FuSC: Fusing Superpixels for Improved Semantic Consistency
Open-set segmentation has caught the community's attention only in the last few years, and it is a growing and active research area with many challenges ahead. To better identify open-set pixels, we address two known issues by improving data representation and ensuring semantic consistency in o...
Saved in:
Published in: | IEEE access Vol. 12; pp. 20232 - 20250 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Open-set segmentation has caught the community's attention only in the last few years, and it is a growing and active research area with many challenges ahead. To better identify open-set pixels, we address two known issues by improving data representation and ensuring semantic consistency in open-set predictions. First, we present a method called Open Gaussian Mixture of Models (OpenGMM) that allows for multimodal statistical distributions in known class pixels using a Gaussian Mixture of Models instead of unimodal approaches, like Principal Component Analysis. The second approach improved semantic consistency by applying a post-processing technique that uses superpixels to enforce homogeneous regions to have similar predictions, rectifying erroneously classified pixels within these regions and providing better delineation of object borders. We also developed a novel superpixel method called Fusing Superpixels for Improved Semantic Consistency (FuSC) that produced more homogeneous superpixels and enhanced, even more, the open-set segmentation prediction. We applied the proposed approaches to well-known remote sensing datasets with labeled ground truth for semantic segmentation tasks. The proposed methods improved the highest AUROC quantitative results for the International Society for Photogrammetry and Remote Sensing (ISPRS) Vaihingen and Potsdam datasets. Using FuSC, we achieved novel open-set state-of-the-art results for both datasets, improving AUROC results from 0.850 to 0.880 (3.53%) for Vaihingen and 0.764 to 0.797 (4.32%) for Potsdam datasets. The official implementation is available at: https://github.com/iannunes/FuSC . |
---|---|
AbstractList | Open-set segmentation has caught the community's attention only in the last few years, and it is a growing and active research area with many challenges ahead. To better identify open-set pixels, we address two known issues by improving data representation and ensuring semantic consistency in open-set predictions. First, we present a method called Open Gaussian Mixture of Models (OpenGMM) that allows for multimodal statistical distributions in known class pixels using a Gaussian Mixture of Models instead of unimodal approaches, like Principal Component Analysis. The second approach improved semantic consistency by applying a post-processing technique that uses superpixels to enforce homogeneous regions to have similar predictions, rectifying erroneously classified pixels within these regions and providing better delineation of object borders. We also developed a novel superpixel method called Fusing Superpixels for Improved Semantic Consistency (FuSC) that produced more homogeneous superpixels and enhanced, even more, the open-set segmentation prediction. We applied the proposed approaches to well-known remote sensing datasets with labeled ground truth for semantic segmentation tasks. The proposed methods improved the highest AUROC quantitative results for the International Society for Photogrammetry and Remote Sensing (ISPRS) Vaihingen and Potsdam datasets. Using FuSC, we achieved novel open-set state-of-the-art results for both datasets, improving AUROC results from 0.850 to 0.880 (3.53%) for Vaihingen and 0.764 to 0.797 (4.32%) for Potsdam datasets. The official implementation is available at: https://github.com/iannunes/FuSC. |
Author | Oliveira, Hugo Santos, Jefersson Alex Dos Pereira, Matheus B. Nunes, Ian Monteiro |
Author_xml | – sequence: 1 givenname: Ian Monteiro orcidid: 0000-0003-3445-4169 surname: Nunes fullname: Nunes, Ian Monteiro email: ian.nunes@ibge.gov.br organization: Department of Statistics (DPE), Brazilian Institute of Geography and Statistics (IBGE), Rio de Janeiro, Brazil – sequence: 2 givenname: Matheus B. orcidid: 0000-0002-2471-2358 surname: Pereira fullname: Pereira, Matheus B. organization: Department of Computer Science (DCC), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil – sequence: 3 givenname: Hugo orcidid: 0000-0001-8760-9801 surname: Oliveira fullname: Oliveira, Hugo organization: Institute of Mathematics and Statistics (IME), University of São Paulo (USP), São Paulo, Brazil – sequence: 4 givenname: Jefersson Alex Dos surname: Santos fullname: Santos, Jefersson Alex Dos organization: Department of Computer Science (DCC), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil |
BookMark | eNpNUE1LAzEQDaKgVn-BHhY8t-Y7G29lsVoQPKyeQzY7kS3tpiZdsf_e6BbpXGZ4zHvz5l2i0z70gNANwTNCsL6fV9VjXc8opnzGmMSayRN0QYnUUyaYPD2az9F1Siucq8yQUBfoYTHU1UOxGFLXfxT1sIW47b5hnQofYrHcbGP4graoYWP7XeeKKvSpSzvo3f4KnXm7TnB96BP0vnh8q56nL69Py2r-MnVM6N2UK-ElCNU24Ere8EZJaIBoaEmJOWWN8p4LSmkjlHOqkY3FsqXMWy9UaR2boOWo2wa7MtvYbWzcm2A78weE-GFszN7WYKhUGCwrResZF63SjlvqlRWa-4yyrHU3auW_PgdIO7MKQ-yzfUM1lZkvNc1bbNxyMaQUwf9fJdj8Zm7GzM1v5uaQeWbdjqwOAI4YnJQCE_YDKrZ9_Q |
CODEN | IAECCG |
Cites_doi | 10.1109/ICME46284.2020.9102712 10.1109/TPAMI.2016.2644615 10.1007/s10994-021-06027-1 10.1109/CVPR42600.2020.01349 10.1109/CVPR.2017.243 10.1007/978-1-4615-7566-5 10.1109/ICIP.2015.7350818 10.1007/978-3-540-88693-8_52 10.1109/ICPR48806.2021.9411968 10.1109/CVPR46437.2021.01225 10.1109/CVPR.2011.5995323 10.4324/9781315009247 10.1007/978-3-030-13469-3_16 10.1109/IPTA50016.2020.9286622 10.1109/LAGIRS48042.2020.9165597 10.1007/978-3-540-28650-9_4 10.1109/TIT.1982.1056489 10.1587/transinf.2019EDP7322 10.5244/C.30.87 10.1109/CVPR.2015.7298741 10.1007/978-3-319-24574-4_28 10.1080/08839514.2022.2032924 10.1109/TPAMI.2020.2981604 10.1016/j.jvcir.2019.102572 10.1023/B:VISI.0000022288.19776.77 10.1109/CVPRW.2017.85 10.1109/ICIP42928.2021.9506672 10.1109/ICVRV.2014.65 10.1109/ICCV48922.2021.01505 10.1177/001316446002000104 10.1109/TPAMI.2016.2572683 10.1109/TPAMI.2021.3059968 10.1007/978-3-642-33786-4_2 10.1109/TPAMI.2020.2983686 10.1109/TGRS.2018.2871782 10.1109/TPAMI.2009.96 10.1109/ACCESS.2020.3042254 10.1109/CVPR.2016.173 10.2352/ISSN.2169-2629.2018.26.1 10.1109/ICPR.2016.7900064 10.1109/TPAMI.2012.120 10.1109/ACCESS.2021.3065246 10.1109/TIP.2015.2451011 10.1109/JSTARS.2018.2865187 10.1117/12.908829 10.1109/JSTARS.2021.3119286 10.1109/CVPR42600.2020.01398 10.1109/ICIP46576.2022.9897407 10.1109/ICIP.2014.7025886 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3360936 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ESBDL name: IEEE Xplore Open Access Journals url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 20250 |
ExternalDocumentID | oai_doaj_org_article_2670ea385df345d79c4a2f7a594f3853 10_1109_ACCESS_2024_3360936 10418501 |
Genre | orig-research |
GrantInformation_xml | – fundername: Serrapilheira Institute grantid: R-2011-37776 funderid: 10.13039/501100013275 – fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) funderid: 10.13039/501100004901 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grantid: 2020/06744-5 funderid: 10.13039/501100001807 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) funderid: 10.13039/501100002322 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-475f6e57dbec84b4b76ebe19ed180423b7ff45222b57cc7b6ba06d23faf578ac3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:15:04 EDT 2024 Thu Oct 10 17:47:25 EDT 2024 Fri Aug 23 01:01:53 EDT 2024 Wed Jun 26 19:27:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-475f6e57dbec84b4b76ebe19ed180423b7ff45222b57cc7b6ba06d23faf578ac3 |
ORCID | 0000-0001-8760-9801 0000-0002-2471-2358 0000-0003-3445-4169 |
OpenAccessLink | https://ieeexplore.ieee.org/document/10418501 |
PQID | 2926267692 |
PQPubID | 4845423 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2670ea385df345d79c4a2f7a594f3853 ieee_primary_10418501 crossref_primary_10_1109_ACCESS_2024_3360936 proquest_journals_2926267692 |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Mahalanobis (ref21) 1936 ref12 ref56 ref15 ref14 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref18 ref51 ref50 Prasad (ref32) 2020 ref46 ref45 ref48 ref47 ref42 Paszke (ref53) ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref34 ref37 ref36 ref31 ref30 ref33 ref2 ref1 ref39 ref38 Verelst (ref19) 2019 ref24 ref23 ref26 ref25 ref20 Morerio (ref40) ref22 ref28 ref27 ref29 Hong (ref35) 2022 Konstantinidis (ref3) 2017 |
References_xml | – ident: ref33 doi: 10.1109/ICME46284.2020.9102712 – ident: ref8 doi: 10.1109/TPAMI.2016.2644615 – ident: ref13 doi: 10.1007/s10994-021-06027-1 – ident: ref50 doi: 10.1109/CVPR42600.2020.01349 – volume-title: IEEE GRSS Data Fusion Challenge year: 2020 ident: ref32 contributor: fullname: Prasad – ident: ref51 doi: 10.1109/CVPR.2017.243 – ident: ref16 doi: 10.1007/978-1-4615-7566-5 – ident: ref27 doi: 10.1109/ICIP.2015.7350818 – ident: ref36 doi: 10.1007/978-3-540-88693-8_52 – ident: ref18 doi: 10.1109/ICPR48806.2021.9411968 – ident: ref24 doi: 10.1109/CVPR46437.2021.01225 – ident: ref38 doi: 10.1109/CVPR.2011.5995323 – ident: ref2 doi: 10.4324/9781315009247 – ident: ref4 doi: 10.1007/978-3-030-13469-3_16 – ident: ref26 doi: 10.1109/IPTA50016.2020.9286622 – ident: ref31 doi: 10.1109/LAGIRS48042.2020.9165597 – ident: ref15 doi: 10.1007/978-3-540-28650-9_4 – ident: ref49 doi: 10.1109/TIT.1982.1056489 – ident: ref47 doi: 10.1587/transinf.2019EDP7322 – ident: ref52 doi: 10.5244/C.30.87 – year: 2017 ident: ref3 article-title: Building detection for monitoring of urban changes contributor: fullname: Konstantinidis – ident: ref43 doi: 10.1109/CVPR.2015.7298741 – ident: ref7 doi: 10.1007/978-3-319-24574-4_28 – volume-title: On the Generalized Distance in Statistics year: 1936 ident: ref21 contributor: fullname: Mahalanobis – ident: ref10 doi: 10.1080/08839514.2022.2032924 – start-page: 1 volume-title: Proc. 17th Int. Conf. Inf. Fusion ident: ref40 article-title: A generative superpixel method contributor: fullname: Morerio – ident: ref12 doi: 10.1109/TPAMI.2020.2981604 – year: 2019 ident: ref19 article-title: Generating superpixels using deep image representations publication-title: arXiv:1903.04586 contributor: fullname: Verelst – ident: ref20 doi: 10.1016/j.jvcir.2019.102572 – ident: ref17 doi: 10.1023/B:VISI.0000022288.19776.77 – ident: ref29 doi: 10.1109/CVPRW.2017.85 – ident: ref14 doi: 10.1109/ICIP42928.2021.9506672 – ident: ref28 doi: 10.1109/ICVRV.2014.65 – ident: ref34 doi: 10.1109/ICCV48922.2021.01505 – ident: ref54 doi: 10.1177/001316446002000104 – year: 2022 ident: ref35 article-title: GOSS: Towards generalized open-set semantic segmentation publication-title: arXiv:2203.12116 contributor: fullname: Hong – ident: ref6 doi: 10.1109/TPAMI.2016.2572683 – start-page: 8024 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref53 article-title: Pytorch: An imperative style, high-performance deep learning library contributor: fullname: Paszke – ident: ref9 doi: 10.1109/TPAMI.2021.3059968 – ident: ref42 doi: 10.1007/978-3-642-33786-4_2 – ident: ref56 doi: 10.1109/TPAMI.2020.2983686 – ident: ref1 doi: 10.1109/TGRS.2018.2871782 – ident: ref37 doi: 10.1109/TPAMI.2009.96 – ident: ref23 doi: 10.1109/ACCESS.2020.3042254 – ident: ref30 doi: 10.1109/CVPR.2016.173 – ident: ref46 doi: 10.2352/ISSN.2169-2629.2018.26.1 – ident: ref45 doi: 10.1109/ICPR.2016.7900064 – ident: ref39 doi: 10.1109/TPAMI.2012.120 – ident: ref48 doi: 10.1109/ACCESS.2021.3065246 – ident: ref44 doi: 10.1109/TIP.2015.2451011 – ident: ref5 doi: 10.1109/JSTARS.2018.2865187 – ident: ref11 doi: 10.1117/12.908829 – ident: ref25 doi: 10.1109/JSTARS.2021.3119286 – ident: ref55 doi: 10.1109/CVPR42600.2020.01398 – ident: ref22 doi: 10.1109/ICIP46576.2022.9897407 – ident: ref41 doi: 10.1109/ICIP.2014.7025886 |
SSID | ssj0000816957 |
Score | 2.3505816 |
Snippet | Open-set segmentation has caught the community's attention only in the last few years, and it is a growing and active research area with many challenges ahead.... Open-set segmentation has caught the community’s attention only in the last few years, and it is a growing and active research area with many challenges ahead.... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 20232 |
SubjectTerms | clustering Clustering methods Consistency Convolutional neural network Convolutional neural networks Datasets Mixtures open-set Photogrammetry Pixels Prediction algorithms Principal component analysis Principal components analysis Remote sensing segmentation semantic consistency Semantic segmentation Semantics Statistical distributions superpixel Task analysis Training |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYt6AQD4qOIQEEZGAlNHH92K6FRJ5aAxGY5sY06UKq2keDf40vSqoiBhdWK5Pi92HdnXZ5D6FYT71as0BGxCYsIwIZERV0kmTXOaWkNgR-FpwV_ehWPE8DkbFt9QU1YiwduhRtixmOrU0GNSwk1XFZEY8c1lcT50ZbzGYudZKo5g0XCJOUdZiiJ5XCcZX5FPiHE5D5NmU_k2Q9X1BD7uxYrv87lxtnkx-ioixLDcft2J2jPzk_R4Q478AyN8rrIRmEOhetvYVEv7HIx-_SeLvRhaNjeFVgTFvbdazerwqYz5woi5K8-esknz9k06hohRFVK5ToinDpmKTdecEFKUnLmtU-8kImAupaSOwdkdFxSXlW8ZKWOmcGp085vSF2l56g3_5jbCxQCiJaz2ImSScKolt5SjNDYaWNTg02A7jaaqEXLu1BNnhBL1UqoQELVSRigB9Bt-yjAqpsBb0LVmVD9ZcIA9UH1nfmAqBMnARpszKC6nbVSGACHUJeLL_9j7it0AOtpL1UGqLde1vYa7a9MfdN8Ud8OvcuY priority: 102 providerName: Directory of Open Access Journals |
Title | FuSC: Fusing Superpixels for Improved Semantic Consistency |
URI | https://ieeexplore.ieee.org/document/10418501 https://www.proquest.com/docview/2926267692 https://doaj.org/article/2670ea385df345d79c4a2f7a594f3853 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xWGDgjSiPKgMjgTR-xWxQWjEgloDEZjnxGTFQKkok-Pf4nFCBEANbZCWK810u98jddwDHlgezgoVNOQ5kyolsqKiFT7VE573V6Dg1Cl-X6vahuBoRTU4674VBxFh8hqd0GP_lu5e6oVRZ0HCiWqFurUWli7ZZa55QoQkSWqiOWWiQ6bOL4TA8RIgBc37KmAyxu_xhfSJJfzdV5denONqX8fo_d7YBa50jmVy0kt-EBZxsweo3esFtOB835fA8GVNt-2NSNlN8nT69B2OYBE81adMJ6JISnwO8T3USh3fOyIn-2IH78ehueJ12sxLSmgn9lnIlvEShXJBJwSteKRnEMwhYDwoqfamU90SenldC1bWqZGUz6XLmrQ86a2u2C0uTlwnuQUJctUpmvqik5lJYHYQpuci8dchc7npw8oWhmbaUGCaGEpk2LeSGIDcd5D24JJznpxKfdVwIAJpOPUwuVYaWFcJ5xoVTuuY298oKzX1YZT3YIdC_3a_FuweHX2IznfLNTE4ciFS6m-__cdkBrNAW21TKISy9vTZ4BIsz1_RjUN6H5VF5eXXTj6_YJ3ePzDA |
link.rule.ids | 315,782,786,798,866,2108,4030,27644,27934,27935,27936,54770,54945 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7R5EB7aCkPNS1QHzhicLwvLzcIiVI1cDFI3FZr7yzKgSRKsNT---7YTgRCHHqzVra8_sbjeXjmG4ATy4NZwczGHPsy5kQ2lJXCx1qi895qdJwahce5un3IrodEkxNvemEQsS4-wzM6rP_lu3lZUaosaDhRrVC3VjeENVx0oDvMr64nm6QKTZHQQrXsQv1En18OBuFBQhyY8jPGZIjf5SsLVBP1t5NV3nyOaxsz-vKfu9uBz60zGV020v8KWzjbhU8vKAb34GJU5YOLaET17Y9RXi1wuZj-CQYxCt5q1KQU0EU5PgWIp2VUD_BckSP9dx_uR8O7wThu5yXEJRP6OeZKeIlCuSCXjBe8UDKIqB_w7mdU_lIo74lAPS2EKktVyMIm0qXMWx_01pbsADqz-Qy_QUR8tUomPiuk5lJYHQQquUi8dchc6npwusbQLBpaDFOHE4k2DeSGIDct5D24Ipw3pxKndb0QADStiphUqgQty4TzjAundMlt6pUVmvuwynqwT6C_uF-Ddw8O12IzrQKuTEo8iFS-m35_57KfsD2-u5mYya_b3z_gI223Sa0cQud5WeERfFi56rh9xf4BSSPOFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FuSC%3A+Fusing+Superpixels+for+Improved+Semantic+Consistency&rft.jtitle=IEEE+access&rft.au=Nunes%2C+Ian+Monteiro&rft.au=Pereira%2C+Matheus+B.&rft.au=Oliveira%2C+Hugo&rft.au=Santos%2C+Jefersson+Alex+Dos&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=20232&rft.epage=20250&rft_id=info:doi/10.1109%2FACCESS.2024.3360936&rft.externalDocID=10418501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |