A novel in silico method to quantify primary stability of screws in trabecular bone
ABSTRACT Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite‐element models, micro‐CT based finite‐element analysis (micro‐FE) is capable of capturing the patient‐specific bone micro‐architecture, providing accurate estimates of...
Saved in:
Published in: | Journal of orthopaedic research Vol. 35; no. 11; pp. 2415 - 2424 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-11-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | ABSTRACT
Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite‐element models, micro‐CT based finite‐element analysis (micro‐FE) is capable of capturing the patient‐specific bone micro‐architecture, providing accurate estimates of bone stiffness. However, such in silico models for screws in bone highly overestimate the apparent stiffness. We hypothesized that a more accurate prediction of primary implant stability of screws in bone is possible by considering insertion‐related bone damage. We assessed two different screw types and loading scenarios in 20 trabecular bone specimens extracted from 12 cadaveric human femoral heads (N = 5 for each case). In the micro‐FE model, we predicted specimen‐specific Young's moduli of the peri‐implant bone damage region based on morphometric parameters such that the apparent stiffness of each in silico model matched the experimentally measured stiffness of the corresponding in vitro specimen as closely as possible. The standard micro‐FE models assuming perfectly intact peri‐implant bone overestimated the stiffness by over 330%. The consideration of insertion related damaged peri‐implant bone corrected the mean absolute percentage error down to 11.4% for both loading scenarios and screw types. Cross‐validation revealed a mean absolute percentage error of 14.2%. We present the validation of a novel micro‐FE modeling technique to quantify the apparent stiffness of screws in trabecular bone. While the standard micro‐FE model overestimated the bone‐implant stiffness, the consideration of insertion‐related bone damage was crucial for an accurate stiffness prediction. This approach provides an important step toward more accurate specimen‐specific micro‐FE models. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2415–2424, 2017. |
---|---|
AbstractList | ABSTRACT
Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite‐element models, micro‐CT based finite‐element analysis (micro‐FE) is capable of capturing the patient‐specific bone micro‐architecture, providing accurate estimates of bone stiffness. However, such in silico models for screws in bone highly overestimate the apparent stiffness. We hypothesized that a more accurate prediction of primary implant stability of screws in bone is possible by considering insertion‐related bone damage. We assessed two different screw types and loading scenarios in 20 trabecular bone specimens extracted from 12 cadaveric human femoral heads (N = 5 for each case). In the micro‐FE model, we predicted specimen‐specific Young's moduli of the peri‐implant bone damage region based on morphometric parameters such that the apparent stiffness of each in silico model matched the experimentally measured stiffness of the corresponding in vitro specimen as closely as possible. The standard micro‐FE models assuming perfectly intact peri‐implant bone overestimated the stiffness by over 330%. The consideration of insertion related damaged peri‐implant bone corrected the mean absolute percentage error down to 11.4% for both loading scenarios and screw types. Cross‐validation revealed a mean absolute percentage error of 14.2%. We present the validation of a novel micro‐FE modeling technique to quantify the apparent stiffness of screws in trabecular bone. While the standard micro‐FE model overestimated the bone‐implant stiffness, the consideration of insertion‐related bone damage was crucial for an accurate stiffness prediction. This approach provides an important step toward more accurate specimen‐specific micro‐FE models. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2415–2424, 2017. Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite-element models, micro-CT based finite-element analysis (micro-FE) is capable of capturing the patient-specific bone micro-architecture, providing accurate estimates of bone stiffness. However, such in silico models for screws in bone highly overestimate the apparent stiffness. We hypothesized that a more accurate prediction of primary implant stability of screws in bone is possible by considering insertion-related bone damage. We assessed two different screw types and loading scenarios in 20 trabecular bone specimens extracted from 12 cadaveric human femoral heads (N = 5 for each case). In the micro-FE model, we predicted specimen-specific Young's moduli of the peri-implant bone damage region based on morphometric parameters such that the apparent stiffness of each in silico model matched the experimentally measured stiffness of the corresponding in vitro specimen as closely as possible. The standard micro-FE models assuming perfectly intact peri-implant bone overestimated the stiffness by over 330%. The consideration of insertion related damaged peri-implant bone corrected the mean absolute percentage error down to 11.4% for both loading scenarios and screw types. Cross-validation revealed a mean absolute percentage error of 14.2%. We present the validation of a novel micro-FE modeling technique to quantify the apparent stiffness of screws in trabecular bone. While the standard micro-FE model overestimated the bone-implant stiffness, the consideration of insertion-related bone damage was crucial for an accurate stiffness prediction. This approach provides an important step toward more accurate specimen-specific micro-FE models. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2415-2424, 2017. |
Author | Ferguson, Stephen J. Affentranger, Remo Steiner, Juri A. Christen, Patrik van Lenthe, Gerrit Harry |
Author_xml | – sequence: 1 givenname: Juri A. surname: Steiner fullname: Steiner, Juri A. organization: ETH Zurich – sequence: 2 givenname: Patrik surname: Christen fullname: Christen, Patrik organization: ETH Zurich – sequence: 3 givenname: Remo surname: Affentranger fullname: Affentranger, Remo organization: ETH Zurich – sequence: 4 givenname: Stephen J. surname: Ferguson fullname: Ferguson, Stephen J. organization: ETH Zurich – sequence: 5 givenname: Gerrit Harry surname: van Lenthe fullname: van Lenthe, Gerrit Harry email: harry.vanlenthe@kuleuven.be organization: KU Leuven—University of Leuven |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28240380$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMlOwzAQQC1URBc48APIRziEju04To5VxapKlVgkblHiTESqJG7thCp_T0oKN05zefM086ZkVJsaCblkcMsA-Hxj7C0XUrITMmFS-p7k6mNEJqBE4AEPgjGZOrcBAMV4eEbGPOQ-iBAm5HVBa_OFJS1q6oqy0IZW2HyajDaG7tqkboq8o1tbVIntqGuStIeajpqcOm1x7w6LjU1S1G2ZWJr2l52T0zwpHV4c54y839-9LR-91frhablYeVoEwLxABSAiFvqZwjSTmuURMJHpBIT0RaZ45IOWQjElIUBfoBQsQpEHPEpzTIWYkevBu7Vm16Jr4qpwGssyqdG0Lmah4lKFXEKP3gyotsY5i3l8fClmEB8axn3D-Kdhz14dtW1aYfZH_kbrgfkA7IsSu_9N8fP6ZVB-A2YWfAQ |
