16-qubit IBM universal quantum computer can be fully entangled

Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we prepare connected graph states involving 8 to 16 qubits on ibmqx5 , a 16-qubit superconducting quantum processor accessible via IBM cloud, using low-depth...

Full description

Saved in:
Bibliographic Details
Published in:npj quantum information Vol. 4; no. 1; pp. 1 - 6
Main Authors: Wang, Yuanhao, Li, Ying, Yin, Zhang-qi, Zeng, Bei
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 27-09-2018
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we prepare connected graph states involving 8 to 16 qubits on ibmqx5 , a 16-qubit superconducting quantum processor accessible via IBM cloud, using low-depth circuits. We demonstrate that the prepared state is fully entangled, i.e., the state is inseparable with respect to any fixed partition. Quantum computing: Sweet sixteen All sixteen qubits in an IBM Q cloud quantum computer can be fully entangled, a prerequisite for exploiting its quantum computational power. Entanglement is one of the resources that lead to quantum algorithms’ advantages over their classical counterparts. However, even when using the highest-quality qubits it is difficult to produce and verify large-scale entangled states because accumulated errors from imperfect quantum operations can prevent unambiguous confirmation of entanglement. Zhangqi Yin from Tsinghua University and collaborators in China and Canada have shown how to create and verify a sixteen-qubit entangled state using the operations available on IBM’s quantum computing platform, a new record for the number of entangled qubits. While achievable state fidelity remains low for the time being, this result verifies that IBM’s device is truly quantum.
AbstractList Abstract Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we prepare connected graph states involving 8 to 16 qubits on ibmqx5 , a 16-qubit superconducting quantum processor accessible via IBM cloud, using low-depth circuits. We demonstrate that the prepared state is fully entangled, i.e., the state is inseparable with respect to any fixed partition.
Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we prepare connected graph states involving 8 to 16 qubits on ibmqx5, a 16-qubit superconducting quantum processor accessible via IBM cloud, using low-depth circuits. We demonstrate that the prepared state is fully entangled, i.e., the state is inseparable with respect to any fixed partition.
Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we prepare connected graph states involving 8 to 16 qubits on ibmqx5 , a 16-qubit superconducting quantum processor accessible via IBM cloud, using low-depth circuits. We demonstrate that the prepared state is fully entangled, i.e., the state is inseparable with respect to any fixed partition. Quantum computing: Sweet sixteen All sixteen qubits in an IBM Q cloud quantum computer can be fully entangled, a prerequisite for exploiting its quantum computational power. Entanglement is one of the resources that lead to quantum algorithms’ advantages over their classical counterparts. However, even when using the highest-quality qubits it is difficult to produce and verify large-scale entangled states because accumulated errors from imperfect quantum operations can prevent unambiguous confirmation of entanglement. Zhangqi Yin from Tsinghua University and collaborators in China and Canada have shown how to create and verify a sixteen-qubit entangled state using the operations available on IBM’s quantum computing platform, a new record for the number of entangled qubits. While achievable state fidelity remains low for the time being, this result verifies that IBM’s device is truly quantum.
ArticleNumber 46
Author Wang, Yuanhao
Yin, Zhang-qi
Li, Ying
Zeng, Bei
Author_xml – sequence: 1
  givenname: Yuanhao
  surname: Wang
  fullname: Wang, Yuanhao
  organization: Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University
– sequence: 2
  givenname: Ying
  orcidid: 0000-0002-1705-2494
  surname: Li
  fullname: Li, Ying
  organization: Graduate School of China Academy of Engineering Physics
– sequence: 3
  givenname: Zhang-qi
  surname: Yin
  fullname: Yin, Zhang-qi
  email: yinzhangqi@tsinghua.edu.cn
  organization: Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University
– sequence: 4
  givenname: Bei
  surname: Zeng
  fullname: Zeng, Bei
  organization: Department of Mathematics and Statistics, University of Guelph, Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo
BookMark eNp1kM9LwzAYhoNMcM79Ad4CnqP5kjRNL4IOfwwmXvQc0jYZHV26JY1s_70dFfTi6XsP7_N-8Fyiie-8Rega6C1Qru6igIwLQkERSouMHM7QlNFMEslVPvmTL9A8xg2lFAqmmIApugdJ9qlserx8fMPJN182RNPifTK-T1tcddtd6m3AlfG4tNiltj1i63vj162tr9C5M2208587Q5_PTx-LV7J6f1kuHlak4lnRE8eMUqbgOdRFVgGvS8k4g9Io5uohFLUy4EAw6upKWmeVExmV0ikOXOScz9DNuLsL3T7Z2OtNl4IfXmoGwJlQXMqhBWOrCl2MwTq9C83WhKMGqk-m9GhKD6b0yZQ-DAwbmTh0_dqG3-X_oW-2bWvc
CitedBy_id crossref_primary_10_1088_1361_6668_ac5505
crossref_primary_10_1109_JSSC_2020_3018432
crossref_primary_10_1007_s11128_020_02712_7
crossref_primary_10_1088_1361_6633_acf8d7
crossref_primary_10_1103_PhysRevA_98_062327
crossref_primary_10_1016_j_physleta_2022_128434
crossref_primary_10_1103_PhysRevA_105_042610
crossref_primary_10_1016_j_physleta_2020_126579
crossref_primary_10_1103_PhysRevA_105_042413
crossref_primary_10_1007_s42484_019_00004_7
crossref_primary_10_1109_JPHOT_2021_3094646
crossref_primary_10_1109_ACCESS_2022_3177790
crossref_primary_10_1103_PhysRevResearch_2_043442
crossref_primary_10_1038_s41534_022_00612_5
crossref_primary_10_3367_UFNr_2021_02_038934
crossref_primary_10_1002_qute_202100061
crossref_primary_10_1007_s00340_021_07671_0
crossref_primary_10_1116_5_0137078
crossref_primary_10_22331_q_2018_12_21_114
crossref_primary_10_3367_UFNe_2021_02_038934
crossref_primary_10_1038_s41467_019_09584_1
crossref_primary_10_1103_PhysRevLett_126_230501
crossref_primary_10_1103_PhysRevLett_131_073401
crossref_primary_10_1209_0295_5075_ad0952
crossref_primary_10_1109_ACCESS_2023_3289005
crossref_primary_10_1038_s41467_021_23032_z
crossref_primary_10_1103_PhysRevA_106_022417
crossref_primary_10_1038_s42005_021_00534_2
crossref_primary_10_1049_qtc2_12043
crossref_primary_10_1209_0295_5075_ac419b
crossref_primary_10_1063_5_0047690
crossref_primary_10_1038_s41598_020_60061_y
crossref_primary_10_1103_PhysRevLett_122_110501
crossref_primary_10_1038_s41534_019_0217_0
crossref_primary_10_1038_s41534_022_00609_0
crossref_primary_10_1063_1_5100160
crossref_primary_10_1063_5_0043334
crossref_primary_10_1103_PhysRevResearch_4_L022020
crossref_primary_10_1038_s41467_019_11489_y
crossref_primary_10_1016_j_physa_2021_126017
crossref_primary_10_1103_PhysRevA_102_052410
crossref_primary_10_1142_S123016122250007X
crossref_primary_10_1038_s41598_023_41025_4
crossref_primary_10_34229_2707_451X_20_3_7
crossref_primary_10_1007_s11433_022_1972_1
crossref_primary_10_1103_PhysRevResearch_5_043260
crossref_primary_10_1007_s42979_024_02761_0
crossref_primary_10_1038_s41534_019_0200_9
crossref_primary_10_1126_science_aay4354
crossref_primary_10_1038_s41534_019_0142_2
crossref_primary_10_1038_s41534_021_00401_6
crossref_primary_10_1364_JOSAB_380268
crossref_primary_10_1016_j_physleta_2021_127248
crossref_primary_10_1103_PhysRevA_101_042313
crossref_primary_10_1140_epjp_s13360_021_01553_2
crossref_primary_10_1007_s43673_023_00082_7
crossref_primary_10_1103_PhysRevA_109_013712
crossref_primary_10_1088_1674_1056_ad18ab
crossref_primary_10_1007_s11128_021_03149_2
crossref_primary_10_1007_s11128_020_02649_x
crossref_primary_10_1016_j_aop_2023_169397
crossref_primary_10_1038_s41598_019_49805_7
crossref_primary_10_1109_ACCESS_2020_3043187
crossref_primary_10_1002_que2_77
crossref_primary_10_1088_2399_6528_ac1df7
crossref_primary_10_1007_s11128_020_02625_5
crossref_primary_10_1088_1367_2630_ab5cbe
crossref_primary_10_1515_nanoph_2021_0510
crossref_primary_10_3389_frqst_2022_1026025
crossref_primary_10_1103_PRXQuantum_2_040348
crossref_primary_10_1109_OJCAS_2021_3105005
crossref_primary_10_1016_j_tcs_2022_04_016
crossref_primary_10_1088_1402_4896_abd0bc
crossref_primary_10_1103_PhysRevA_104_012613
crossref_primary_10_1038_s41534_020_00321_x
crossref_primary_10_1007_s10773_023_05304_0
crossref_primary_10_1016_j_compchemeng_2019_106630
crossref_primary_10_1088_1361_6668_ace8c7
crossref_primary_10_1088_2058_9565_ab7eeb
crossref_primary_10_1038_s41567_021_01333_w
crossref_primary_10_1088_1742_6596_1999_1_012076
crossref_primary_10_1103_PhysRevA_101_032343
crossref_primary_10_1088_1361_6633_ad4c93
crossref_primary_10_1002_aisy_202000273
crossref_primary_10_1103_PhysRevA_105_062207
crossref_primary_10_5488_CMP_23_43001
crossref_primary_10_1103_PhysRevLett_123_120502
crossref_primary_10_1038_s41598_020_72469_7
Cites_doi 10.1103/PhysRevA.96.022117
10.1103/PhysRevA.71.042323
10.1016/j.aop.2006.01.012
10.1103/PhysRevLett.98.190504
10.1103/PhysRevA.95.032131
10.1142/S0219749918400063
10.1103/PhysRevLett.86.5188
10.1016/S0375-9601(96)00706-2
10.1103/PhysRevA.94.032329
10.1088/1367-2630/18/7/073004
10.1038/nature13171
10.1103/RevModPhys.81.865
10.1103/PhysRevLett.119.180511
10.1103/PhysRevLett.88.187904
10.1103/PhysRevA.94.012314
10.1103/PhysRevA.95.052339
10.1103/PhysRevLett.86.910
10.1103/PhysRevLett.108.070502
10.1103/PhysRevA.71.042306
10.1103/PhysRevA.71.032350
10.1119/1.1463744
10.1103/PhysRevA.40.4277
10.1103/PhysRevA.69.062311
10.1103/PhysRevLett.77.1413
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1038/s41534-018-0095-x
DatabaseName Springer Open Access
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 2056-6387
EndPage 6
ExternalDocumentID 10_1038_s41534_018_0095_x
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PIMPY
PQQKQ
PROAC
RNT
SNYQT
UKHRP
AAYXX
CITATION
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c359t-f2a88a9371d95c13db62321ba82fd3219d8a1f1420fdc6efe8f45066f83134733
ISSN 2056-6387
IngestDate Thu Oct 10 16:53:39 EDT 2024
Fri Aug 23 01:48:21 EDT 2024
Fri Oct 11 20:47:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-f2a88a9371d95c13db62321ba82fd3219d8a1f1420fdc6efe8f45066f83134733
ORCID 0000-0002-1705-2494
OpenAccessLink http://dx.doi.org/10.1038/s41534-018-0095-x
PQID 2113248366
PQPubID 2041919
PageCount 6
ParticipantIDs proquest_journals_2113248366
crossref_primary_10_1038_s41534_018_0095_x
springer_journals_10_1038_s41534_018_0095_x
PublicationCentury 2000
PublicationDate 2018-09-27
PublicationDateYYYYMMDD 2018-09-27
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-27
  day: 27
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle npj quantum information
PublicationTitleAbbrev npj Quantum Inf
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Preskill, J. Quantum computing and the entanglement frontier. arXiv preprint arXiv:1203.5813 (2012).
Wang, Y., Li, Y., Yin, Z. & Zeng, B. 16-qubit ibm quantum processor entanglement (2018). https://figshare.com/articles/16-qubit_IBM_quantum_processor_entanglement/6790781/1.
HorodeckiMHorodeckiPHorodeckiRSeparability of mixed states: necessary and sufficient conditionsPhys. Lett. A1996223181996PhLA..223....1H142150110.1016/S0375-9601(96)00706-2
NielsenMADawsonCMFault-tolerant quantum computation with cluster statesPhys. Rev. A2005710423232005PhRvA..71d2323N10.1103/PhysRevA.71.042323
HuffmanEMizelAViolation of noninvasive macrorealism by a superconducting qubit: Implementation of a leggett-garg test that addresses the clumsiness loopholePhys. Rev. A2017950321312017PhRvA..95c2131H10.1103/PhysRevA.95.032131
RaussendorfRBriegelHJA one-way quantum computerPhys. Rev. Lett.20018651882001PhRvL..86.5188R10.1103/PhysRevLett.86.5188
The IBM Q experience ibmqx5 backend. https://github.com/QISKit/ibmqx-backend-information/tree/master/backends/ibmqx5. Accessed 27 December 2017.
HeinMEisertJBriegelHJMultiparty entanglement in graph statesPhys. Rev. A2004690623112004PhRvA..69f2311H208187710.1103/PhysRevA.69.062311
Ferrari, D. & Amoretti, M. Demonstration of envariance and parity learning on the IBM 16 qubit processor. ArXiv e-prints (2018). 1801.02363.
SmolinJAGambettaJMSmithGEfficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noisePhys. Rev. Lett.20121080705022012PhRvL.108g0502S10.1103/PhysRevLett.108.070502
DohertyACParriloPASpedalieriFMDistinguishing separable and entangled statesPhys. Rev. Lett.2002881879042002PhRvL..88r7904D10.1103/PhysRevLett.88.187904
HebenstreitMAlsinaDLatorreJIKrausBCompressed quantum computation using a remote five-qubit quantum computerPhys. Rev. A2017950523392017PhRvA..95e2339H10.1103/PhysRevA.95.052339
RaussendorfRHarringtonJGoyalKA fault-tolerant one-way quantum computerAnn. Phys.2006321224222702006AnPhy.321.2242R225272810.1016/j.aop.2006.01.012
IBM Q experience. https://quantumexperience.ng.bluemix.net/qx/devices. Accessed 27 December 2017.
PeresASeparability criterion for density matricesPhys. Rev. Lett.19967714131996PhRvL..77.1413P140172610.1103/PhysRevLett.77.1413
SongC10-qubit entanglement and parallel logic operations with a superconducting circuitPhys. Rev. Lett.20171191805112017PhRvL.119r0511S10.1103/PhysRevLett.119.180511
Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2002).
BertaMWehnerSWildeMMEntropic uncertainty and measurement reversibilityNew J. Phys.2016180730042016NJPh...18g3004B10.1088/1367-2630/18/7/073004
Hein, M. et al. Entanglement in graph states and its applications (2006). quant-ph/0602096.
WernerRFQuantum states with einstein-podolsky-rosen correlations admitting a hidden-variable modelPhys. Rev. A19894042771989PhRvA..40.4277W10.1103/PhysRevA.40.4277
HorodeckiRHorodeckiPHorodeckiMHorodeckiKQuantum entanglementRev. Mod. Phys.2009818652009RvMP...81..865H251561910.1103/RevModPhys.81.865
PoppMVerstraeteFMartín-DelgadoMACiracJILocalizable entanglementPhys. Rev. A2005710423062005PhRvA..71d2306P214376510.1103/PhysRevA.71.042306
AlsinaDLatorreJIExperimental test of mermin inequalities on a five-qubit quantum computerPhys. Rev. A2016940123142016PhRvA..94a2314A10.1103/PhysRevA.94.012314
DevittSJPerforming quantum computing experiments in the cloudPhys. Rev. A2016940323292016PhRvA..94c2329D10.1103/PhysRevA.94.032329
FriisNObservation of entangled states of a fully controlled 20-qubit systemPhys. Rev. X20188021012
BriegelHJRaussendorfRPersistent entanglement in arrays of interacting particlesPhys. Rev. Lett.2001869102001PhRvL..86..910B10.1103/PhysRevLett.86.910
RundleRPMillsPWTilmaTSamsonJHEverittMJSimple procedure for phase-space measurement and entanglement validationPhys. Rev. A2017960221172017PhRvA..96b2117R10.1103/PhysRevA.96.022117
RaussendorfRHarringtonJFault-tolerant quantum computation with high threshold in two dimensionsPhys. Rev. Lett.2007981905042007PhRvL..98s0504R10.1103/PhysRevLett.98.190504
BarendsRSuperconducting quantum circuits at the surface code threshold for fault toleranceNature20145085005032014Natur.508..500B10.1038/nature13171
HeinMDürWBriegelHJEntanglement properties of multipartite entangled states under the influence of decoherencePhys. Rev. A2005710323502005PhRvA..71c2350H10.1103/PhysRevA.71.032350
95_CR30
N Friis (95_CR3) 2018; 8
R Barends (95_CR2) 2014; 508
D Alsina (95_CR6) 2016; 94
M Popp (95_CR26) 2005; 71
M Horodecki (95_CR22) 1996; 223
C Song (95_CR18) 2017; 119
E Huffman (95_CR10) 2017; 95
R Raussendorf (95_CR15) 2001; 86
MA Nielsen (95_CR27) 2005; 71
95_CR19
95_CR5
95_CR4
M Berta (95_CR8) 2016; 18
R Horodecki (95_CR13) 2009; 81
JA Smolin (95_CR25) 2012; 108
M Hebenstreit (95_CR11) 2017; 95
95_CR12
M Hein (95_CR24) 2005; 71
HJ Briegel (95_CR14) 2001; 86
M Hein (95_CR17) 2004; 69
RF Werner (95_CR20) 1989; 40
95_CR1
SJ Devitt (95_CR7) 2016; 94
AC Doherty (95_CR23) 2002; 88
A Peres (95_CR21) 1996; 77
95_CR29
RP Rundle (95_CR9) 2017; 96
R Raussendorf (95_CR28) 2006; 321
R Raussendorf (95_CR16) 2007; 98
References_xml – volume: 96
  start-page: 022117
  year: 2017
  ident: 95_CR9
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.022117
  contributor:
    fullname: RP Rundle
– volume: 71
  start-page: 042323
  year: 2005
  ident: 95_CR27
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.042323
  contributor:
    fullname: MA Nielsen
– volume: 321
  start-page: 2242
  year: 2006
  ident: 95_CR28
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2006.01.012
  contributor:
    fullname: R Raussendorf
– ident: 95_CR30
– volume: 98
  start-page: 190504
  year: 2007
  ident: 95_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.190504
  contributor:
    fullname: R Raussendorf
– volume: 95
  start-page: 032131
  year: 2017
  ident: 95_CR10
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.032131
  contributor:
    fullname: E Huffman
– ident: 95_CR12
  doi: 10.1142/S0219749918400063
– volume: 86
  start-page: 5188
  year: 2001
  ident: 95_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.5188
  contributor:
    fullname: R Raussendorf
– volume: 223
  start-page: 1
  year: 1996
  ident: 95_CR22
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(96)00706-2
  contributor:
    fullname: M Horodecki
– ident: 95_CR29
– volume: 94
  start-page: 032329
  year: 2016
  ident: 95_CR7
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.032329
  contributor:
    fullname: SJ Devitt
– volume: 18
  start-page: 073004
  year: 2016
  ident: 95_CR8
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/7/073004
  contributor:
    fullname: M Berta
– volume: 508
  start-page: 500
  year: 2014
  ident: 95_CR2
  publication-title: Nature
  doi: 10.1038/nature13171
  contributor:
    fullname: R Barends
– ident: 95_CR4
– volume: 8
  start-page: 021012
  year: 2018
  ident: 95_CR3
  publication-title: Phys. Rev. X
  contributor:
    fullname: N Friis
– volume: 81
  start-page: 865
  year: 2009
  ident: 95_CR13
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.865
  contributor:
    fullname: R Horodecki
– volume: 119
  start-page: 180511
  year: 2017
  ident: 95_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.180511
  contributor:
    fullname: C Song
– volume: 88
  start-page: 187904
  year: 2002
  ident: 95_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.187904
  contributor:
    fullname: AC Doherty
– volume: 94
  start-page: 012314
  year: 2016
  ident: 95_CR6
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.012314
  contributor:
    fullname: D Alsina
– ident: 95_CR19
– volume: 95
  start-page: 052339
  year: 2017
  ident: 95_CR11
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.052339
  contributor:
    fullname: M Hebenstreit
– volume: 86
  start-page: 910
  year: 2001
  ident: 95_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.910
  contributor:
    fullname: HJ Briegel
– volume: 108
  start-page: 070502
  year: 2012
  ident: 95_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.070502
  contributor:
    fullname: JA Smolin
– volume: 71
  start-page: 042306
  year: 2005
  ident: 95_CR26
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.042306
  contributor:
    fullname: M Popp
– volume: 71
  start-page: 032350
  year: 2005
  ident: 95_CR24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.032350
  contributor:
    fullname: M Hein
– ident: 95_CR1
  doi: 10.1119/1.1463744
– volume: 40
  start-page: 4277
  year: 1989
  ident: 95_CR20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.40.4277
  contributor:
    fullname: RF Werner
– ident: 95_CR5
– volume: 69
  start-page: 062311
  year: 2004
  ident: 95_CR17
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.69.062311
  contributor:
    fullname: M Hein
– volume: 77
  start-page: 1413
  year: 1996
  ident: 95_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.1413
  contributor:
    fullname: A Peres
SSID ssj0001928241
Score 2.5199232
Snippet Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we prepare...
Abstract Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms 639/766/483/2802
639/766/483/481
Classical and Quantum Gravitation
Computers
Physics
Physics and Astronomy
Quantum Computing
Quantum Field Theories
Quantum Information Technology
Quantum Physics
Quantum theory
Relativity Theory
Spintronics
String Theory
Title 16-qubit IBM universal quantum computer can be fully entangled
URI https://link.springer.com/article/10.1038/s41534-018-0095-x
https://www.proquest.com/docview/2113248366
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLdKERIX2GBohW7ygRNRtNpOUueCxEcndoALIOAU2YnNWm2B0kZi__2e7TgpRUjjsIsVOS-25PfL8_vyM0L7UkvYSMEsESKJwUDJTXyXQqOTZKioiKS9ReHscnhxy09H0ajT8Sfr2r7_ymnoA16bk7Pv4HYzKHTAM_AcWuA6tP_Ed5KE00qO58GP4_OgcmkXwIZpBUtY_bYp5OYWB5PtFUgVGPf7n8AkkJf3v17e2lk-TprP6vqqi1H7m9rTfAckP8VDk9lj0wPu_I5oBIorU2Bd0-F03Liqlfv-WI0XXQ_E5km4k_y-crcJciz7y4Jr56BVVopR0LBC-MmHiyI3WkbWK0HuyrbPQL1gJksGpgZdMHxud60ml9BG0RnPHG0GtJmhNYbFKgXpEy_Y2ROn0nJQW3yEm_Fvr2Z5qaO0hsdSrNyqIFcf0EZtO-Ajx_SPqKPKLbTp7-XAtZjeQms2rTefbaNDjwYMaMANGnDNVuzRgAENWCps0YAbNHxC199HVydnYX1jRpizOJ2HmgrOhSlxWKRxTlghQbulRApOdQEPacEF0SSiA13kidKK6ygGpVNzZo4UM7aDuuVDqT4jrFLFqWLDPM1lRMRAwBhREWsm9SDlA9pDB36NskdXGCV7kxU91PermNX_yiyjhIA2z1mS9FDgV7Z9_eZgu--i3kPrLXT7qDt_qtQXtDIrqq8WF38BtghwLg
link.rule.ids 315,782,786,866,27935,27936
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=16-qubit+IBM+universal+quantum+computer+can+be+fully+entangled&rft.jtitle=npj+quantum+information&rft.au=Wang%2C+Yuanhao&rft.au=Li%2C+Ying&rft.au=Yin%2C+Zhang-qi&rft.au=Zeng%2C+Bei&rft.date=2018-09-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2056-6387&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1038%2Fs41534-018-0095-x&rft.externalDocID=10_1038_s41534_018_0095_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-6387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-6387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-6387&client=summon