Restricted mean survival time regression model with time‐dependent covariates
In clinical or epidemiological follow‐up studies, methods based on time scale indicators such as the restricted mean survival time (RMST) have been developed to some extent. Compared with traditional hazard rate indicator system methods, the RMST is easier to interpret and does not require the propo...
Saved in:
Published in: | Statistics in medicine Vol. 41; no. 21; pp. 4081 - 4090 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
20-09-2022
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In clinical or epidemiological follow‐up studies, methods based on time scale indicators such as the restricted mean survival time (RMST) have been developed to some extent. Compared with traditional hazard rate indicator system methods, the RMST is easier to interpret and does not require the proportional hazard assumption. To date, regression models based on the RMST are indirect or direct models of the RMST and baseline covariates. However, time‐dependent covariates are becoming increasingly common in follow‐up studies. Based on the inverse probability of censoring weighting (IPCW) method, we developed a regression model of the RMST and time‐dependent covariates. Through Monte Carlo simulation, we verified the estimation performance of the regression parameters of the proposed model. Compared with the time‐dependent Cox model and the fixed (baseline) covariate RMST model, the time‐dependent RMST model has a better prediction ability. Finally, an example of heart transplantation was used to verify the above conclusions. |
---|---|
AbstractList | In clinical or epidemiological follow‐up studies, methods based on time scale indicators such as the restricted mean survival time (RMST) have been developed to some extent. Compared with traditional hazard rate indicator system methods, the RMST is easier to interpret and does not require the proportional hazard assumption. To date, regression models based on the RMST are indirect or direct models of the RMST and baseline covariates. However, time‐dependent covariates are becoming increasingly common in follow‐up studies. Based on the inverse probability of censoring weighting (IPCW) method, we developed a regression model of the RMST and time‐dependent covariates. Through Monte Carlo simulation, we verified the estimation performance of the regression parameters of the proposed model. Compared with the time‐dependent Cox model and the fixed (baseline) covariate RMST model, the time‐dependent RMST model has a better prediction ability. Finally, an example of heart transplantation was used to verify the above conclusions. |
Author | Yuan, Hao Hou, Yawen Zhang, Chengfeng Huang, Baoyi Wu, Hongji Chen, Zheng |
Author_xml | – sequence: 1 givenname: Chengfeng surname: Zhang fullname: Zhang, Chengfeng organization: Southern Medical University – sequence: 2 givenname: Baoyi surname: Huang fullname: Huang, Baoyi organization: Southern Medical University – sequence: 3 givenname: Hongji surname: Wu fullname: Wu, Hongji organization: Southern Medical University – sequence: 4 givenname: Hao surname: Yuan fullname: Yuan, Hao organization: Southern Medical University – sequence: 5 givenname: Yawen surname: Hou fullname: Hou, Yawen email: thouyw@jnu.edu.cn organization: Jinan University – sequence: 6 givenname: Zheng orcidid: 0000-0003-3201-2666 surname: Chen fullname: Chen, Zheng email: zheng-chen@hotmail.com organization: Southern Medical University |
BookMark | eNp10MtKAzEUBuAgFWyr4CMMuHEz9SSdSTJLKV4KlYKXdcgkp5oyl5rMtHTnI_iMPonT1oUIrs7ifPyc8w9Ir6orJOScwogCsKvgylGWZOkR6VPIRAwslT3SByZEzAVNT8gghCUApSkTfTJ_xNB4Zxq0UYm6ikLr126ti6hxJUYeXz2G4OoqKmuLRbRxzdt-9fXxaXGFlcWqiUy91t7pBsMpOV7oIuDZzxySl9ub58l9PJvfTSfXs9iMOaSxZBmVmguWWylytFkuGKaUg2GQjq22PJFsDJwbrXOTJzYHaiG1Ui6YkR0ZkstD7srX7233gypdMFgUusK6DYpxSSFJBBcdvfhDl3Xrq-46xQQISRPKfwUaX4fgcaFW3pXabxUFtWtWdc2qXbMdjQ904wrc_uvU0_Rh778B1ux8vA |
CitedBy_id | crossref_primary_10_1016_j_annonc_2024_05_544 crossref_primary_10_3389_fonc_2024_1352111 crossref_primary_10_1111_biom_13891 crossref_primary_10_1016_j_cct_2024_107440 crossref_primary_10_1109_JBHI_2023_3292475 |
Cites_doi | 10.1002/sim.8206 10.1002/sim.5452 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.1002/sim.8086 10.1093/biomet/90.1.15 10.1093/aje/kwab235 10.1111/j.0006-341X.2001.01030.x 10.1080/01621459.1987.10478555 10.1111/biom.13414 10.1080/10543406.2020.1814799 10.1177/0962280209105020 10.1111/j.1541-0420.2010.01503.x 10.1093/biomet/asm036 10.1016/j.cmpb.2021.106155 10.1093/jnci/djx179 10.1093/biostatistics/kxt050 10.1161/CIRCOUTCOMES.119.005918 10.1002/pst.2004 10.1002/sim.2673 10.1093/biomet/78.3.691 10.1007/s10985-017-9391-6 10.1007/s10985-004-4771-0 10.1016/j.healun.2018.07.022 10.1053/j.ajkd.2017.01.004 10.1002/sim.4274 10.1080/01621459.1998.10473722 10.1080/01621459.1977.10479903 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION K9. 7X8 |
DOI | 10.1002/sim.9495 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Open Access CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 4090 |
ExternalDocumentID | 10_1002_sim_9495 SIM9495 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 82173622; 81903411; 81673268 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2022A1515011525; 2019A1515011506 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WIN WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX CITATION K9. 7X8 |
ID | FETCH-LOGICAL-c3605-82918a672bd87bed9b72e5160c2053dad64823066caabcb4db01d05d88f2c8053 |
IEDL.DBID | 33P |
ISSN | 0277-6715 |
IngestDate | Fri Aug 16 03:38:15 EDT 2024 Thu Oct 10 16:26:46 EDT 2024 Fri Aug 23 02:23:40 EDT 2024 Sat Aug 24 00:54:09 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3605-82918a672bd87bed9b72e5160c2053dad64823066caabcb4db01d05d88f2c8053 |
Notes | Funding information National Natural Science Foundation of China, Grant/Award Numbers: 82173622; 81903411; 81673268; Guangdong Basic and Applied Basic Research Foundation, Grant/Award Numbers: 2022A1515011525; 2019A1515011506 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3201-2666 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9495 |
PQID | 2707814165 |
PQPubID | 48361 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2681044767 proquest_journals_2707814165 crossref_primary_10_1002_sim_9495 wiley_primary_10_1002_sim_9495_SIM9495 |
PublicationCentury | 2000 |
PublicationDate | 20 September 2022 |
PublicationDateYYYYMMDD | 2022-09-20 |
PublicationDate_xml | – month: 09 year: 2022 text: 20 September 2022 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | Statistics in medicine |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 2 2022; 191 1991; 78 2010; 19 2017; 69 2021; 207 2019; 38 2011; 30 2020; 13 2007; 94 1996; 15 2012; 31 2020; 19 2018; 24 2004; 10 1949; 47 2018; 110 2003; 90 2021; 31 1987; 82 2020 2006; 25 2022; 78 2014; 15 1977; 72 2011; 67 1998; 93 2001; 57 2018; 37 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 Therneau T (e_1_2_10_26_1) 2017; 2 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_31_1 e_1_2_10_30_1 Irwin JO (e_1_2_10_6_1) 1949; 47 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 |
References_xml | – volume: 82 start-page: 1169 issue: 400 year: 1987 end-page: 1176 article-title: Restricted mean life with adjustment for covariates publication-title: J Am Stat Assoc – volume: 31 start-page: 141 issue: 2 year: 2021 end-page: 155 article-title: Estimation on conditional restricted mean survival time with counting process publication-title: J Biopharm Stat – volume: 30 start-page: 2409 issue: 19 year: 2011 end-page: 2421 article-title: The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt publication-title: Stat Med – volume: 90 start-page: 15 issue: 1 year: 2003 end-page: 27 article-title: Generalised linear models for correlated pseudo‐observations, with applications to multi‐state models publication-title: Biometrika – volume: 31 start-page: 3946 issue: 29 year: 2012 end-page: 3958 article-title: Generating survival times to simulate cox proportional hazards models with time‐varying covariates publication-title: Stat Med – volume: 72 start-page: 27 issue: 357 year: 1977 end-page: 36 article-title: Covariance analysis of heart transplant survival data publication-title: J Am Stat Assoc – volume: 78 start-page: 691 issue: 3 year: 1991 end-page: 692 article-title: A note on a general definition of the coefficient of determination publication-title: Biometrika – volume: 13 issue: 4 year: 2020 article-title: Novel risk modeling approach of atrial fibrillation with restricted mean survival times publication-title: Circ Cardiovasc Qual Outcomes – volume: 37 start-page: 1155 issue: 10 year: 2018 end-page: 1168 article-title: The international thoracic organ transplant registry of the international society for heart and lung transplantation: thirty‐fifth adult heart transplantation Report‐2018; focus theme: multiorgan transplantation publication-title: J Heart Lung Transplant – volume: 207 year: 2021 article-title: Dynamic prediction and analysis based on restricted mean survival time in survival analysis with nonproportional hazards publication-title: Comput Methods Programs Biomed – volume: 93 start-page: 702 issue: 442 year: 1998 end-page: 709 article-title: Restricted mean life with covariates: modification and extension of a useful survival analysis method publication-title: J Am Stat Assoc – volume: 24 start-page: 176 issue: 1 year: 2018 end-page: 199 article-title: Modeling restricted mean survival time under general censoring mechanisms publication-title: Lifetime Data Anal – volume: 69 start-page: 492 issue: 4 year: 2017 end-page: 494 article-title: From static to dynamic risk prediction: time is everything publication-title: Am J Kidney Dis – volume: 191 start-page: 163 issue: 1 year: 2022 end-page: 172 article-title: Implementation of an alternative method for assessing competing risks: restricted mean time lost publication-title: Am J Epidemiol – volume: 15 start-page: 222 issue: 2 year: 2014 end-page: 233 article-title: Predicting the restricted mean event time with the subject's baseline covariates in survival analysis publication-title: Biostatistics – volume: 10 start-page: 335 issue: 4 year: 2004 end-page: 350 article-title: Regression analysis of restricted mean survival time based on pseudo‐observations publication-title: Lifetime Data Anal – volume: 19 start-page: 71 issue: 1 year: 2010 end-page: 99 article-title: Pseudo‐observations in survival analysis publication-title: Stat Methods Med Res – volume: 38 start-page: 3832 issue: 20 year: 2019 end-page: 3860 article-title: Adjusted restricted mean survival times in observational studies publication-title: Stat Med – volume: 57 start-page: 1030 issue: 4 year: 2001 end-page: 1038 article-title: Causal inference on the difference of the restricted mean lifetime between two groups publication-title: Biometrics – volume: 15 start-page: 361 issue: 4 year: 1996 end-page: 387 article-title: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Stat Med – volume: 94 start-page: 297 issue: 2 year: 2007 end-page: 311 article-title: Model evaluation based on the sampling distribution of estimated absolute prediction error publication-title: Biometrika – volume: 78 start-page: 192 issue: 1 year: 2022 end-page: 201 article-title: Restricted mean survival time as a function of restriction time publication-title: Biometrics – volume: 2 start-page: 3 year: 2017 article-title: Using time dependent covariates and time dependent coefficients in the Cox model publication-title: Survival Vignettes – volume: 67 start-page: 740 issue: 3 year: 2011 end-page: 749 article-title: Estimating differences in restricted mean lifetime using observational data subject to dependent censoring publication-title: Biometrics – volume: 38 start-page: 2074 issue: 11 year: 2019 end-page: 2102 article-title: Using simulation studies to evaluate statistical methods publication-title: Stat Med – year: 2020 – volume: 47 start-page: 188 issue: 2 year: 1949 end-page: 189 article-title: The standard error of an estimate of expectation of life, with special reference to expectation of tumourless life in experiments with mice publication-title: South Afr J Epidemiol Infect – volume: 110 start-page: 232 issue: 3 year: 2018 end-page: 240 article-title: Understanding and communicating measures of treatment effect on survival: can we do better? publication-title: J Natl Cancer Inst – volume: 19 start-page: 436 issue: 4 year: 2020 end-page: 453 article-title: Restricted mean survival time as a summary measure of time‐to‐event outcome publication-title: Pharm Stat – volume: 25 start-page: 4279 issue: 24 year: 2006 end-page: 4292 article-title: The design of simulation studies in medical statistics publication-title: Stat Med – ident: e_1_2_10_3_1 doi: 10.1002/sim.8206 – ident: e_1_2_10_18_1 doi: 10.1002/sim.5452 – ident: e_1_2_10_24_1 doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 – ident: e_1_2_10_22_1 doi: 10.1002/sim.8086 – ident: e_1_2_10_13_1 doi: 10.1093/biomet/90.1.15 – volume: 2 start-page: 3 year: 2017 ident: e_1_2_10_26_1 article-title: Using time dependent covariates and time dependent coefficients in the Cox model publication-title: Survival Vignettes contributor: fullname: Therneau T – ident: e_1_2_10_20_1 doi: 10.1093/aje/kwab235 – ident: e_1_2_10_9_1 doi: 10.1111/j.0006-341X.2001.01030.x – ident: e_1_2_10_7_1 doi: 10.1080/01621459.1987.10478555 – ident: e_1_2_10_11_1 doi: 10.1111/biom.13414 – ident: e_1_2_10_19_1 doi: 10.1080/10543406.2020.1814799 – ident: e_1_2_10_15_1 doi: 10.1177/0962280209105020 – ident: e_1_2_10_10_1 doi: 10.1111/j.1541-0420.2010.01503.x – ident: e_1_2_10_25_1 doi: 10.1093/biomet/asm036 – ident: e_1_2_10_30_1 doi: 10.1016/j.cmpb.2021.106155 – ident: e_1_2_10_2_1 doi: 10.1093/jnci/djx179 – ident: e_1_2_10_12_1 doi: 10.1093/biostatistics/kxt050 – ident: e_1_2_10_28_1 doi: 10.1161/CIRCOUTCOMES.119.005918 – ident: e_1_2_10_5_1 doi: 10.1002/pst.2004 – ident: e_1_2_10_21_1 doi: 10.1002/sim.2673 – ident: e_1_2_10_23_1 – ident: e_1_2_10_27_1 doi: 10.1093/biomet/78.3.691 – volume: 47 start-page: 188 issue: 2 year: 1949 ident: e_1_2_10_6_1 article-title: The standard error of an estimate of expectation of life, with special reference to expectation of tumourless life in experiments with mice publication-title: South Afr J Epidemiol Infect contributor: fullname: Irwin JO – ident: e_1_2_10_17_1 doi: 10.1007/s10985-017-9391-6 – ident: e_1_2_10_14_1 doi: 10.1007/s10985-004-4771-0 – ident: e_1_2_10_29_1 doi: 10.1016/j.healun.2018.07.022 – ident: e_1_2_10_31_1 doi: 10.1053/j.ajkd.2017.01.004 – ident: e_1_2_10_4_1 doi: 10.1002/sim.4274 – ident: e_1_2_10_8_1 doi: 10.1080/01621459.1998.10473722 – ident: e_1_2_10_16_1 doi: 10.1080/01621459.1977.10479903 |
SSID | ssj0011527 |
Score | 2.474009 |
Snippet | In clinical or epidemiological follow‐up studies, methods based on time scale indicators such as the restricted mean survival time (RMST) have been developed... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 4081 |
SubjectTerms | inverse probability of censoring weighting Medical research Medical statistics restricted mean survival time Statistical analysis survival analysis time‐dependent covariates |
Title | Restricted mean survival time regression model with time‐dependent covariates |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9495 https://www.proquest.com/docview/2707814165 https://search.proquest.com/docview/2681044767 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BB1QJ8SggCgUZCbGVJm5qO2wIqMpQQDwktsgvEENT1LTM_AR-I7-Eu6RpYUBCYspgR0lsn_3dXe77AA6flPZ4sJO-S4QOim23iQMS7UoGNo6cUcJRaKB3J68e1fkF0eSclLUwBT_ELOBGlpHv12Tg2mStOWlo9jI4jhHe4_aLTkJevdG-mSUQSrVWylAKGXZK3tmAt8obf55Ec3j5HaTmp0x39T_vtwYrU2zJTovFsA4LPq3BUn-aPa_BchGjY0XpUQ2qhDQLouYNuL71JOFhEYGygdcpyya4i-A6ZCQ_z0b-ufhjNmW5eA6jAG7e9Pn-USrpjpkdvqHzTfh1Ex66F_dnveZUbaFp2-jTNBWPQ6WF5MYpabyLjeS-E4rAcjRUp52IKCknhNXaWIPzGIQu6DilnrhV2GULKukw9dvAAmGElwq_nhNbf4QuoYyi2Br0RkOjTR0OypFPXgtSjaSgT-YJDltCw1aHRjklydSssoTn3ESIIbH5YNaMBkFZDp364QT7EMNaFEkh63CUT9Cvz0juLvt03flrx12ocip_oKxU0IDKeDTxe7CYucl-vvy-AEof3Hg |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gArioyrW5wrirZpstrsbPIlWKloVW8FbyD4UD6ZirWd_gr_RX-JM0rR6EARPOeyGJLM7u9_MZL8PYPdepx43dtJ3ERig2CgiDkj0KxXYWDijpaPUQLOtLu_0SYNocg7LszAFP8Qw4Uaeka_X5OCUkD4YsYb2Hp_2Y8T34zAppIhJtyGKroclhFKvlWqUUoX1knk24AflnT_3ohHA_A5T833mdP5fb7gAcwN4yY6K-bAIYz6rwFRrUECvwGyRpmPF6aMKzBDYLLial-DqxpOKh0UQyp58mrFeHxcSnIqMFOjZi38ofprNWK6fwyiHmzd9vn-UYrqvzHbfMP4mCLsMt6eNznGzNhBcqNkIw5qa5nGoU6m4cVoZ72KjuK-HMrAcfdWlTgqqy0lp09RYg0MZhC6oO63vudXYZQUmsm7mV4EF0kivNH49J8J-gVGhEiK2BgPS0KSmCjul6ZPnglcjKRiUeYJmS8hsVdgoxyQZeFYv4Tk9EcJIbN4ZNqNPUKEjzXy3j32IZE0IJVUV9vIR-vUZSfusRde1v3bchulmp3WRXJxdnq_DDKfTEFSkCjZg4vWl7zdhvOf6W_lc_AIspOCZ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRASYikgyupKiFshcV3b4YaACsRWsUjcongp4tC06sKZT-Ab-RJmkqbAAQmJUw52lMT22G9mMu8B7LV14vFgJ30XgQ6KrdeJAxLtSgU2Es5o6Sg0cH6vbp706RnR5BwVtTA5P8Qk4EaWke3XZOA91z78Ig0dvHQOIoT30zAjCIVT-Ua9NckgFHKtlKKUKmwUxLMBPyzu_HkUfeHL7yg1O2aai_95wSVYGINLdpyvhmWY8mkZZq_H6fMyzOdBOpbXHpVhjqBmztS8Ard3njQ8LEJQ1vFJygYj3EZwITLSn2d9_5z_MpuyTD2HUQQ3a_p4ey-kdIfMdl_R-yYAuwqPzbOHk_PaWG6hZuvo1NQ0j0KdSMWN08p4FxnFfSOUgeVoqS5xUlBWTkqbJMYanMggdEHDad3mVmOXNSil3dSvAwukkV5p_HpOdP0CfUIlRGQNuqOhSUwFqsXIx72cVSPO-ZN5jMMW07BVYKuYknhsV4OYZ-RECCKxuTppRougNEeS-u4I-xDFmhBKqgrsZxP06zPi-4trum78teMuzLZOm_HVxc3lJsxxKoWgDFWwBaVhf-S3YXrgRjvZSvwEpejfSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restricted+mean+survival+time+regression+model+with+time%E2%80%90dependent+covariates&rft.jtitle=Statistics+in+medicine&rft.au=Zhang%2C+Chengfeng&rft.au=Huang%2C+Baoyi&rft.au=Wu%2C+Hongji&rft.au=Yuan%2C+Hao&rft.date=2022-09-20&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=41&rft.issue=21&rft.spage=4081&rft.epage=4090&rft_id=info:doi/10.1002%2Fsim.9495&rft.externalDBID=10.1002%252Fsim.9495&rft.externalDocID=SIM9495 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |