16-qubit IBM universal quantum computer can be fully entangled
Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we prepare connected graph states involving 8 to 16 qubits on ibmqx5 , a 16-qubit superconducting quantum processor accessible via IBM cloud, using low-depth...
Saved in:
Published in: | npj quantum information Vol. 4; no. 1; pp. 1 - 6 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
27-09-2018
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we prepare connected graph states involving 8 to 16 qubits on
ibmqx5
, a 16-qubit superconducting quantum processor accessible via IBM cloud, using low-depth circuits. We demonstrate that the prepared state is fully entangled, i.e., the state is inseparable with respect to any fixed partition.
Quantum computing: Sweet sixteen
All sixteen qubits in an IBM Q cloud quantum computer can be fully entangled, a prerequisite for exploiting its quantum computational power. Entanglement is one of the resources that lead to quantum algorithms’ advantages over their classical counterparts. However, even when using the highest-quality qubits it is difficult to produce and verify large-scale entangled states because accumulated errors from imperfect quantum operations can prevent unambiguous confirmation of entanglement. Zhangqi Yin from Tsinghua University and collaborators in China and Canada have shown how to create and verify a sixteen-qubit entangled state using the operations available on IBM’s quantum computing platform, a new record for the number of entangled qubits. While achievable state fidelity remains low for the time being, this result verifies that IBM’s device is truly quantum. |
---|---|
AbstractList | Abstract
Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we prepare connected graph states involving 8 to 16 qubits on
ibmqx5
, a 16-qubit superconducting quantum processor accessible via IBM cloud, using low-depth circuits. We demonstrate that the prepared state is fully entangled, i.e., the state is inseparable with respect to any fixed partition. Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we prepare connected graph states involving 8 to 16 qubits on ibmqx5, a 16-qubit superconducting quantum processor accessible via IBM cloud, using low-depth circuits. We demonstrate that the prepared state is fully entangled, i.e., the state is inseparable with respect to any fixed partition. Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we prepare connected graph states involving 8 to 16 qubits on ibmqx5 , a 16-qubit superconducting quantum processor accessible via IBM cloud, using low-depth circuits. We demonstrate that the prepared state is fully entangled, i.e., the state is inseparable with respect to any fixed partition. Quantum computing: Sweet sixteen All sixteen qubits in an IBM Q cloud quantum computer can be fully entangled, a prerequisite for exploiting its quantum computational power. Entanglement is one of the resources that lead to quantum algorithms’ advantages over their classical counterparts. However, even when using the highest-quality qubits it is difficult to produce and verify large-scale entangled states because accumulated errors from imperfect quantum operations can prevent unambiguous confirmation of entanglement. Zhangqi Yin from Tsinghua University and collaborators in China and Canada have shown how to create and verify a sixteen-qubit entangled state using the operations available on IBM’s quantum computing platform, a new record for the number of entangled qubits. While achievable state fidelity remains low for the time being, this result verifies that IBM’s device is truly quantum. |
ArticleNumber | 46 |
Author | Wang, Yuanhao Yin, Zhang-qi Li, Ying Zeng, Bei |
Author_xml | – sequence: 1 givenname: Yuanhao surname: Wang fullname: Wang, Yuanhao organization: Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University – sequence: 2 givenname: Ying orcidid: 0000-0002-1705-2494 surname: Li fullname: Li, Ying organization: Graduate School of China Academy of Engineering Physics – sequence: 3 givenname: Zhang-qi surname: Yin fullname: Yin, Zhang-qi email: yinzhangqi@tsinghua.edu.cn organization: Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University – sequence: 4 givenname: Bei surname: Zeng fullname: Zeng, Bei organization: Department of Mathematics and Statistics, University of Guelph, Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo |
BookMark | eNp1kM9LwzAYhoNMcM79Ad4CnqP5kjRNL4IOfwwmXvQc0jYZHV26JY1s_70dFfTi6XsP7_N-8Fyiie-8Rega6C1Qru6igIwLQkERSouMHM7QlNFMEslVPvmTL9A8xg2lFAqmmIApugdJ9qlserx8fMPJN182RNPifTK-T1tcddtd6m3AlfG4tNiltj1i63vj162tr9C5M2208587Q5_PTx-LV7J6f1kuHlak4lnRE8eMUqbgOdRFVgGvS8k4g9Io5uohFLUy4EAw6upKWmeVExmV0ikOXOScz9DNuLsL3T7Z2OtNl4IfXmoGwJlQXMqhBWOrCl2MwTq9C83WhKMGqk-m9GhKD6b0yZQ-DAwbmTh0_dqG3-X_oW-2bWvc |
CitedBy_id | crossref_primary_10_1088_1361_6668_ac5505 crossref_primary_10_1109_JSSC_2020_3018432 crossref_primary_10_1007_s11128_020_02712_7 crossref_primary_10_1088_1361_6633_acf8d7 crossref_primary_10_1103_PhysRevA_98_062327 crossref_primary_10_1016_j_physleta_2022_128434 crossref_primary_10_1103_PhysRevA_105_042610 crossref_primary_10_1016_j_physleta_2020_126579 crossref_primary_10_1103_PhysRevA_105_042413 crossref_primary_10_1007_s42484_019_00004_7 crossref_primary_10_1109_JPHOT_2021_3094646 crossref_primary_10_1109_ACCESS_2022_3177790 crossref_primary_10_1103_PhysRevResearch_2_043442 crossref_primary_10_1038_s41534_022_00612_5 crossref_primary_10_3367_UFNr_2021_02_038934 crossref_primary_10_1002_qute_202100061 crossref_primary_10_1007_s00340_021_07671_0 crossref_primary_10_1116_5_0137078 crossref_primary_10_22331_q_2018_12_21_114 crossref_primary_10_3367_UFNe_2021_02_038934 crossref_primary_10_1038_s41467_019_09584_1 crossref_primary_10_1103_PhysRevLett_126_230501 crossref_primary_10_1103_PhysRevLett_131_073401 crossref_primary_10_1209_0295_5075_ad0952 crossref_primary_10_1109_ACCESS_2023_3289005 crossref_primary_10_1038_s41467_021_23032_z crossref_primary_10_1103_PhysRevA_106_022417 crossref_primary_10_1038_s42005_021_00534_2 crossref_primary_10_1049_qtc2_12043 crossref_primary_10_1209_0295_5075_ac419b crossref_primary_10_1063_5_0047690 crossref_primary_10_1038_s41598_020_60061_y crossref_primary_10_1103_PhysRevLett_122_110501 crossref_primary_10_1038_s41534_019_0217_0 crossref_primary_10_1038_s41534_022_00609_0 crossref_primary_10_1063_1_5100160 crossref_primary_10_1063_5_0043334 crossref_primary_10_1103_PhysRevResearch_4_L022020 crossref_primary_10_1038_s41467_019_11489_y crossref_primary_10_1016_j_physa_2021_126017 crossref_primary_10_1103_PhysRevA_102_052410 crossref_primary_10_1142_S123016122250007X crossref_primary_10_1038_s41598_023_41025_4 crossref_primary_10_34229_2707_451X_20_3_7 crossref_primary_10_1007_s11433_022_1972_1 crossref_primary_10_1103_PhysRevResearch_5_043260 crossref_primary_10_1007_s42979_024_02761_0 crossref_primary_10_1038_s41534_019_0200_9 crossref_primary_10_1126_science_aay4354 crossref_primary_10_1038_s41534_019_0142_2 crossref_primary_10_1038_s41534_021_00401_6 crossref_primary_10_1364_JOSAB_380268 crossref_primary_10_1016_j_physleta_2021_127248 crossref_primary_10_1103_PhysRevA_101_042313 crossref_primary_10_1140_epjp_s13360_021_01553_2 crossref_primary_10_1007_s43673_023_00082_7 crossref_primary_10_1103_PhysRevA_109_013712 crossref_primary_10_1088_1674_1056_ad18ab crossref_primary_10_1007_s11128_021_03149_2 crossref_primary_10_1007_s11128_020_02649_x crossref_primary_10_1016_j_aop_2023_169397 crossref_primary_10_1038_s41598_019_49805_7 crossref_primary_10_1109_ACCESS_2020_3043187 crossref_primary_10_1002_que2_77 crossref_primary_10_1088_2399_6528_ac1df7 crossref_primary_10_1007_s11128_020_02625_5 crossref_primary_10_1088_1367_2630_ab5cbe crossref_primary_10_1515_nanoph_2021_0510 crossref_primary_10_3389_frqst_2022_1026025 crossref_primary_10_1103_PRXQuantum_2_040348 crossref_primary_10_1109_OJCAS_2021_3105005 crossref_primary_10_1016_j_tcs_2022_04_016 crossref_primary_10_1088_1402_4896_abd0bc crossref_primary_10_1103_PhysRevA_104_012613 crossref_primary_10_1038_s41534_020_00321_x crossref_primary_10_1007_s10773_023_05304_0 crossref_primary_10_1016_j_compchemeng_2019_106630 crossref_primary_10_1088_1361_6668_ace8c7 crossref_primary_10_1088_2058_9565_ab7eeb crossref_primary_10_1038_s41567_021_01333_w crossref_primary_10_1088_1742_6596_1999_1_012076 crossref_primary_10_1103_PhysRevA_101_032343 crossref_primary_10_1088_1361_6633_ad4c93 crossref_primary_10_1002_aisy_202000273 crossref_primary_10_1103_PhysRevA_105_062207 crossref_primary_10_5488_CMP_23_43001 crossref_primary_10_1103_PhysRevLett_123_120502 crossref_primary_10_1038_s41598_020_72469_7 |
Cites_doi | 10.1103/PhysRevA.96.022117 10.1103/PhysRevA.71.042323 10.1016/j.aop.2006.01.012 10.1103/PhysRevLett.98.190504 10.1103/PhysRevA.95.032131 10.1142/S0219749918400063 10.1103/PhysRevLett.86.5188 10.1016/S0375-9601(96)00706-2 10.1103/PhysRevA.94.032329 10.1088/1367-2630/18/7/073004 10.1038/nature13171 10.1103/RevModPhys.81.865 10.1103/PhysRevLett.119.180511 10.1103/PhysRevLett.88.187904 10.1103/PhysRevA.94.012314 10.1103/PhysRevA.95.052339 10.1103/PhysRevLett.86.910 10.1103/PhysRevLett.108.070502 10.1103/PhysRevA.71.042306 10.1103/PhysRevA.71.032350 10.1119/1.1463744 10.1103/PhysRevA.40.4277 10.1103/PhysRevA.69.062311 10.1103/PhysRevLett.77.1413 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PIMPY PQEST PQQKQ PQUKI PRINS |
DOI | 10.1038/s41534-018-0095-x |
DatabaseName | Springer Open Access CrossRef ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 2056-6387 |
EndPage | 6 |
ExternalDocumentID | 10_1038_s41534_018_0095_x |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK KQ8 LK8 M7P M~E NAO NO~ OK1 PIMPY PQQKQ PROAC RNT SNYQT UKHRP AAYXX CITATION 7XB 8FK AZQEC DWQXO GNUQQ K9. PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c359t-f2a88a9371d95c13db62321ba82fd3219d8a1f1420fdc6efe8f45066f83134733 |
ISSN | 2056-6387 |
IngestDate | Thu Oct 10 16:53:39 EDT 2024 Fri Aug 23 01:48:21 EDT 2024 Fri Oct 11 20:47:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c359t-f2a88a9371d95c13db62321ba82fd3219d8a1f1420fdc6efe8f45066f83134733 |
ORCID | 0000-0002-1705-2494 |
OpenAccessLink | http://dx.doi.org/10.1038/s41534-018-0095-x |
PQID | 2113248366 |
PQPubID | 2041919 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2113248366 crossref_primary_10_1038_s41534_018_0095_x springer_journals_10_1038_s41534_018_0095_x |
PublicationCentury | 2000 |
PublicationDate | 2018-09-27 |
PublicationDateYYYYMMDD | 2018-09-27 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | npj quantum information |
PublicationTitleAbbrev | npj Quantum Inf |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Preskill, J. Quantum computing and the entanglement frontier. arXiv preprint arXiv:1203.5813 (2012). Wang, Y., Li, Y., Yin, Z. & Zeng, B. 16-qubit ibm quantum processor entanglement (2018). https://figshare.com/articles/16-qubit_IBM_quantum_processor_entanglement/6790781/1. HorodeckiMHorodeckiPHorodeckiRSeparability of mixed states: necessary and sufficient conditionsPhys. Lett. A1996223181996PhLA..223....1H142150110.1016/S0375-9601(96)00706-2 NielsenMADawsonCMFault-tolerant quantum computation with cluster statesPhys. Rev. A2005710423232005PhRvA..71d2323N10.1103/PhysRevA.71.042323 HuffmanEMizelAViolation of noninvasive macrorealism by a superconducting qubit: Implementation of a leggett-garg test that addresses the clumsiness loopholePhys. Rev. A2017950321312017PhRvA..95c2131H10.1103/PhysRevA.95.032131 RaussendorfRBriegelHJA one-way quantum computerPhys. Rev. Lett.20018651882001PhRvL..86.5188R10.1103/PhysRevLett.86.5188 The IBM Q experience ibmqx5 backend. https://github.com/QISKit/ibmqx-backend-information/tree/master/backends/ibmqx5. Accessed 27 December 2017. HeinMEisertJBriegelHJMultiparty entanglement in graph statesPhys. Rev. A2004690623112004PhRvA..69f2311H208187710.1103/PhysRevA.69.062311 Ferrari, D. & Amoretti, M. Demonstration of envariance and parity learning on the IBM 16 qubit processor. ArXiv e-prints (2018). 1801.02363. SmolinJAGambettaJMSmithGEfficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noisePhys. Rev. Lett.20121080705022012PhRvL.108g0502S10.1103/PhysRevLett.108.070502 DohertyACParriloPASpedalieriFMDistinguishing separable and entangled statesPhys. Rev. Lett.2002881879042002PhRvL..88r7904D10.1103/PhysRevLett.88.187904 HebenstreitMAlsinaDLatorreJIKrausBCompressed quantum computation using a remote five-qubit quantum computerPhys. Rev. A2017950523392017PhRvA..95e2339H10.1103/PhysRevA.95.052339 RaussendorfRHarringtonJGoyalKA fault-tolerant one-way quantum computerAnn. Phys.2006321224222702006AnPhy.321.2242R225272810.1016/j.aop.2006.01.012 IBM Q experience. https://quantumexperience.ng.bluemix.net/qx/devices. Accessed 27 December 2017. PeresASeparability criterion for density matricesPhys. Rev. Lett.19967714131996PhRvL..77.1413P140172610.1103/PhysRevLett.77.1413 SongC10-qubit entanglement and parallel logic operations with a superconducting circuitPhys. Rev. Lett.20171191805112017PhRvL.119r0511S10.1103/PhysRevLett.119.180511 Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2002). BertaMWehnerSWildeMMEntropic uncertainty and measurement reversibilityNew J. Phys.2016180730042016NJPh...18g3004B10.1088/1367-2630/18/7/073004 Hein, M. et al. Entanglement in graph states and its applications (2006). quant-ph/0602096. WernerRFQuantum states with einstein-podolsky-rosen correlations admitting a hidden-variable modelPhys. Rev. A19894042771989PhRvA..40.4277W10.1103/PhysRevA.40.4277 HorodeckiRHorodeckiPHorodeckiMHorodeckiKQuantum entanglementRev. Mod. Phys.2009818652009RvMP...81..865H251561910.1103/RevModPhys.81.865 PoppMVerstraeteFMartín-DelgadoMACiracJILocalizable entanglementPhys. Rev. A2005710423062005PhRvA..71d2306P214376510.1103/PhysRevA.71.042306 AlsinaDLatorreJIExperimental test of mermin inequalities on a five-qubit quantum computerPhys. Rev. A2016940123142016PhRvA..94a2314A10.1103/PhysRevA.94.012314 DevittSJPerforming quantum computing experiments in the cloudPhys. Rev. A2016940323292016PhRvA..94c2329D10.1103/PhysRevA.94.032329 FriisNObservation of entangled states of a fully controlled 20-qubit systemPhys. Rev. X20188021012 BriegelHJRaussendorfRPersistent entanglement in arrays of interacting particlesPhys. Rev. Lett.2001869102001PhRvL..86..910B10.1103/PhysRevLett.86.910 RundleRPMillsPWTilmaTSamsonJHEverittMJSimple procedure for phase-space measurement and entanglement validationPhys. Rev. A2017960221172017PhRvA..96b2117R10.1103/PhysRevA.96.022117 RaussendorfRHarringtonJFault-tolerant quantum computation with high threshold in two dimensionsPhys. Rev. Lett.2007981905042007PhRvL..98s0504R10.1103/PhysRevLett.98.190504 BarendsRSuperconducting quantum circuits at the surface code threshold for fault toleranceNature20145085005032014Natur.508..500B10.1038/nature13171 HeinMDürWBriegelHJEntanglement properties of multipartite entangled states under the influence of decoherencePhys. Rev. A2005710323502005PhRvA..71c2350H10.1103/PhysRevA.71.032350 95_CR30 N Friis (95_CR3) 2018; 8 R Barends (95_CR2) 2014; 508 D Alsina (95_CR6) 2016; 94 M Popp (95_CR26) 2005; 71 M Horodecki (95_CR22) 1996; 223 C Song (95_CR18) 2017; 119 E Huffman (95_CR10) 2017; 95 R Raussendorf (95_CR15) 2001; 86 MA Nielsen (95_CR27) 2005; 71 95_CR19 95_CR5 95_CR4 M Berta (95_CR8) 2016; 18 R Horodecki (95_CR13) 2009; 81 JA Smolin (95_CR25) 2012; 108 M Hebenstreit (95_CR11) 2017; 95 95_CR12 M Hein (95_CR24) 2005; 71 HJ Briegel (95_CR14) 2001; 86 M Hein (95_CR17) 2004; 69 RF Werner (95_CR20) 1989; 40 95_CR1 SJ Devitt (95_CR7) 2016; 94 AC Doherty (95_CR23) 2002; 88 A Peres (95_CR21) 1996; 77 95_CR29 RP Rundle (95_CR9) 2017; 96 R Raussendorf (95_CR28) 2006; 321 R Raussendorf (95_CR16) 2007; 98 |
References_xml | – volume: 96 start-page: 022117 year: 2017 ident: 95_CR9 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.96.022117 contributor: fullname: RP Rundle – volume: 71 start-page: 042323 year: 2005 ident: 95_CR27 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.042323 contributor: fullname: MA Nielsen – volume: 321 start-page: 2242 year: 2006 ident: 95_CR28 publication-title: Ann. Phys. doi: 10.1016/j.aop.2006.01.012 contributor: fullname: R Raussendorf – ident: 95_CR30 – volume: 98 start-page: 190504 year: 2007 ident: 95_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.190504 contributor: fullname: R Raussendorf – volume: 95 start-page: 032131 year: 2017 ident: 95_CR10 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.032131 contributor: fullname: E Huffman – ident: 95_CR12 doi: 10.1142/S0219749918400063 – volume: 86 start-page: 5188 year: 2001 ident: 95_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.5188 contributor: fullname: R Raussendorf – volume: 223 start-page: 1 year: 1996 ident: 95_CR22 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(96)00706-2 contributor: fullname: M Horodecki – ident: 95_CR29 – volume: 94 start-page: 032329 year: 2016 ident: 95_CR7 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.94.032329 contributor: fullname: SJ Devitt – volume: 18 start-page: 073004 year: 2016 ident: 95_CR8 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/7/073004 contributor: fullname: M Berta – volume: 508 start-page: 500 year: 2014 ident: 95_CR2 publication-title: Nature doi: 10.1038/nature13171 contributor: fullname: R Barends – ident: 95_CR4 – volume: 8 start-page: 021012 year: 2018 ident: 95_CR3 publication-title: Phys. Rev. X contributor: fullname: N Friis – volume: 81 start-page: 865 year: 2009 ident: 95_CR13 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.865 contributor: fullname: R Horodecki – volume: 119 start-page: 180511 year: 2017 ident: 95_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.180511 contributor: fullname: C Song – volume: 88 start-page: 187904 year: 2002 ident: 95_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.187904 contributor: fullname: AC Doherty – volume: 94 start-page: 012314 year: 2016 ident: 95_CR6 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.94.012314 contributor: fullname: D Alsina – ident: 95_CR19 – volume: 95 start-page: 052339 year: 2017 ident: 95_CR11 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.052339 contributor: fullname: M Hebenstreit – volume: 86 start-page: 910 year: 2001 ident: 95_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.910 contributor: fullname: HJ Briegel – volume: 108 start-page: 070502 year: 2012 ident: 95_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.070502 contributor: fullname: JA Smolin – volume: 71 start-page: 042306 year: 2005 ident: 95_CR26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.042306 contributor: fullname: M Popp – volume: 71 start-page: 032350 year: 2005 ident: 95_CR24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.032350 contributor: fullname: M Hein – ident: 95_CR1 doi: 10.1119/1.1463744 – volume: 40 start-page: 4277 year: 1989 ident: 95_CR20 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.40.4277 contributor: fullname: RF Werner – ident: 95_CR5 – volume: 69 start-page: 062311 year: 2004 ident: 95_CR17 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.69.062311 contributor: fullname: M Hein – volume: 77 start-page: 1413 year: 1996 ident: 95_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.1413 contributor: fullname: A Peres |
SSID | ssj0001928241 |
Score | 2.5199232 |
Snippet | Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we prepare... Abstract Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In this paper, we... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | 639/766/483/2802 639/766/483/481 Classical and Quantum Gravitation Computers Physics Physics and Astronomy Quantum Computing Quantum Field Theories Quantum Information Technology Quantum Physics Quantum theory Relativity Theory Spintronics String Theory |
Title | 16-qubit IBM universal quantum computer can be fully entangled |
URI | https://link.springer.com/article/10.1038/s41534-018-0095-x https://www.proquest.com/docview/2113248366 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLdKERIX2GBohW7ygRNRtNpOUueCxEcndoALIOAU2YnNWm2B0kZi__2e7TgpRUjjsIsVOS-25PfL8_vyM0L7UkvYSMEsESKJwUDJTXyXQqOTZKioiKS9ReHscnhxy09H0ajT8Sfr2r7_ymnoA16bk7Pv4HYzKHTAM_AcWuA6tP_Ed5KE00qO58GP4_OgcmkXwIZpBUtY_bYp5OYWB5PtFUgVGPf7n8AkkJf3v17e2lk-TprP6vqqi1H7m9rTfAckP8VDk9lj0wPu_I5oBIorU2Bd0-F03Liqlfv-WI0XXQ_E5km4k_y-crcJciz7y4Jr56BVVopR0LBC-MmHiyI3WkbWK0HuyrbPQL1gJksGpgZdMHxud60ml9BG0RnPHG0GtJmhNYbFKgXpEy_Y2ROn0nJQW3yEm_Fvr2Z5qaO0hsdSrNyqIFcf0EZtO-Ajx_SPqKPKLbTp7-XAtZjeQms2rTefbaNDjwYMaMANGnDNVuzRgAENWCps0YAbNHxC199HVydnYX1jRpizOJ2HmgrOhSlxWKRxTlghQbulRApOdQEPacEF0SSiA13kidKK6ygGpVNzZo4UM7aDuuVDqT4jrFLFqWLDPM1lRMRAwBhREWsm9SDlA9pDB36NskdXGCV7kxU91PermNX_yiyjhIA2z1mS9FDgV7Z9_eZgu--i3kPrLXT7qDt_qtQXtDIrqq8WF38BtghwLg |
link.rule.ids | 315,782,786,866,27935,27936 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=16-qubit+IBM+universal+quantum+computer+can+be+fully+entangled&rft.jtitle=npj+quantum+information&rft.au=Wang%2C+Yuanhao&rft.au=Li%2C+Ying&rft.au=Yin%2C+Zhang-qi&rft.au=Zeng%2C+Bei&rft.date=2018-09-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2056-6387&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1038%2Fs41534-018-0095-x&rft.externalDocID=10_1038_s41534_018_0095_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-6387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-6387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-6387&client=summon |