: 10.1145/3418094.3418114 – volume: 20 start-page: 59 year: 2015 ident: 10.1016/j.jksus.2023.102927_b0045 article-title: Sleep and exercise: a reciprocal issue? publication-title: Sleep Med Rev doi: 10.1016/j.smrv.2014.06.008 contributor: fullname: Chennaoui – volume: 46 start-page: 376 issue: 3 year: 2015 ident: 10.1016/j.jksus.2023.102927_b0165 article-title: Anxiety disorders and comorbid sleep problems in school-aged youth: review and future research directions publication-title: Child Psychiatry Hum. Dev. doi: 10.1007/s10578-014-0478-y contributor: fullname: Peterman – volume: 01 start-page: d768 issue: 8 year: 2003 ident: 10.1016/j.jksus.2023.102927_b0135 article-title: Neural-immune interactions in the regulation of sleep publication-title: Front. Biosci. doi: 10.2741/1061 contributor: fullname: Opp – volume: 43 start-page: 678 issue: 4 year: 2004 ident: 10.1016/j.jksus.2023.102927_b0120 article-title: Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2003.07.050 contributor: fullname: Meier-Ewert – volume: 21 start-page: 69 year: 2022 ident: 10.1016/j.jksus.2023.102927_b0075 article-title: The role of model personalization for sleep stage and sleep quality recognition using wearables publication-title: IEEE Pervasive Comput. doi: 10.1109/MPRV.2022.3164334 contributor: fullname: Gashi – ident: 10.1016/j.jksus.2023.102927_b0100 doi: 10.1145/3512731.3534207 – volume: 12 start-page: 785 issue: 6 year: 2016 ident: 10.1016/j.jksus.2023.102927_b0160 article-title: Recommended amount of sleep for pediatric populations: a consensus statement of the American Academy of Sleep Medicine publication-title: J. Clin. Sleep Med. doi: 10.5664/jcsm.5866 contributor: fullname: Paruthi – ident: 10.1016/j.jksus.2023.102927_b0090 doi: 10.1109/ISCAS51556.2021.9401300 – volume: 2 start-page: 50 year: 2019 ident: 10.1016/j.jksus.2023.102927_b0145 article-title: Benchmark on a large cohort for sleep-wake classification with machine learning techniques publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0126-9 contributor: fullname: Palotti – volume: 15 start-page: 1084 year: 2023 ident: 10.1016/j.jksus.2023.102927_b0080 article-title: Wearables-assisted smart health monitoring for sleep quality prediction using optimal deep learning publication-title: Sustainability doi: 10.3390/su15021084 contributor: fullname: Hamza – volume: 3 year: 2021 ident: 10.1016/j.jksus.2023.102927_b0115 article-title: A multi-Level classification approach for sleep stage prediction with processed data derived from consumer wearable activity trackers publication-title: Front. Digit. Health doi: 10.3389/fdgth.2021.665946 contributor: fullname: Liang – volume: 9 start-page: 25207 year: 2022 ident: 10.1016/j.jksus.2023.102927_b0195 article-title: Multi-task multi-attention residual shrinkage convolutional neural network for sleep apnea detection based on wearable bracelet photoplethysmography publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3195777 contributor: fullname: Shen – volume: 110 start-page: 276 year: 2019 ident: 10.1016/j.jksus.2023.102927_b0180 article-title: Sleep quality prediction in caregivers using physiological signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.05.010 contributor: fullname: Sadeghi – volume: 166 start-page: 1768 issue: 16 year: 2006 ident: 10.1016/j.jksus.2023.102927_b0105 article-title: Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus publication-title: Arch Intern Med doi: 10.1001/archinte.166.16.1768 contributor: fullname: Knutson – volume: 99 start-page: 58 issue: 1 year: 2006 ident: 10.1016/j.jksus.2023.102927_b0095 article-title: Inflammatory aspects of sleep apnea and their cardiovascular consequences publication-title: South Med. J. doi: 10.1097/01.smj.0000197705.99639.50 contributor: fullname: Kasasbeh – volume: 45 start-page: 10793 year: 2020 ident: 10.1016/j.jksus.2023.102927_b0020 article-title: Analysis of data from wearable sensors for sleep quality estimation and prediction using deep learning publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04877-w contributor: fullname: Arora – volume: 34 issue: 4 year: 2022 ident: 10.1016/j.jksus.2023.102927_b0005 article-title: Stock market prediction based on statistical data using machine learning algorithms publication-title: J. King Saud Univ.-Sci. doi: 10.1016/j.jksus.2022.101940 contributor: fullname: Akhtar – volume: 8 start-page: 1461 year: 2019 ident: 10.1016/j.jksus.2023.102927_b0050 article-title: Deep-ACTINet: End-to-end deep learning architecture for automatic sleep-wake detection using wrist actigraphy publication-title: Electronics doi: 10.3390/electronics8121461 contributor: fullname: Cho – volume: 27 start-page: 2464 issue: 10 year: 2004 ident: 10.1016/j.jksus.2023.102927_b0130 article-title: Incidence of diabetes in middle-aged men is related to sleep disturbances publication-title: Diabetes Care doi: 10.2337/diacare.27.10.2464 contributor: fullname: Nilsson – ident: 10.1016/j.jksus.2023.102927_b0155 doi: 10.1155/2022/4477507 – volume: 47 start-page: 1999 year: 2022 ident: 10.1016/j.jksus.2023.102927_b0025 article-title: Intervention of wearables and smartphones in real time monitoring of sleep and behavioral health: an assessment using adaptive neuro-fuzzy technique publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-06078-5 contributor: fullname: Arora – volume: 165 start-page: 169 year: 2019 ident: 10.1016/j.jksus.2023.102927_b0065 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.11.024 contributor: fullname: Dhiman – volume: 4 start-page: e6562 year: 2016 ident: 10.1016/j.jksus.2023.102927_b0190 article-title: Sleep quality prediction from wearable data using deep learning publication-title: JMIR Mhealth Uhealth contributor: fullname: Sathyanarayana – volume: 12 start-page: 8000 year: 2022 ident: 10.1016/j.jksus.2023.102927_b0035 article-title: Enhanced seagull optimization with natural language processing based hate speech detection and classification publication-title: Appl. Sci. doi: 10.3390/app12168000 contributor: fullname: Asiri – volume: 19 start-page: 2409 issue: 13 year: 2013 ident: 10.1016/j.jksus.2023.102927_b0140 article-title: Sleep loss and hypertension: a systematic review publication-title: Curr. Pharm. Des. doi: 10.2174/1381612811319130009 contributor: fullname: Palagini – volume: 169 start-page: 62 issue: 1 year: 2009 ident: 10.1016/j.jksus.2023.102927_b0055 article-title: Sleep habits and susceptibility to the common cold publication-title: Arch. Intern. Med. doi: 10.1001/archinternmed.2008.505 contributor: fullname: Cohen |
SSID | ssj0068366 |
Score | 2.3345206 |
Snippet | The technology, which plays a significant role in our lives, has made it possible for many of the appliances and gadgets we use on a daily basis to be... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 102927 |
SubjectTerms | Deep learning Healthcare Sleep-quality prediction Wearables |
Title | The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data |
URI | https://doaj.org/article/4b147f1e32f44395bc3ee7138bfcecba |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwuiPER5yQMDSFgkseM4I49WnVgAiS2KX0iFPmhaIf49d3ZadWNhtSLr8p2d7y6--0zIJTByXUtrmDE8ZyJ3mpWQaLG00CoptFA-x37n4XPx9KYe-yiTs77qC2vCojxwBO5W6FQUPnU88wLIM9eGOweZldLeOKNjaJTIVTIVv8FS8XBKiXJUDBXSV3pDobJr9NEsUak74yhcUOKFMhuctCHdHzhmsEd22-CQ3kWjumTLTfZJt91-Db1qNaKvD8gXuJfO5njKgsjSqafNp3MzGpskfyjWs7_Tb1jH2BvFIERGf1rajOGVaex-pOOwofHPHo2Kzg1FVrMUZsROoyDiDAZhGekheR30Xx6GrL09gRkukwWDyMph8iTqXGRZ4pV1kJppYy03tZcWqBsAFFJIiOAgbEulLurS1KXXXCrL-RHpTKYTd0wo16o2xri60CUSvualT2HI5RmmT0mP3Kzwq2ZRJKNaVY-NqgB3hXBXEe4euUeM14-iwnUYAL9Xrd-rv_x-8h-TnJIdtCuWp5yRzmK-dOdku7HLi7CefgGACNGQ |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+prediction+of+sleep+quality+using+wearable-assisted+smart+health+monitoring+systems+based+on+statistical+data&rft.jtitle=Journal+of+King+Saud+University.+Science&rft.au=Zamani%2C+Abu+Sarwar&rft.au=Hashim%2C+Aisha+Hassan+Abdalla&rft.au=Akhtar%2C+Md.+Mobin&rft.au=Samdani%2C+Faizan&rft.date=2023-12-01&rft.issn=1018-3647&rft.volume=35&rft.issue=9&rft.spage=102927&rft_id=info:doi/10.1016%2Fj.jksus.2023.102927&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jksus_2023_102927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1018-3647&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1018-3647&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1018-3647&client=summon |