Measurements of the Thickness and Area of Thick Oil Slicks Using Ultrasonic and Image Processing Methods

The in situ measurement of thick oil slick thickness (>0.5 mm) and area in real time in order to estimate the volume of an oil spill is very important for determining the oil spill response strategy and evaluating the oil spill disposal efficiency. In this article, a method is proposed to assess...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 15; no. 12; p. 2977
Main Authors: Du, Hualong, Fan, Huijie, Zhang, Qifeng, Li, Shuo
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-06-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The in situ measurement of thick oil slick thickness (>0.5 mm) and area in real time in order to estimate the volume of an oil spill is very important for determining the oil spill response strategy and evaluating the oil spill disposal efficiency. In this article, a method is proposed to assess the volume of oil slicks by simultaneously measuring the thick oil slick thickness and area using ultrasonic inspection and image processing methods, respectively. A remotely operated vehicle (ROV), integrating two ultrasonic immersion transducers, was implemented as a platform to receive ultrasonic reflections from an oil slick. The oil slick thickness was determined by multiplying the speed of sound by the ultrasonic traveling time within the oil slick, which was calculated using the cross-correlation method. Images of the oil slick were captured by an optical camera using an airborne drone. The oil slick area was calculated by conducting image processing on images of the oil slick using the proposed image processing algorithms. Multiple measurements were performed to verify the proposed method in the laboratory experiments. The results show that the thickness, area and volume of a thick oil slick can be accurately measured with the proposed method. The method could potentially be used as an applicable tool for measuring the volume of an oil slick during an oil spill response.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15122977