Quality Assessment of Low-light Restored Images: A Subjective Study and an Unsupervised Model
The quality assessment (QA) of restored low-light images is an important tool for benchmarking and improving low-light restoration (LLR) algorithms. While several LLR algorithms exist, the subjective perception of the restored images has been much less studied. Challenges in capturing aligned low-li...
Saved in:
Published in: | IEEE access Vol. 11; p. 1 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-01-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The quality assessment (QA) of restored low-light images is an important tool for benchmarking and improving low-light restoration (LLR) algorithms. While several LLR algorithms exist, the subjective perception of the restored images has been much less studied. Challenges in capturing aligned low-light and well-lit image pairs and collecting a large number of human opinion scores of quality for training, warrant the design of unsupervised (or opinion unaware) no-reference (NR) QA methods. This work studies the subjective perception of low-light restored images and their unsupervised NR QA. Our contributions are two-fold. We first create a dataset of restored low-light images using various LLR methods, conduct a subjective QA study, and benchmark the performance of existing QA methods. We then present a self-supervised contrastive learning technique to extract distortion-aware features from the restored low-light images. We show that these features can be effectively used to build an opinion unaware image quality analyzer. Detailed experiments reveal that our unsupervised NR QA model achieves state-of-the-art performance among all such quality measures for low-light restored images. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3292114 |