CitedBy_id | crossref_primary_10_1016_j_jmbbm_2023_106062 crossref_primary_10_1016_j_jbiomech_2017_12_023 crossref_primary_10_1007_s40846_021_00628_w crossref_primary_10_1016_j_cmpb_2021_105966 crossref_primary_10_1016_j_jmbbm_2023_105740 crossref_primary_10_1007_s11914_021_00690_y crossref_primary_10_1002_mp_13585 crossref_primary_10_1016_j_bea_2024_100115 crossref_primary_10_1016_j_medengphy_2024_104143 crossref_primary_10_1016_j_jmbbm_2019_103598 crossref_primary_10_1016_j_jmbbm_2023_106241 crossref_primary_10_1302_2046_3758_1012_BJR_2020_0533_R1 crossref_primary_10_1016_j_jmbbm_2021_104344 crossref_primary_10_1007_s10237_018_1038_3 crossref_primary_10_1016_j_jmbbm_2019_103608 crossref_primary_10_1002_jsp2_1220 crossref_primary_10_1016_j_jmbbm_2022_105566 crossref_primary_10_1016_j_jmbbm_2024_106634 crossref_primary_10_1016_j_bonr_2022_101179 crossref_primary_10_3390_ma16175926 crossref_primary_10_1016_j_bonr_2020_100263 crossref_primary_10_3389_fbioe_2022_1094813 |
Cites_doi | 10.1080/10255842.2010.537263 10.1016/S0021-9290(02)00022-2 10.1016/j.medengphy.2006.10.014 10.1016/j.jbiomech.2011.12.024 10.1007/s00113-006-1165-7 10.1016/j.jdent.2008.02.015 10.1302/0301-620X.89B5.18504 10.1016/0021-9290(95)80008-5 10.1016/S1350-4533(98)00081-2 10.1016/j.cmpb.2009.01.004 10.1016/S0168-874X(00)00033-0 10.1016/j.medengphy.2012.07.009 10.1097/BOT.0b013e3181920e5b 10.1016/j.jbiomech.2012.08.022 10.1016/j.jbiomech.2007.05.004 10.1007/s10237-011-0320-4 10.1016/j.medengphy.2016.01.006 10.1016/j.ajodo.2010.03.015 10.1016/j.dental.2007.11.024 10.1002/jbmr.1805 10.1016/j.bone.2011.05.001 10.1201/9781420073560.ch5 10.1016/j.jpdc.2014.06.014 10.1890/13-1452.1 10.1016/j.jbiomech.2009.05.023 10.1016/j.medengphy.2005.12.009 10.1007/s00056-008-0742-5 10.1016/S8756-3282(99)00151-9 10.1016/j.jbiomech.2012.04.008 10.1002/term.325 10.1146/annurev.bioeng.3.1.307 10.1017/S1431927612001286 10.1155/2014/748393 10.1007/s001980050070 10.1359/jbmr.2002.17.1.162 10.1016/j.jbiomech.2013.07.047 10.1111/j.1532-950X.1996.tb01443.x 10.1007/s00419-009-0387-x 10.1007/s00198-004-1746-7 10.1016/0021-9290(88)90257-6 10.1016/j.medengphy.2012.10.006 10.1109/TAC.1974.1100705 10.1007/BF02344727 10.1007/s00223-002-0013-9 10.1111/j.1600-0501.2009.01808.x 10.1243/095441104322984022 10.1016/j.bone.2011.08.018 10.1016/j.orthres.2004.04.001 10.1016/S1350-4533(03)00138-3 10.1111/j.1600-0501.2010.02024.x 10.1007/s00198-004-1777-0 10.1002/jbmr.141 10.1007/s10237-014-0584-6 |
ContentType | Journal Article |
Copyright | 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/jor.23551 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1554-527X |
EndPage | 2424 |
ExternalDocumentID | 10_1002_jor_23551 28240380 JOR23551 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Swiss Commission for Technology and Innovation (CTI) funderid: KTI‐Nr. 14067.1 PFLS‐LS – fundername: Synthes GmbH |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1B1 1KJ 1L6 1OB 1OC 1ZS 1~5 24P 29L 31~ 33P 3SF 3V. 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 7-5 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8FI 8FJ 8R4 8R5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AALRI AANLZ AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABMAC ABPVW ABQWH ABUWG ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIUM ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADMUD ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BPHCQ BQCPF BROTX BRXPI BVXVI BY8 C45 CCPQU CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 DWQXO EBD EBS EJD EMOBN F00 F01 F04 F5P FDB FEDTE FGOYB FUBAC FYUFA G-S G.N GNP GNUQQ GODZA H.X HBH HCIFZ HF~ HGLYW HHY HHZ HMCUK HVGLF HZ~ IHE IX1 J0M JPC KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M41 M56 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB NQ- O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K R2- RIG RIWAO RJQFR RNS ROL RPZ RWI RWL RWR RX1 RXW RYL SAMSI SEW SSZ SUPJJ SV3 TAE TEORI UB1 UKHRP UPT V2E V8K W8V W99 WBKPD WIB WIH WIJ WIK WIN WJL WNSPC WOHZO WQJ WRC WXI WXSBR WYB WYISQ X7M XG1 XV2 YCJ YQT ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c3601-676039184d7ebd5c1f9013dca03543d72940c53717506e43e5319e3f629bfeb33 |
IEDL.DBID | 33P |
ISSN | 0736-0266 |
IngestDate | Sat Aug 17 02:16:01 EDT 2024 Thu Nov 21 20:49:12 EST 2024 Wed Oct 16 00:59:56 EDT 2024 Sat Aug 24 00:52:19 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | FEA specimen-specific computer model validation primary implant stability micro-CT, primary implant stability |
Language | English |
License | 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3601-676039184d7ebd5c1f9013dca03543d72940c53717506e43e5319e3f629bfeb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jor.23551 |
PMID | 28240380 |
PQID | 1872578250 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1872578250 crossref_primary_10_1002_jor_23551 pubmed_primary_28240380 wiley_primary_10_1002_jor_23551_JOR23551 |
PublicationCentury | 2000 |
PublicationDate | November 2017 2017-Nov 2017-11-00 20171101 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of orthopaedic research |
PublicationTitleAlternate | J Orthop Res |
PublicationYear | 2017 |
References | 2004; 22 2002; 17 2013; 28 2009; 42 2009; 80 2004; 26 2008; 36 2012; 18 2011; 14 2016; 38 2012; 11 1974; 19 2007; 29 2009; 95 2010; 25 2006; 28 2008; 69 2011; 22 2008; 24 1996; 25 2004; 218 2014; 95 2009; 23 2015; 14 28 2009; 20 2013; 46 2002; 35 1999; 25 2014; 2014 2004 2003; 73 1998; 20 2011; 5 1999 2006; 109 2000; 36 2013; 35 2010; 138 1988; 21 2001; 3 2007; 40 2005; 2 2014; 74 2005; 16 2011; 49 2012; 45 2007; 89 1998; 8 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 van Rietbergen B (e_1_2_8_28_1); 28 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 38 start-page: 417 year: 2016 end-page: 422 article-title: Screw insertion in trabecular bone causes peri‐implant bone damage publication-title: Med Eng Phys – volume: 20 start-page: 1300 year: 2009 end-page: 1306 article-title: Generation of microdamage around endosseous implants publication-title: Clin Oral Implants Res – volume: 11 start-page: 403 year: 2012 end-page: 410 article-title: 3D characterization of bone strains in the rat tibia loading model publication-title: Biomech Model Mechanobiol – volume: 3 start-page: 307 year: 2001 end-page: 333 article-title: Biomechanics of trabecular bone publication-title: Annu Rev Biomed Eng – volume: 36 start-page: 409 year: 2008 end-page: 417 article-title: Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non‐linear finite element study publication-title: J Dent – volume: 8 start-page: 317 year: 1998 end-page: 325 article-title: Image‐Based assessment of spinal trabecular bone structure from high‐Resolution CT images publication-title: Osteoporos Int – volume: 19 start-page: 716 year: 1974 end-page: 723 article-title: A new look at the statistical model identification publication-title: IEEE Trans Automat Contr – volume: 95 start-page: 631 year: 2014 end-page: 636 article-title: Model selection for ecologists: the worldviews of AIC and BIC publication-title: Ecology – start-page: 87 year: 1999 end-page: 101 – volume: 20 start-page: 735 year: 1998 end-page: 740 article-title: Material properties assignment to finite element models of bone structures: a new method publication-title: Med Eng Phys – volume: 22 start-page: 613 year: 2011 end-page: 618 article-title: Influence of surface roughness and shape on microdamage of the osseous surface adjacent to titanium dental implants publication-title: Clin Oral Implants Res – volume: 46 start-page: 2659 year: 2013 