A novel in silico method to quantify primary stability of screws in trabecular bone

ABSTRACT Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite‐element models, micro‐CT based finite‐element analysis (micro‐FE) is capable of capturing the patient‐specific bone micro‐architecture, providing accurate estimates of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of orthopaedic research Vol. 35; no. 11; pp. 2415 - 2424
Main Authors: Steiner, Juri A., Christen, Patrik, Affentranger, Remo, Ferguson, Stephen J., van Lenthe, Gerrit Harry
Format: Journal Article
Language:English
Published: United States 01-11-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite‐element models, micro‐CT based finite‐element analysis (micro‐FE) is capable of capturing the patient‐specific bone micro‐architecture, providing accurate estimates of bone stiffness. However, such in silico models for screws in bone highly overestimate the apparent stiffness. We hypothesized that a more accurate prediction of primary implant stability of screws in bone is possible by considering insertion‐related bone damage. We assessed two different screw types and loading scenarios in 20 trabecular bone specimens extracted from 12 cadaveric human femoral heads (N = 5 for each case). In the micro‐FE model, we predicted specimen‐specific Young's moduli of the peri‐implant bone damage region based on morphometric parameters such that the apparent stiffness of each in silico model matched the experimentally measured stiffness of the corresponding in vitro specimen as closely as possible. The standard micro‐FE models assuming perfectly intact peri‐implant bone overestimated the stiffness by over 330%. The consideration of insertion related damaged peri‐implant bone corrected the mean absolute percentage error down to 11.4% for both loading scenarios and screw types. Cross‐validation revealed a mean absolute percentage error of 14.2%. We present the validation of a novel micro‐FE modeling technique to quantify the apparent stiffness of screws in trabecular bone. While the standard micro‐FE model overestimated the bone‐implant stiffness, the consideration of insertion‐related bone damage was crucial for an accurate stiffness prediction. This approach provides an important step toward more accurate specimen‐specific micro‐FE models. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2415–2424, 2017.
AbstractList ABSTRACT Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite‐element models, micro‐CT based finite‐element analysis (micro‐FE) is capable of capturing the patient‐specific bone micro‐architecture, providing accurate estimates of bone stiffness. However, such in silico models for screws in bone highly overestimate the apparent stiffness. We hypothesized that a more accurate prediction of primary implant stability of screws in bone is possible by considering insertion‐related bone damage. We assessed two different screw types and loading scenarios in 20 trabecular bone specimens extracted from 12 cadaveric human femoral heads (N = 5 for each case). In the micro‐FE model, we predicted specimen‐specific Young's moduli of the peri‐implant bone damage region based on morphometric parameters such that the apparent stiffness of each in silico model matched the experimentally measured stiffness of the corresponding in vitro specimen as closely as possible. The standard micro‐FE models assuming perfectly intact peri‐implant bone overestimated the stiffness by over 330%. The consideration of insertion related damaged peri‐implant bone corrected the mean absolute percentage error down to 11.4% for both loading scenarios and screw types. Cross‐validation revealed a mean absolute percentage error of 14.2%. We present the validation of a novel micro‐FE modeling technique to quantify the apparent stiffness of screws in trabecular bone. While the standard micro‐FE model overestimated the bone‐implant stiffness, the consideration of insertion‐related bone damage was crucial for an accurate stiffness prediction. This approach provides an important step toward more accurate specimen‐specific micro‐FE models. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2415–2424, 2017.
Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite-element models, micro-CT based finite-element analysis (micro-FE) is capable of capturing the patient-specific bone micro-architecture, providing accurate estimates of bone stiffness. However, such in silico models for screws in bone highly overestimate the apparent stiffness. We hypothesized that a more accurate prediction of primary implant stability of screws in bone is possible by considering insertion-related bone damage. We assessed two different screw types and loading scenarios in 20 trabecular bone specimens extracted from 12 cadaveric human femoral heads (N = 5 for each case). In the micro-FE model, we predicted specimen-specific Young's moduli of the peri-implant bone damage region based on morphometric parameters such that the apparent stiffness of each in silico model matched the experimentally measured stiffness of the corresponding in vitro specimen as closely as possible. The standard micro-FE models assuming perfectly intact peri-implant bone overestimated the stiffness by over 330%. The consideration of insertion related damaged peri-implant bone corrected the mean absolute percentage error down to 11.4% for both loading scenarios and screw types. Cross-validation revealed a mean absolute percentage error of 14.2%. We present the validation of a novel micro-FE modeling technique to quantify the apparent stiffness of screws in trabecular bone. While the standard micro-FE model overestimated the bone-implant stiffness, the consideration of insertion-related bone damage was crucial for an accurate stiffness prediction. This approach provides an important step toward more accurate specimen-specific micro-FE models. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2415-2424, 2017.
Author Ferguson, Stephen J.
Affentranger, Remo
Steiner, Juri A.
Christen, Patrik
van Lenthe, Gerrit Harry
Author_xml – sequence: 1
  givenname: Juri A.
  surname: Steiner
  fullname: Steiner, Juri A.
  organization: ETH Zurich
– sequence: 2
  givenname: Patrik
  surname: Christen
  fullname: Christen, Patrik
  organization: ETH Zurich
– sequence: 3
  givenname: Remo
  surname: Affentranger
  fullname: Affentranger, Remo
  organization: ETH Zurich
– sequence: 4
  givenname: Stephen J.
  surname: Ferguson
  fullname: Ferguson, Stephen J.
  organization: ETH Zurich
– sequence: 5
  givenname: Gerrit Harry
  surname: van Lenthe
  fullname: van Lenthe, Gerrit Harry
  email: harry.vanlenthe@kuleuven.be
  organization: KU Leuven—University of Leuven
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28240380$$D View this record in MEDLINE/PubMed
BookMark eNp1kMlOwzAQQC1URBc48APIRziEju04To5VxapKlVgkblHiTESqJG7thCp_T0oKN05zefM086ZkVJsaCblkcMsA-Hxj7C0XUrITMmFS-p7k6mNEJqBE4AEPgjGZOrcBAMV4eEbGPOQ-iBAm5HVBa_OFJS1q6oqy0IZW2HyajDaG7tqkboq8o1tbVIntqGuStIeajpqcOm1x7w6LjU1S1G2ZWJr2l52T0zwpHV4c54y839-9LR-91frhablYeVoEwLxABSAiFvqZwjSTmuURMJHpBIT0RaZ45IOWQjElIUBfoBQsQpEHPEpzTIWYkevBu7Vm16Jr4qpwGssyqdG0Lmah4lKFXEKP3gyotsY5i3l8fClmEB8axn3D-Kdhz14dtW1aYfZH_kbrgfkA7IsSu_9N8fP6ZVB-A2YWfAQ
CitedBy_id crossref_primary_10_1016_j_jmbbm_2023_106062
crossref_primary_10_1016_j_jbiomech_2017_12_023
crossref_primary_10_1007_s40846_021_00628_w
crossref_primary_10_1016_j_cmpb_2021_105966
crossref_primary_10_1016_j_jmbbm_2023_105740
crossref_primary_10_1007_s11914_021_00690_y
crossref_primary_10_1002_mp_13585
crossref_primary_10_1016_j_bea_2024_100115
crossref_primary_10_1016_j_medengphy_2024_104143
crossref_primary_10_1016_j_jmbbm_2019_103598
crossref_primary_10_1016_j_jmbbm_2023_106241
crossref_primary_10_1302_2046_3758_1012_BJR_2020_0533_R1
crossref_primary_10_1016_j_jmbbm_2021_104344
crossref_primary_10_1007_s10237_018_1038_3
crossref_primary_10_1016_j_jmbbm_2019_103608
crossref_primary_10_1002_jsp2_1220
crossref_primary_10_1016_j_jmbbm_2022_105566
crossref_primary_10_1016_j_jmbbm_2024_106634
crossref_primary_10_1016_j_bonr_2022_101179
crossref_primary_10_3390_ma16175926
crossref_primary_10_1016_j_bonr_2020_100263
crossref_primary_10_3389_fbioe_2022_1094813
Cites_doi 10.1080/10255842.2010.537263
10.1016/S0021-9290(02)00022-2
10.1016/j.medengphy.2006.10.014
10.1016/j.jbiomech.2011.12.024
10.1007/s00113-006-1165-7
10.1016/j.jdent.2008.02.015
10.1302/0301-620X.89B5.18504
10.1016/0021-9290(95)80008-5
10.1016/S1350-4533(98)00081-2
10.1016/j.cmpb.2009.01.004
10.1016/S0168-874X(00)00033-0
10.1016/j.medengphy.2012.07.009
10.1097/BOT.0b013e3181920e5b
10.1016/j.jbiomech.2012.08.022
10.1016/j.jbiomech.2007.05.004
10.1007/s10237-011-0320-4
10.1016/j.medengphy.2016.01.006
10.1016/j.ajodo.2010.03.015
10.1016/j.dental.2007.11.024
10.1002/jbmr.1805
10.1016/j.bone.2011.05.001
10.1201/9781420073560.ch5
10.1016/j.jpdc.2014.06.014
10.1890/13-1452.1
10.1016/j.jbiomech.2009.05.023
10.1016/j.medengphy.2005.12.009
10.1007/s00056-008-0742-5
10.1016/S8756-3282(99)00151-9
10.1016/j.jbiomech.2012.04.008
10.1002/term.325
10.1146/annurev.bioeng.3.1.307
10.1017/S1431927612001286
10.1155/2014/748393
10.1007/s001980050070
10.1359/jbmr.2002.17.1.162
10.1016/j.jbiomech.2013.07.047
10.1111/j.1532-950X.1996.tb01443.x
10.1007/s00419-009-0387-x
10.1007/s00198-004-1746-7
10.1016/0021-9290(88)90257-6
10.1016/j.medengphy.2012.10.006
10.1109/TAC.1974.1100705
10.1007/BF02344727
10.1007/s00223-002-0013-9
10.1111/j.1600-0501.2009.01808.x
10.1243/095441104322984022
10.1016/j.bone.2011.08.018
10.1016/j.orthres.2004.04.001
10.1016/S1350-4533(03)00138-3
10.1111/j.1600-0501.2010.02024.x
10.1007/s00198-004-1777-0
10.1002/jbmr.141
10.1007/s10237-014-0584-6
ContentType Journal Article
Copyright 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/jor.23551
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1554-527X
EndPage 2424
ExternalDocumentID 10_1002_jor_23551
28240380
JOR23551
Genre article
Journal Article
GrantInformation_xml – fundername: Swiss Commission for Technology and Innovation (CTI)
  funderid: KTI‐Nr. 14067.1 PFLS‐LS
– fundername: Synthes GmbH
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1B1
1KJ
1L6
1OB
1OC
1ZS
1~5
24P
29L
31~
33P
3SF
3V.
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
7-5
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8FI
8FJ
8R4
8R5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANLZ
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABMAC
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIUM
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BPHCQ
BQCPF
BROTX
BRXPI
BVXVI
BY8
C45
CCPQU
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
DWQXO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
FYUFA
G-S
G.N
GNP
GNUQQ
GODZA
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HMCUK
HVGLF
HZ~
IHE
IX1
J0M
JPC
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M41
M56
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
R2-
RIG
RIWAO
RJQFR
RNS
ROL
RPZ
RWI
RWL
RWR
RX1
RXW
RYL
SAMSI
SEW
SSZ
SUPJJ
SV3
TAE
TEORI
UB1
UKHRP
UPT
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIJ
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXI
WXSBR
WYB
WYISQ
X7M
XG1
XV2
YCJ
YQT
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c3601-676039184d7ebd5c1f9013dca03543d72940c53717506e43e5319e3f629bfeb33
IEDL.DBID 33P
ISSN 0736-0266
IngestDate Sat Aug 17 02:16:01 EDT 2024
Thu Nov 21 20:49:12 EST 2024
Wed Oct 16 00:59:56 EDT 2024
Sat Aug 24 00:52:19 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords FEA
specimen-specific computer model validation
primary implant stability
micro-CT, primary implant stability
Language English
License 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3601-676039184d7ebd5c1f9013dca03543d72940c53717506e43e5319e3f629bfeb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jor.23551
PMID 28240380
PQID 1872578250
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1872578250
crossref_primary_10_1002_jor_23551
pubmed_primary_28240380
wiley_primary_10_1002_jor_23551_JOR23551
PublicationCentury 2000
PublicationDate November 2017
2017-Nov
2017-11-00
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of orthopaedic research
PublicationTitleAlternate J Orthop Res
PublicationYear 2017
References 2004; 22
2002; 17
2013; 28
2009; 42
2009; 80
2004; 26
2008; 36
2012; 18
2011; 14
2016; 38
2012; 11
1974; 19
2007; 29
2009; 95
2010; 25
2006; 28
2008; 69
2011; 22
2008; 24
1996; 25
2004; 218
2014; 95
2009; 23
2015; 14
28
2009; 20
2013; 46
2002; 35
1999; 25
2014; 2014
2004
2003; 73
1998; 20
2011; 5
1999
2006; 109
2000; 36
2013; 35
2010; 138
1988; 21
2001; 3
2007; 40
2005; 2
2014; 74
2005; 16
2011; 49
2012; 45
2007; 89
1998; 8
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
van Rietbergen B (e_1_2_8_28_1); 28
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 38
  start-page: 417
  year: 2016
  end-page: 422
  article-title: Screw insertion in trabecular bone causes peri‐implant bone damage
  publication-title: Med Eng Phys
– volume: 20
  start-page: 1300
  year: 2009
  end-page: 1306
  article-title: Generation of microdamage around endosseous implants
  publication-title: Clin Oral Implants Res
– volume: 11
  start-page: 403
  year: 2012
  end-page: 410
  article-title: 3D characterization of bone strains in the rat tibia loading model
  publication-title: Biomech Model Mechanobiol
– volume: 3
  start-page: 307
  year: 2001
  end-page: 333
  article-title: Biomechanics of trabecular bone
  publication-title: Annu Rev Biomed Eng
– volume: 36
  start-page: 409
  year: 2008
  end-page: 417
  article-title: Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non‐linear finite element study
  publication-title: J Dent
– volume: 8
  start-page: 317
  year: 1998
  end-page: 325
  article-title: Image‐Based assessment of spinal trabecular bone structure from high‐Resolution CT images
  publication-title: Osteoporos Int
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans Automat Contr
– volume: 95
  start-page: 631
  year: 2014
  end-page: 636
  article-title: Model selection for ecologists: the worldviews of AIC and BIC
  publication-title: Ecology
– start-page: 87
  year: 1999
  end-page: 101
– volume: 20
  start-page: 735
  year: 1998
  end-page: 740
  article-title: Material properties assignment to finite element models of bone structures: a new method
  publication-title: Med Eng Phys
– volume: 22
  start-page: 613
  year: 2011
  end-page: 618
  article-title: Influence of surface roughness and shape on microdamage of the osseous surface adjacent to titanium dental implants
  publication-title: Clin Oral Implants Res
– volume: 46
  start-page: 2659
  year: 2013
  end-page: 2666
  article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical‐resolution CT images
  publication-title: J Biomech
– volume: 69
  start-page: 121
  year: 2008
  end-page: 134
  article-title: Microdamage in cortical bone due to the overtightening of orthodontic microscrews
  publication-title: J Orofac Orthop
– volume: 29
  start-page: 973
  year: 2007
  end-page: 979
  article-title: The material mapping strategy influences the accuracy of CT‐based finite element models of bones: an evaluation against experimental measurements
  publication-title: Med Eng Phys
– volume: 218
  start-page: 127
  year: 2004
  end-page: 142
  article-title: Development and experimental validation of a three‐dimensional finite element model of the human scapula
  publication-title: Proc Inst Mech Eng H
– volume: 28
  start-page: 69
  end-page: 81
  article-title: A1995 A new method to determine trabecular bone elastic properties and loading using micromechanical finite‐element models
  publication-title: J Biomech
– volume: 25
  start-page: 453
  year: 1996
  end-page: 462
  article-title: In vitro biomechanical and histological assessment of pilot hole diameter for positive‐profile external skeletal fixation pins in canine tibiae
  publication-title: Vet Surg
– volume: 22
  start-page: 1237
  year: 2004
  end-page: 1242
  article-title: Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws
  publication-title: J Orthop Res
– volume: 73
  start-page: 531
  year: 2003
  end-page: 536
  article-title: Three‐dimensional distribution of bone density in the proximal humerus
  publication-title: Calcif Tissue Int
– volume: 5
  start-page: 415
  year: 2011
  end-page: 420
  article-title: Mechanical stability in a human radius fracture treated with a novel tissue‐engineered bone substitute: a non‐invasive, longitudinal assessment using high‐resolution pQCT in combination with finite element analysis
  publication-title: J Tissue Eng Regen Med
– volume: 45
  start-page: 2884
  year: 2012
  end-page: 2892
  article-title: A new approach to determine the accuracy of morphology‐elasticity relationships in continuum FE analyses of human proximal femur
  publication-title: J Biomech
– volume: 35
  start-page: 767
  year: 2002
  end-page: 773
  article-title: Determination of orthotropic bone elastic constants using FEA and modal analysis
  publication-title: J Biomech
– volume: 25
  start-page: 217
  year: 1999
  end-page: 222
  article-title: Microdamage adjacent to endosseous implants
  publication-title: Bone
– volume: 28
  start-page: 888
  year: 2006
  end-page: 893
  article-title: Axial cyclic behavior of the bone‐screw interface
  publication-title: Med Eng Phys
– volume: 16
  start-page: S93
  year: 2005
  end-page: S102
  article-title: Treatment strategies for proximal femur fractures in osteoporotic patients
  publication-title: Osteoporos Int
– volume: 36
  start-page: 197
  year: 2000
  end-page: 214
  article-title: Parallel multigrid solvers for 3D‐unstructured large deformation elasticity and plasticity finite element problems
  publication-title: Finite Elem Anal Des
– volume: 138
  start-page: 8
  year: 2010
  article-title: Effects of the diameter and shape of orthodontic mini‐implants on microdamage to the cortical bone
  publication-title: Am J Orthod Dentofac Orthop
– volume: 21
  start-page: 269
  year: 1988
  end-page: 275
  article-title: Limitations of the continuum assumption in cancellous bone
  publication-title: J Biomech
– volume: 42
  start-page: 2165
  year: 2009
  end-page: 2170
  article-title: Heterogeneity of yield strain in low‐density versus high‐density human trabecular bone
  publication-title: J Biomech
– volume: 2
  start-page: 465
  year: 2005
  end-page: 472
  article-title: How to select the elastic modulus for cancellous bone in patient‐specific continuum models of the spine
  publication-title: Med Biol Eng Comput
– volume: 16
  start-page: S107
  year: 2005
  end-page: S111
  article-title: Mechanical behavior of screws in normal and osteoporotic bone
  publication-title: Osteoporos Int
– volume: 23
  start-page: 163
  year: 2009
  end-page: 72
  article-title: Open reduction and internal fixation of proximal humerus fractures using a proximal humeral locked plate: a prospective multicenter analysis
  publication-title: J Orthop Trauma
– volume: 49
  start-page: 473
  year: 2011
  end-page: 478
  article-title: Implant stability is affected by local bone microstructural quality
  publication-title: Bone
– start-page: 1
  year: 2004
  end-page: 17
– volume: 74
  start-page: 2941
  year: 2014
  end-page: 2950
  article-title: Bone structure analysis on multiple GPGPUs
  publication-title: J Parallel Distrib Comput
– volume: 95
  start-page: 23
  year: 2009
  end-page: 30
  article-title: A convenient approach for finite‐element‐analyses of orthopaedic implants in bone contact: modeling and experimental validation
  publication-title: Comput Methods Programs Biomed
– volume: 14
  start-page: 165
  year: 2011
  end-page: 174
  article-title: Towards validation of computational analyses of peri‐implant displacements by means of experimentally obtained displacement maps
  publication-title: Comput Methods Biomech Biomed Engin
– volume: 40
  start-page: 3333
  year: 2007
  end-page: 3340
  article-title: Validation of a voxel‐based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation
  publication-title: J Biomech
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 15
  article-title: Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status
  publication-title: Biomed Res Int
– volume: 25
  start-page: 1468
  year: 2010
  end-page: 1486
  article-title: Guidelines for assessment of bone microstructure in rodents using micro‐computed tomography
  publication-title: J Bone Miner Res
– volume: 18
  start-page: 1106
  year: 2012
  end-page: 1111
  article-title: Three‐dimensional morphology of microdamage in peri‐screw bone: a scanning electron microscopy of methylmethacrylate cast replica
  publication-title: Microsc Microanal
– volume: 45
  start-page: 1060
  year: 2012
  end-page: 1067
  article-title: The discrete nature of trabecular bone microarchitecture affects implant stability
  publication-title: J Biomech
– volume: 28
  start-page: 2
  year: 2013
  end-page: 17
  article-title: Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee
  publication-title: J Bone Miner Res
– volume: 35
  start-page: 1037
  year: 2013
  end-page: 1043
  article-title: Validation of a finite element model of a unilateral external fixator in a rabbit tibia defect model
  publication-title: Med Eng Phys
– volume: 49
  start-page: 1166
  year: 2011
  end-page: 1172
  article-title: In vivo validation of a computational bone adaptation model using open‐loop control and time‐lapsed micro‐computed tomography
  publication-title: Bone
– volume: 14
  start-page: 39
  year: 2015
  end-page: 48
  article-title: A novel approach to estimate trabecular bone anisotropy from stress tensors
  publication-title: Biomech Model Mechanobiol
– volume: 109
  start-page: 1032
  year: 2006
  end-page: 1040
  article-title: Die winkelstabile osteosynthese am proximalen humerus mit der PHILOS‐platte. Darstellung von 225 dislozierten frakturen
  publication-title: Unfallchirurg
– volume: 24
  start-page: 561
  year: 2008
  end-page: 569
  article-title: Investigation of bone inelastic response in interaction phenomena with dental implants
  publication-title: Dent Mater
– volume: 35
  start-page: 636
  year: 2013
  end-page: 643
  article-title: Time‐lapsed imaging of implant fixation failure in human femoral heads
  publication-title: Med Eng Phys
– volume: 17
  start-page: 162
  year: 2002
  end-page: 171
  article-title: Bone strength at clinically relevant sites displays substantial heterogeneity and is best predicted from site‐specific bone densitometry
  publication-title: J Bone Miner Res
– volume: 45
  start-page: 1712
  year: 2012
  end-page: 1716
  article-title: Does screw‐bone interface modelling matter in finite element analyses
  publication-title: J Biomech
– volume: 89
  start-page: 701
  year: 2007
  end-page: 705
  article-title: Factors affecting the stability of screws in human cortical osteoporotic bone: a cadaver study
  publication-title: J Bone Joint Surg Br
– volume: 26
  start-page: 61
  year: 2004
  end-page: 69
  article-title: An improved method for the automatic mapping of computed tomography numbers onto finite element models
  publication-title: Med Eng Phys
– volume: 80
  start-page: 513
  year: 2009
  end-page: 525
  article-title: Mechanical competence of bone‐implant systems can accurately be determined by image‐based micro‐finite element analyses
  publication-title: Arch Appl Mech
– ident: e_1_2_8_39_1
  doi: 10.1080/10255842.2010.537263
– ident: e_1_2_8_18_1
  doi: 10.1016/S0021-9290(02)00022-2
– ident: e_1_2_8_21_1
  doi: 10.1016/j.medengphy.2006.10.014
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jbiomech.2011.12.024
– ident: e_1_2_8_50_1
  doi: 10.1007/s00113-006-1165-7
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jdent.2008.02.015
– ident: e_1_2_8_4_1
  doi: 10.1302/0301-620X.89B5.18504
– volume: 28
  start-page: 69
  ident: e_1_2_8_28_1
  article-title: A1995 A new method to determine trabecular bone elastic properties and loading using micromechanical finite‐element models
  publication-title: J Biomech
  doi: 10.1016/0021-9290(95)80008-5
  contributor:
    fullname: van Rietbergen B
– ident: e_1_2_8_19_1
  doi: 10.1016/S1350-4533(98)00081-2
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cmpb.2009.01.004
– ident: e_1_2_8_27_1
  doi: 10.1016/S0168-874X(00)00033-0
– ident: e_1_2_8_40_1
  doi: 10.1016/j.medengphy.2012.07.009
– ident: e_1_2_8_49_1
  doi: 10.1097/BOT.0b013e3181920e5b
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jbiomech.2012.08.022
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jbiomech.2007.05.004
– ident: e_1_2_8_53_1
  doi: 10.1007/s10237-011-0320-4
– ident: e_1_2_8_31_1
  doi: 10.1016/j.medengphy.2016.01.006
– ident: e_1_2_8_37_1
  doi: 10.1016/j.ajodo.2010.03.015
– ident: e_1_2_8_13_1
  doi: 10.1016/j.dental.2007.11.024
– ident: e_1_2_8_42_1
  doi: 10.1002/jbmr.1805
– ident: e_1_2_8_9_1
  doi: 10.1016/j.bone.2011.05.001
– ident: e_1_2_8_43_1
  doi: 10.1201/9781420073560.ch5
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jpdc.2014.06.014
– ident: e_1_2_8_48_1
  doi: 10.1890/13-1452.1
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jbiomech.2009.05.023
– ident: e_1_2_8_44_1
  doi: 10.1016/j.medengphy.2005.12.009
– ident: e_1_2_8_38_1
  doi: 10.1007/s00056-008-0742-5
– ident: e_1_2_8_36_1
  doi: 10.1016/S8756-3282(99)00151-9
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jbiomech.2012.04.008
– ident: e_1_2_8_54_1
  doi: 10.1002/term.325
– ident: e_1_2_8_6_1
  doi: 10.1146/annurev.bioeng.3.1.307
– ident: e_1_2_8_33_1
  doi: 10.1017/S1431927612001286
– ident: e_1_2_8_51_1
  doi: 10.1155/2014/748393
– ident: e_1_2_8_24_1
  doi: 10.1007/s001980050070
– ident: e_1_2_8_7_1
  doi: 10.1359/jbmr.2002.17.1.162
– ident: e_1_2_8_55_1
  doi: 10.1016/j.jbiomech.2013.07.047
– ident: e_1_2_8_35_1
  doi: 10.1111/j.1532-950X.1996.tb01443.x
– ident: e_1_2_8_30_1
  doi: 10.1007/s00419-009-0387-x
– ident: e_1_2_8_2_1
  doi: 10.1007/s00198-004-1746-7
– ident: e_1_2_8_25_1
  doi: 10.1016/0021-9290(88)90257-6
– ident: e_1_2_8_11_1
  doi: 10.1016/j.medengphy.2012.10.006
– ident: e_1_2_8_45_1
  doi: 10.1109/TAC.1974.1100705
– ident: e_1_2_8_52_1
– ident: e_1_2_8_23_1
  doi: 10.1007/BF02344727
– ident: e_1_2_8_8_1
  doi: 10.1007/s00223-002-0013-9
– ident: e_1_2_8_34_1
  doi: 10.1111/j.1600-0501.2009.01808.x
– ident: e_1_2_8_20_1
  doi: 10.1243/095441104322984022
– ident: e_1_2_8_46_1
  doi: 10.1016/j.bone.2011.08.018
– ident: e_1_2_8_5_1
  doi: 10.1016/j.orthres.2004.04.001
– ident: e_1_2_8_17_1
  doi: 10.1016/S1350-4533(03)00138-3
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1600-0501.2010.02024.x
– ident: e_1_2_8_3_1
  doi: 10.1007/s00198-004-1777-0
– ident: e_1_2_8_41_1
  doi: 10.1002/jbmr.141
– ident: e_1_2_8_16_1
  doi: 10.1007/s10237-014-0584-6
SSID ssj0007128
Score 2.4111173
Snippet ABSTRACT Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite‐element models, micro‐CT...
Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite-element models, micro-CT based...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2415
SubjectTerms Aged
Bone Screws
Cancellous Bone - diagnostic imaging
Computer Simulation
FEA
Finite Element Analysis
Humans
micro‐CT, primary implant stability
Middle Aged
Models, Theoretical
primary implant stability
specimen‐specific computer model validation
X-Ray Microtomography
Title A novel in silico method to quantify primary stability of screws in trabecular bone
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.23551
https://www.ncbi.nlm.nih.gov/pubmed/28240380
https://search.proquest.com/docview/1872578250
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Jy8-8LW-iOLBS902SZMWT4vuIh5UXAVvJWlSWFla3W6F_fdO0m1lEUHwVmgzlMlk5vva5BuEzlMeK2My5dGIhR4jRntS6dTTkorIN0pT6VonjMT9a3QzsDI5V81ZmFofov3gZleGy9d2gUtV9r5FQ9-K6SWBammpD7AEd3yDPrZZWASurypEsN1ky3mjKuSTXjtyuRb9AJjLeNUVnOHGv151E60vcCbu14GxhVZMvo1GfZwXn2aCxzkuxxMIAlx3kMazAn9U0m4cmuP3WoACA250O2fnuMgwZBdIh3bgbCpV3VEXqyI3O-hlOHi-vvUWXRW8lAL78rjgVhU-YlrAVIRpkAEkoDqVPg0Z1QC2mZ-GFGhe6HPDqLGr1NCMk1hlQL3pLurkYH4fYeBWimciozIOmNIkFtI2MZMsZilQOdpFZ41_k8W7J7VMMknAJ4nzSRedNp5PILTt_wqZm6IqkyASNqEASOuivXpKWjNgnvk0gjsXzvO_20_uHp7cxcHfHz1Ea8SWb3fm8Ah1ZtPKHKPVUlcnLsq-AN160so
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86H_TFD_yan1F88KXaNmnagi9DN6bOKW6CbyVpUpiMVrdV2H_vJV0rQwTBt0KbI1wud79LL79D6CxmoVAqERYJqGdRV0mLCxlbkhM_sJWQhJvWCT2_-xrcNDVNzlV5F6bgh6gO3PTOMP5ab3B9IH35zRr6lo0uXAiXkPssUQaGqC9wkKfKD_uO6awKNqzLbBkreYVs97IaOh-NfkDMecRqQk5r7X-TXUerM6iJG4VtbKAFlW6iXgOn2aca4kGKx4Mh2AEumkjjSYY_cq5rh6b4veCgwAAdTfHsFGcJBgcDHlEPnIy4KJrqYpGlagu9tJr967Y1a6xgxQQSMIv5TBPDB1T6sBpe7CSACoiMuU08SiTgbWrHHoFMz7OZokTpjapIwtxQJJB9k21US0H8LsKQXgmW-AnhoUOFdEOf6z5mnIY0hmyO1NFpqeBoNveoYEp2I9BJZHRSRyel6iOwbv3Lgqcqy8eRE_japwBOq6OdYk0qMSCe2iSAN-dG9b_Lj-4en83D3t8_PUbL7f5DJ-rcdu_30Yqro7m5gniAapNRrg7R4ljmR8bkvgBC4Nby
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86QXzxA7_mZxQffKlrm_QLn4bb8Is5nIJvJWkSmIx2bquw_95LulaGCIJvhTZHuFzuftdcfofQReJHXErFLRJSz6KuFBbjIrEEI0FoSy4IM60T-kH3LWy1NU3OdXkXpuCHqH646Z1h_LXe4COhGt-koe_Z-MqFaAmpzwoFGK6J8wnpVW44cExjVTBhXWXr-yWtkO02qqGLwegHwlwErCbidDb-NddNtD4HmrhZWMYWWpLpNuo3cZp9yiEepHgyGIIV4KKFNJ5m-CNnunJohkcFAwUG4GhKZ2c4UxjcC_hDPXA6ZrxoqYt5lsod9Nppv9zcWvO2ClZCIP2y_MDXtPAhFQGshZc4CjABEQmziUeJALRN7cQjkOd5ti8pkXqbSqJ8N-IKcm-yi2opiN9HGJIr7qtAERY5lAs3CpjuYsZoRBPI5UgdnZf6jedzjwueZDcGncRGJ3V0Vmo-BtvWBxYslVk-iZ0w0B4FUFod7RVLUokB8dQmIby5NJr_XX58__RsHg7-_ukpWu21OvHjXffhEK25OpSb-4dHqDYd5_IYLU9EfmIM7gvFW9WY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+in+silico+method+to+quantify+primary+stability+of+screws+in+trabecular+bone&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Steiner%2C+Juri+A.&rft.au=Christen%2C+Patrik&rft.au=Affentranger%2C+Remo&rft.au=Ferguson%2C+Stephen+J.&rft.date=2017-11-01&rft.issn=0736-0266&rft.eissn=1554-527X&rft.volume=35&rft.issue=11&rft.spage=2415&rft.epage=2424&rft_id=info:doi/10.1002%2Fjor.23551&rft.externalDBID=10.1002%252Fjor.23551&rft.externalDocID=JOR23551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon