Polyethylene wear simulation models applied to a prosthetic hip joint based on unidirectional articulations
Ultra-high molecular weight polyethylene (UHMWPE) is commonly used as soft-bearing material in total joint replacements. However, the release of polymeric wear debris is still related to complications leading to aseptic loosening. Recently, a novel hip prosthesis showing reduced wear was developed b...
Saved in:
Published in: | Journal of the mechanical behavior of biomedical materials Vol. 142; p. 105882 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier Ltd
01-06-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ultra-high molecular weight polyethylene (UHMWPE) is commonly used as soft-bearing material in total joint replacements. However, the release of polymeric wear debris is still related to complications leading to aseptic loosening. Recently, a novel hip prosthesis showing reduced wear was developed by the authors of this study, consisting of unidirectional cylindrical articulations instead of the conventional multidirectional ball-and-socket design. This study evaluates four different theoretical wear models applied to this new design. The calculated volumetric wear was compared to experimental results. Although all models provided a good indication of the wear rates for the ball-and-socket prosthesis, they exhibited high discrepancies when predicting the amount of wear of the new unidirectional design. It was observed that the closest agreement with experimental results was obtained by the models that consider the friction-induced molecular orientation phenomenon exhibited by UHMWPE.
[Display omitted]
•Wear models provided satisfactory predictions for the ball-and-socket design.•The unidirectional design exhibits reduced wear despite the higher sliding distance.•Only models considering molecular orientation predicted lower wear for the novel design. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2023.105882 |