end-page: 2666 article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical‐resolution CT images publication-title: J Biomech – volume: 69 start-page: 121 year: 2008 end-page: 134 article-title: Microdamage in cortical bone due to the overtightening of orthodontic microscrews publication-title: J Orofac Orthop – volume: 29 start-page: 973 year: 2007 end-page: 979 article-title: The material mapping strategy influences the accuracy of CT‐based finite element models of bones: an evaluation against experimental measurements publication-title: Med Eng Phys – volume: 218 start-page: 127 year: 2004 end-page: 142 article-title: Development and experimental validation of a three‐dimensional finite element model of the human scapula publication-title: Proc Inst Mech Eng H – volume: 28 start-page: 69 end-page: 81 article-title: A1995 A new method to determine trabecular bone elastic properties and loading using micromechanical finite‐element models publication-title: J Biomech – volume: 25 start-page: 453 year: 1996 end-page: 462 article-title: In vitro biomechanical and histological assessment of pilot hole diameter for positive‐profile external skeletal fixation pins in canine tibiae publication-title: Vet Surg – volume: 22 start-page: 1237 year: 2004 end-page: 1242 article-title: Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws publication-title: J Orthop Res – volume: 73 start-page: 531 year: 2003 end-page: 536 article-title: Three‐dimensional distribution of bone density in the proximal humerus publication-title: Calcif Tissue Int – volume: 5 start-page: 415 year: 2011 end-page: 420 article-title: Mechanical stability in a human radius fracture treated with a novel tissue‐engineered bone substitute: a non‐invasive, longitudinal assessment using high‐resolution pQCT in combination with finite element analysis publication-title: J Tissue Eng Regen Med – volume: 45 start-page: 2884 year: 2012 end-page: 2892 article-title: A new approach to determine the accuracy of morphology‐elasticity relationships in continuum FE analyses of human proximal femur publication-title: J Biomech – volume: 35 start-page: 767 year: 2002 end-page: 773 article-title: Determination of orthotropic bone elastic constants using FEA and modal analysis publication-title: J Biomech – volume: 25 start-page: 217 year: 1999 end-page: 222 article-title: Microdamage adjacent to endosseous implants publication-title: Bone – volume: 28 start-page: 888 year: 2006 end-page: 893 article-title: Axial cyclic behavior of the bone‐screw interface publication-title: Med Eng Phys – volume: 16 start-page: S93 year: 2005 end-page: S102 article-title: Treatment strategies for proximal femur fractures in osteoporotic patients publication-title: Osteoporos Int – volume: 36 start-page: 197 year: 2000 end-page: 214 article-title: Parallel multigrid solvers for 3D‐unstructured large deformation elasticity and plasticity finite element problems publication-title: Finite Elem Anal Des – volume: 138 start-page: 8 year: 2010 article-title: Effects of the diameter and shape of orthodontic mini‐implants on microdamage to the cortical bone publication-title: Am J Orthod Dentofac Orthop – volume: 21 start-page: 269 year: 1988 end-page: 275 article-title: Limitations of the continuum assumption in cancellous bone publication-title: J Biomech – volume: 42 start-page: 2165 year: 2009 end-page: 2170 article-title: Heterogeneity of yield strain in low‐density versus high‐density human trabecular bone publication-title: J Biomech – volume: 2 start-page: 465 year: 2005 end-page: 472 article-title: How to select the elastic modulus for cancellous bone in patient‐specific continuum models of the spine publication-title: Med Biol Eng Comput – volume: 16 start-page: S107 year: 2005 end-page: S111 article-title: Mechanical behavior of screws in normal and osteoporotic bone publication-title: Osteoporos Int – volume: 23 start-page: 163 year: 2009 end-page: 72 article-title: Open reduction and internal fixation of proximal humerus fractures using a proximal humeral locked plate: a prospective multicenter analysis publication-title: J Orthop Trauma – volume: 49 start-page: 473 year: 2011 end-page: 478 article-title: Implant stability is affected by local bone microstructural quality publication-title: Bone – start-page: 1 year: 2004 end-page: 17 – volume: 74 start-page: 2941 year: 2014 end-page: 2950 article-title: Bone structure analysis on multiple GPGPUs publication-title: J Parallel Distrib Comput – volume: 95 start-page: 23 year: 2009 end-page: 30 article-title: A convenient approach for finite‐element‐analyses of orthopaedic implants in bone contact: modeling and experimental validation publication-title: Comput Methods Programs Biomed – volume: 14 start-page: 165 year: 2011 end-page: 174 article-title: Towards validation of computational analyses of peri‐implant displacements by means of experimentally obtained displacement maps publication-title: Comput Methods Biomech Biomed Engin – volume: 40 start-page: 3333 year: 2007 end-page: 3340 article-title: Validation of a voxel‐based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation publication-title: J Biomech – volume: 2014 start-page: 1 year: 2014 end-page: 15 article-title: Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status publication-title: Biomed Res Int – volume: 25 start-page: 1468 year: 2010 end-page: 1486 article-title: Guidelines for assessment of bone microstructure in rodents using micro‐computed tomography publication-title: J Bone Miner Res – volume: 18 start-page: 1106 year: 2012 end-page: 1111 article-title: Three‐dimensional morphology of microdamage in peri‐screw bone: a scanning electron microscopy of methylmethacrylate cast replica publication-title: Microsc Microanal – volume: 45 start-page: 1060 year: 2012 end-page: 1067 article-title: The discrete nature of trabecular bone microarchitecture affects implant stability publication-title: J Biomech – volume: 28 start-page: 2 year: 2013 end-page: 17 article-title: Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee publication-title: J Bone Miner Res – volume: 35 start-page: 1037 year: 2013 end-page: 1043 article-title: Validation of a finite element model of a unilateral external fixator in a rabbit tibia defect model publication-title: Med Eng Phys – volume: 49 start-page: 1166 year: 2011 end-page: 1172 article-title: In vivo validation of a computational bone adaptation model using open‐loop control and time‐lapsed micro‐computed tomography publication-title: Bone – volume: 14 start-page: 39 year: 2015 end-page: 48 article-title: A novel approach to estimate trabecular bone anisotropy from stress tensors publication-title: Biomech Model Mechanobiol – volume: 109 start-page: 1032 year: 2006 end-page: 1040 article-title: Die winkelstabile osteosynthese am proximalen humerus mit der PHILOS‐platte. Darstellung von 225 dislozierten frakturen publication-title: Unfallchirurg – volume: 24 start-page: 561 year: 2008 end-page: 569 article-title: Investigation of bone inelastic response in interaction phenomena with dental implants publication-title: Dent Mater – volume: 35 start-page: 636 year: 2013 end-page: 643 article-title: Time‐lapsed imaging of implant fixation failure in human femoral heads publication-title: Med Eng Phys – volume: 17 start-page: 162 year: 2002 end-page: 171 article-title: Bone strength at clinically relevant sites displays substantial heterogeneity and is best predicted from site‐specific bone densitometry publication-title: J Bone Miner Res – volume: 45 start-page: 1712 year: 2012 end-page: 1716 article-title: Does screw‐bone interface modelling matter in finite element analyses publication-title: J Biomech – volume: 89 start-page: 701 year: 2007 end-page: 705 article-title: Factors affecting the stability of screws in human cortical osteoporotic bone: a cadaver study publication-title: J Bone Joint Surg Br – volume: 26 start-page: 61 year: 2004 end-page: 69 article-title: An improved method for the automatic mapping of computed tomography numbers onto finite element models publication-title: Med Eng Phys – volume: 80 start-page: 513 year: 2009 end-page: 525 article-title: Mechanical competence of bone‐implant systems can accurately be determined by image‐based micro‐finite element analyses publication-title: Arch Appl Mech – ident: e_1_2_8_39_1 doi: 10.1080/10255842.2010.537263 – ident: e_1_2_8_18_1 doi: 10.1016/S0021-9290(02)00022-2 – ident: e_1_2_8_21_1 doi: 10.1016/j.medengphy.2006.10.014 – ident: e_1_2_8_14_1 doi: 10.1016/j.jbiomech.2011.12.024 – ident: e_1_2_8_50_1 doi: 10.1007/s00113-006-1165-7 – ident: e_1_2_8_10_1 doi: 10.1016/j.jdent.2008.02.015 – ident: e_1_2_8_4_1 doi: 10.1302/0301-620X.89B5.18504 – volume: 28 start-page: 69 ident: e_1_2_8_28_1 article-title: A1995 A new method to determine trabecular bone elastic properties and loading using micromechanical finite‐element models publication-title: J Biomech doi: 10.1016/0021-9290(95)80008-5 contributor: fullname: van Rietbergen B – ident: e_1_2_8_19_1 doi: 10.1016/S1350-4533(98)00081-2 – ident: e_1_2_8_22_1 doi: 10.1016/j.cmpb.2009.01.004 – ident: e_1_2_8_27_1 doi: 10.1016/S0168-874X(00)00033-0 – ident: e_1_2_8_40_1 doi: 10.1016/j.medengphy.2012.07.009 – ident: e_1_2_8_49_1 doi: 10.1097/BOT.0b013e3181920e5b – ident: e_1_2_8_15_1 doi: 10.1016/j.jbiomech.2012.08.022 – ident: e_1_2_8_26_1 doi: 10.1016/j.jbiomech.2007.05.004 – ident: e_1_2_8_53_1 doi: 10.1007/s10237-011-0320-4 – ident: e_1_2_8_31_1 doi: 10.1016/j.medengphy.2016.01.006 – ident: e_1_2_8_37_1 doi: 10.1016/j.ajodo.2010.03.015 – ident: e_1_2_8_13_1 doi: 10.1016/j.dental.2007.11.024 – ident: e_1_2_8_42_1 doi: 10.1002/jbmr.1805 – ident: e_1_2_8_9_1 doi: 10.1016/j.bone.2011.05.001 – ident: e_1_2_8_43_1 doi: 10.1201/9781420073560.ch5 – ident: e_1_2_8_47_1 doi: 10.1016/j.jpdc.2014.06.014 – ident: e_1_2_8_48_1 doi: 10.1890/13-1452.1 – ident: e_1_2_8_29_1 doi: 10.1016/j.jbiomech.2009.05.023 – ident: e_1_2_8_44_1 doi: 10.1016/j.medengphy.2005.12.009 – ident: e_1_2_8_38_1 doi: 10.1007/s00056-008-0742-5 – ident: e_1_2_8_36_1 doi: 10.1016/S8756-3282(99)00151-9 – ident: e_1_2_8_12_1 doi: 10.1016/j.jbiomech.2012.04.008 – ident: e_1_2_8_54_1 doi: 10.1002/term.325 – ident: e_1_2_8_6_1 doi: 10.1146/annurev.bioeng.3.1.307 – ident: e_1_2_8_33_1 doi: 10.1017/S1431927612001286 – ident: e_1_2_8_51_1 doi: 10.1155/2014/748393 – ident: e_1_2_8_24_1 doi: 10.1007/s001980050070 – ident: e_1_2_8_7_1 doi: 10.1359/jbmr.2002.17.1.162 – ident: e_1_2_8_55_1 doi: 10.1016/j.jbiomech.2013.07.047 – ident: e_1_2_8_35_1 doi: 10.1111/j.1532-950X.1996.tb01443.x – ident: e_1_2_8_30_1 doi: 10.1007/s00419-009-0387-x – ident: e_1_2_8_2_1 doi: 10.1007/s00198-004-1746-7 – ident: e_1_2_8_25_1 doi: 10.1016/0021-9290(88)90257-6 – ident: e_1_2_8_11_1 doi: 10.1016/j.medengphy.2012.10.006 – ident: e_1_2_8_45_1 doi: 10.1109/TAC.1974.1100705 – ident: e_1_2_8_52_1 – ident: e_1_2_8_23_1 doi: 10.1007/BF02344727 – ident: e_1_2_8_8_1 doi: 10.1007/s00223-002-0013-9 – ident: e_1_2_8_34_1 doi: 10.1111/j.1600-0501.2009.01808.x – ident: e_1_2_8_20_1 doi: 10.1243/095441104322984022 – ident: e_1_2_8_46_1 doi: 10.1016/j.bone.2011.08.018 – ident: e_1_2_8_5_1 doi: 10.1016/j.orthres.2004.04.001 – ident: e_1_2_8_17_1 doi: 10.1016/S1350-4533(03)00138-3 – ident: e_1_2_8_32_1 doi: 10.1111/j.1600-0501.2010.02024.x – ident: e_1_2_8_3_1 doi: 10.1007/s00198-004-1777-0 – ident: e_1_2_8_41_1 doi: 10.1002/jbmr.141 – ident: e_1_2_8_16_1 doi: 10.1007/s10237-014-0584-6 |
SSID | ssj0007128 |
Score | 2.4111173 |
Snippet | ABSTRACT
Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite‐element models, micro‐CT... Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite-element models, micro-CT based... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2415 |
SubjectTerms | Aged Bone Screws Cancellous Bone - diagnostic imaging Computer Simulation FEA Finite Element Analysis Humans micro‐CT, primary implant stability Middle Aged Models, Theoretical primary implant stability specimen‐specific computer model validation X-Ray Microtomography |
Title | A novel in silico method to quantify primary stability of screws in trabecular bone |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.23551 https://www.ncbi.nlm.nih.gov/pubmed/28240380 https://search.proquest.com/docview/1872578250 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Jy8-8LW-iOLBS902SZMWT4vuIh5UXAVvJWlSWFla3W6F_fdO0m1lEUHwVmgzlMlk5vva5BuEzlMeK2My5dGIhR4jRntS6dTTkorIN0pT6VonjMT9a3QzsDI5V81ZmFofov3gZleGy9d2gUtV9r5FQ9-K6SWBammpD7AEd3yDPrZZWASurypEsN1ky3mjKuSTXjtyuRb9AJjLeNUVnOHGv151E60vcCbu14GxhVZMvo1GfZwXn2aCxzkuxxMIAlx3kMazAn9U0m4cmuP3WoACA250O2fnuMgwZBdIh3bgbCpV3VEXqyI3O-hlOHi-vvUWXRW8lAL78rjgVhU-YlrAVIRpkAEkoDqVPg0Z1QC2mZ-GFGhe6HPDqLGr1NCMk1hlQL3pLurkYH4fYeBWimciozIOmNIkFtI2MZMsZilQOdpFZ41_k8W7J7VMMknAJ4nzSRedNp5PILTt_wqZm6IqkyASNqEASOuivXpKWjNgnvk0gjsXzvO_20_uHp7cxcHfHz1Ea8SWb3fm8Ah1ZtPKHKPVUlcnLsq-AN160so |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86H_TFD_yan1F88KXaNmnagi9DN6bOKW6CbyVpUpiMVrdV2H_vJV0rQwTBt0KbI1wud79LL79D6CxmoVAqERYJqGdRV0mLCxlbkhM_sJWQhJvWCT2_-xrcNDVNzlV5F6bgh6gO3PTOMP5ab3B9IH35zRr6lo0uXAiXkPssUQaGqC9wkKfKD_uO6awKNqzLbBkreYVs97IaOh-NfkDMecRqQk5r7X-TXUerM6iJG4VtbKAFlW6iXgOn2aca4kGKx4Mh2AEumkjjSYY_cq5rh6b4veCgwAAdTfHsFGcJBgcDHlEPnIy4KJrqYpGlagu9tJr967Y1a6xgxQQSMIv5TBPDB1T6sBpe7CSACoiMuU08SiTgbWrHHoFMz7OZokTpjapIwtxQJJB9k21US0H8LsKQXgmW-AnhoUOFdEOf6z5mnIY0hmyO1NFpqeBoNveoYEp2I9BJZHRSRyel6iOwbv3Lgqcqy8eRE_japwBOq6OdYk0qMSCe2iSAN-dG9b_Lj-4en83D3t8_PUbL7f5DJ-rcdu_30Yqro7m5gniAapNRrg7R4ljmR8bkvgBC4Nby |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86QXzxA7_mZxQffKlrm_QLn4bb8Is5nIJvJWkSmIx2bquw_95LulaGCIJvhTZHuFzuftdcfofQReJHXErFLRJSz6KuFBbjIrEEI0FoSy4IM60T-kH3LWy1NU3OdXkXpuCHqH646Z1h_LXe4COhGt-koe_Z-MqFaAmpzwoFGK6J8wnpVW44cExjVTBhXWXr-yWtkO02qqGLwegHwlwErCbidDb-NddNtD4HmrhZWMYWWpLpNuo3cZp9yiEepHgyGIIV4KKFNJ5m-CNnunJohkcFAwUG4GhKZ2c4UxjcC_hDPXA6ZrxoqYt5lsod9Nppv9zcWvO2ClZCIP2y_MDXtPAhFQGshZc4CjABEQmziUeJALRN7cQjkOd5ti8pkXqbSqJ8N-IKcm-yi2opiN9HGJIr7qtAERY5lAs3CpjuYsZoRBPI5UgdnZf6jedzjwueZDcGncRGJ3V0Vmo-BtvWBxYslVk-iZ0w0B4FUFod7RVLUokB8dQmIby5NJr_XX58__RsHg7-_ukpWu21OvHjXffhEK25OpSb-4dHqDYd5_IYLU9EfmIM7gvFW9WY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+in+silico+method+to+quantify+primary+stability+of+screws+in+trabecular+bone&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Steiner%2C+Juri+A.&rft.au=Christen%2C+Patrik&rft.au=Affentranger%2C+Remo&rft.au=Ferguson%2C+Stephen+J.&rft.date=2017-11-01&rft.issn=0736-0266&rft.eissn=1554-527X&rft.volume=35&rft.issue=11&rft.spage=2415&rft.epage=2424&rft_id=info:doi/10.1002%2Fjor.23551&rft.externalDBID=10.1002%252Fjor.23551&rft.externalDocID=JOR23551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon |