FuSC: Fusing Superpixels for Improved Semantic Consistency

Open-set segmentation has caught the community's attention only in the last few years, and it is a growing and active research area with many challenges ahead. To better identify open-set pixels, we address two known issues by improving data representation and ensuring semantic consistency in o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; pp. 20232 - 20250
Main Authors: Nunes, Ian Monteiro, Pereira, Matheus B., Oliveira, Hugo, Santos, Jefersson Alex Dos
Format: Journal Article
Language:English
Published: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Open-set segmentation has caught the community's attention only in the last few years, and it is a growing and active research area with many challenges ahead. To better identify open-set pixels, we address two known issues by improving data representation and ensuring semantic consistency in open-set predictions. First, we present a method called Open Gaussian Mixture of Models (OpenGMM) that allows for multimodal statistical distributions in known class pixels using a Gaussian Mixture of Models instead of unimodal approaches, like Principal Component Analysis. The second approach improved semantic consistency by applying a post-processing technique that uses superpixels to enforce homogeneous regions to have similar predictions, rectifying erroneously classified pixels within these regions and providing better delineation of object borders. We also developed a novel superpixel method called Fusing Superpixels for Improved Semantic Consistency (FuSC) that produced more homogeneous superpixels and enhanced, even more, the open-set segmentation prediction. We applied the proposed approaches to well-known remote sensing datasets with labeled ground truth for semantic segmentation tasks. The proposed methods improved the highest AUROC quantitative results for the International Society for Photogrammetry and Remote Sensing (ISPRS) Vaihingen and Potsdam datasets. Using FuSC, we achieved novel open-set state-of-the-art results for both datasets, improving AUROC results from 0.850 to 0.880 (3.53%) for Vaihingen and 0.764 to 0.797 (4.32%) for Potsdam datasets. The official implementation is available at: https://github.com/iannunes/FuSC .
AbstractList Open-set segmentation has caught the community's attention only in the last few years, and it is a growing and active research area with many challenges ahead. To better identify open-set pixels, we address two known issues by improving data representation and ensuring semantic consistency in open-set predictions. First, we present a method called Open Gaussian Mixture of Models (OpenGMM) that allows for multimodal statistical distributions in known class pixels using a Gaussian Mixture of Models instead of unimodal approaches, like Principal Component Analysis. The second approach improved semantic consistency by applying a post-processing technique that uses superpixels to enforce homogeneous regions to have similar predictions, rectifying erroneously classified pixels within these regions and providing better delineation of object borders. We also developed a novel superpixel method called Fusing Superpixels for Improved Semantic Consistency (FuSC) that produced more homogeneous superpixels and enhanced, even more, the open-set segmentation prediction. We applied the proposed approaches to well-known remote sensing datasets with labeled ground truth for semantic segmentation tasks. The proposed methods improved the highest AUROC quantitative results for the International Society for Photogrammetry and Remote Sensing (ISPRS) Vaihingen and Potsdam datasets. Using FuSC, we achieved novel open-set state-of-the-art results for both datasets, improving AUROC results from 0.850 to 0.880 (3.53%) for Vaihingen and 0.764 to 0.797 (4.32%) for Potsdam datasets. The official implementation is available at: https://github.com/iannunes/FuSC.
Author Oliveira, Hugo
Santos, Jefersson Alex Dos
Pereira, Matheus B.
Nunes, Ian Monteiro
Author_xml – sequence: 1
  givenname: Ian Monteiro
  orcidid: 0000-0003-3445-4169
  surname: Nunes
  fullname: Nunes, Ian Monteiro
  email: ian.nunes@ibge.gov.br
  organization: Department of Statistics (DPE), Brazilian Institute of Geography and Statistics (IBGE), Rio de Janeiro, Brazil
– sequence: 2
  givenname: Matheus B.
  orcidid: 0000-0002-2471-2358
  surname: Pereira
  fullname: Pereira, Matheus B.
  organization: Department of Computer Science (DCC), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
– sequence: 3
  givenname: Hugo
  orcidid: 0000-0001-8760-9801
  surname: Oliveira
  fullname: Oliveira, Hugo
  organization: Institute of Mathematics and Statistics (IME), University of São Paulo (USP), São Paulo, Brazil
– sequence: 4
  givenname: Jefersson Alex Dos
  surname: Santos
  fullname: Santos, Jefersson Alex Dos
  organization: Department of Computer Science (DCC), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
BookMark eNpNUE1LAzEQDaKgVn-BHhY8t-Y7G29lsVoQPKyeQzY7kS3tpiZdsf_e6BbpXGZ4zHvz5l2i0z70gNANwTNCsL6fV9VjXc8opnzGmMSayRN0QYnUUyaYPD2az9F1Siucq8yQUBfoYTHU1UOxGFLXfxT1sIW47b5hnQofYrHcbGP4graoYWP7XeeKKvSpSzvo3f4KnXm7TnB96BP0vnh8q56nL69Py2r-MnVM6N2UK-ElCNU24Ere8EZJaIBoaEmJOWWN8p4LSmkjlHOqkY3FsqXMWy9UaR2boOWo2wa7MtvYbWzcm2A78weE-GFszN7WYKhUGCwrResZF63SjlvqlRWa-4yyrHU3auW_PgdIO7MKQ-yzfUM1lZkvNc1bbNxyMaQUwf9fJdj8Zm7GzM1v5uaQeWbdjqwOAI4YnJQCE_YDKrZ9_Q
CODEN IAECCG
Cites_doi 10.1109/ICME46284.2020.9102712
10.1109/TPAMI.2016.2644615
10.1007/s10994-021-06027-1
10.1109/CVPR42600.2020.01349
10.1109/CVPR.2017.243
10.1007/978-1-4615-7566-5
10.1109/ICIP.2015.7350818
10.1007/978-3-540-88693-8_52
10.1109/ICPR48806.2021.9411968
10.1109/CVPR46437.2021.01225
10.1109/CVPR.2011.5995323
10.4324/9781315009247
10.1007/978-3-030-13469-3_16
10.1109/IPTA50016.2020.9286622
10.1109/LAGIRS48042.2020.9165597
10.1007/978-3-540-28650-9_4
10.1109/TIT.1982.1056489
10.1587/transinf.2019EDP7322
10.5244/C.30.87
10.1109/CVPR.2015.7298741
10.1007/978-3-319-24574-4_28
10.1080/08839514.2022.2032924
10.1109/TPAMI.2020.2981604
10.1016/j.jvcir.2019.102572
10.1023/B:VISI.0000022288.19776.77
10.1109/CVPRW.2017.85
10.1109/ICIP42928.2021.9506672
10.1109/ICVRV.2014.65
10.1109/ICCV48922.2021.01505
10.1177/001316446002000104
10.1109/TPAMI.2016.2572683
10.1109/TPAMI.2021.3059968
10.1007/978-3-642-33786-4_2
10.1109/TPAMI.2020.2983686
10.1109/TGRS.2018.2871782
10.1109/TPAMI.2009.96
10.1109/ACCESS.2020.3042254
10.1109/CVPR.2016.173
10.2352/ISSN.2169-2629.2018.26.1
10.1109/ICPR.2016.7900064
10.1109/TPAMI.2012.120
10.1109/ACCESS.2021.3065246
10.1109/TIP.2015.2451011
10.1109/JSTARS.2018.2865187
10.1117/12.908829
10.1109/JSTARS.2021.3119286
10.1109/CVPR42600.2020.01398
10.1109/ICIP46576.2022.9897407
10.1109/ICIP.2014.7025886
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3360936
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ESBDL
  name: IEEE Xplore Open Access Journals
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 20250
ExternalDocumentID oai_doaj_org_article_2670ea385df345d79c4a2f7a594f3853
10_1109_ACCESS_2024_3360936
10418501
Genre orig-research
GrantInformation_xml – fundername: Serrapilheira Institute
  grantid: R-2011-37776
  funderid: 10.13039/501100013275
– fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
  funderid: 10.13039/501100004901
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  grantid: 2020/06744-5
  funderid: 10.13039/501100001807
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  funderid: 10.13039/501100002322
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-475f6e57dbec84b4b76ebe19ed180423b7ff45222b57cc7b6ba06d23faf578ac3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:15:04 EDT 2024
Thu Oct 10 17:47:25 EDT 2024
Fri Aug 23 01:01:53 EDT 2024
Wed Jun 26 19:27:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-475f6e57dbec84b4b76ebe19ed180423b7ff45222b57cc7b6ba06d23faf578ac3
ORCID 0000-0001-8760-9801
0000-0002-2471-2358
0000-0003-3445-4169
OpenAccessLink https://ieeexplore.ieee.org/document/10418501
PQID 2926267692
PQPubID 4845423
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_2670ea385df345d79c4a2f7a594f3853
ieee_primary_10418501
crossref_primary_10_1109_ACCESS_2024_3360936
proquest_journals_2926267692
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Mahalanobis (ref21) 1936
ref12
ref56
ref15
ref14
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref18
ref51
ref50
Prasad (ref32) 2020
ref46
ref45
ref48
ref47
ref42
Paszke (ref53)
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref38
Verelst (ref19) 2019
ref24
ref23
ref26
ref25
ref20
Morerio (ref40)
ref22
ref28
ref27
ref29
Hong (ref35) 2022
Konstantinidis (ref3) 2017
References_xml – ident: ref33
  doi: 10.1109/ICME46284.2020.9102712
– ident: ref8
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref13
  doi: 10.1007/s10994-021-06027-1
– ident: ref50
  doi: 10.1109/CVPR42600.2020.01349
– volume-title: IEEE GRSS Data Fusion Challenge
  year: 2020
  ident: ref32
  contributor:
    fullname: Prasad
– ident: ref51
  doi: 10.1109/CVPR.2017.243
– ident: ref16
  doi: 10.1007/978-1-4615-7566-5
– ident: ref27
  doi: 10.1109/ICIP.2015.7350818
– ident: ref36
  doi: 10.1007/978-3-540-88693-8_52
– ident: ref18
  doi: 10.1109/ICPR48806.2021.9411968
– ident: ref24
  doi: 10.1109/CVPR46437.2021.01225
– ident: ref38
  doi: 10.1109/CVPR.2011.5995323
– ident: ref2
  doi: 10.4324/9781315009247
– ident: ref4
  doi: 10.1007/978-3-030-13469-3_16
– ident: ref26
  doi: 10.1109/IPTA50016.2020.9286622
– ident: ref31
  doi: 10.1109/LAGIRS48042.2020.9165597
– ident: ref15
  doi: 10.1007/978-3-540-28650-9_4
– ident: ref49
  doi: 10.1109/TIT.1982.1056489
– ident: ref47
  doi: 10.1587/transinf.2019EDP7322
– ident: ref52
  doi: 10.5244/C.30.87
– year: 2017
  ident: ref3
  article-title: Building detection for monitoring of urban changes
  contributor:
    fullname: Konstantinidis
– ident: ref43
  doi: 10.1109/CVPR.2015.7298741
– ident: ref7
  doi: 10.1007/978-3-319-24574-4_28
– volume-title: On the Generalized Distance in Statistics
  year: 1936
  ident: ref21
  contributor:
    fullname: Mahalanobis
– ident: ref10
  doi: 10.1080/08839514.2022.2032924
– start-page: 1
  volume-title: Proc. 17th Int. Conf. Inf. Fusion
  ident: ref40
  article-title: A generative superpixel method
  contributor:
    fullname: Morerio
– ident: ref12
  doi: 10.1109/TPAMI.2020.2981604
– year: 2019
  ident: ref19
  article-title: Generating superpixels using deep image representations
  publication-title: arXiv:1903.04586
  contributor:
    fullname: Verelst
– ident: ref20
  doi: 10.1016/j.jvcir.2019.102572
– ident: ref17
  doi: 10.1023/B:VISI.0000022288.19776.77
– ident: ref29
  doi: 10.1109/CVPRW.2017.85
– ident: ref14
  doi: 10.1109/ICIP42928.2021.9506672
– ident: ref28
  doi: 10.1109/ICVRV.2014.65
– ident: ref34
  doi: 10.1109/ICCV48922.2021.01505
– ident: ref54
  doi: 10.1177/001316446002000104
– year: 2022
  ident: ref35
  article-title: GOSS: Towards generalized open-set semantic segmentation
  publication-title: arXiv:2203.12116
  contributor:
    fullname: Hong
– ident: ref6
  doi: 10.1109/TPAMI.2016.2572683
– start-page: 8024
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref53
  article-title: Pytorch: An imperative style, high-performance deep learning library
  contributor:
    fullname: Paszke
– ident: ref9
  doi: 10.1109/TPAMI.2021.3059968
– ident: ref42
  doi: 10.1007/978-3-642-33786-4_2
– ident: ref56
  doi: 10.1109/TPAMI.2020.2983686
– ident: ref1
  doi: 10.1109/TGRS.2018.2871782
– ident: ref37
  doi: 10.1109/TPAMI.2009.96
– ident: ref23
  doi: 10.1109/ACCESS.2020.3042254
– ident: ref30
  doi: 10.1109/CVPR.2016.173
– ident: ref46
  doi: 10.2352/ISSN.2169-2629.2018.26.1
– ident: ref45
  doi: 10.1109/ICPR.2016.7900064
– ident: ref39
  doi: 10.1109/TPAMI.2012.120
– ident: ref48
  doi: 10.1109/ACCESS.2021.3065246
– ident: ref44
  doi: 10.1109/TIP.2015.2451011
– ident: ref5
  doi: 10.1109/JSTARS.2018.2865187
– ident: ref11
  doi: 10.1117/12.908829
– ident: ref25
  doi: 10.1109/JSTARS.2021.3119286
– ident: ref55
  doi: 10.1109/CVPR42600.2020.01398
– ident: ref22
  doi: 10.1109/ICIP46576.2022.9897407
– ident: ref41
  doi: 10.1109/ICIP.2014.7025886
SSID ssj0000816957
Score 2.3505816
Snippet Open-set segmentation has caught the community's attention only in the last few years, and it is a growing and active research area with many challenges ahead....
Open-set segmentation has caught the community’s attention only in the last few years, and it is a growing and active research area with many challenges ahead....
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 20232
SubjectTerms clustering
Clustering methods
Consistency
Convolutional neural network
Convolutional neural networks
Datasets
Mixtures
open-set
Photogrammetry
Pixels
Prediction algorithms
Principal component analysis
Principal components analysis
Remote sensing
segmentation
semantic consistency
Semantic segmentation
Semantics
Statistical distributions
superpixel
Task analysis
Training
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYt6AQD4qOIQEEZGAlNHH92K6FRJ5aAxGY5sY06UKq2keDf40vSqoiBhdWK5Pi92HdnXZ5D6FYT71as0BGxCYsIwIZERV0kmTXOaWkNgR-FpwV_ehWPE8DkbFt9QU1YiwduhRtixmOrU0GNSwk1XFZEY8c1lcT50ZbzGYudZKo5g0XCJOUdZiiJ5XCcZX5FPiHE5D5NmU_k2Q9X1BD7uxYrv87lxtnkx-ioixLDcft2J2jPzk_R4Q478AyN8rrIRmEOhetvYVEv7HIx-_SeLvRhaNjeFVgTFvbdazerwqYz5woi5K8-esknz9k06hohRFVK5ToinDpmKTdecEFKUnLmtU-8kImAupaSOwdkdFxSXlW8ZKWOmcGp085vSF2l56g3_5jbCxQCiJaz2ImSScKolt5SjNDYaWNTg02A7jaaqEXLu1BNnhBL1UqoQELVSRigB9Bt-yjAqpsBb0LVmVD9ZcIA9UH1nfmAqBMnARpszKC6nbVSGACHUJeLL_9j7it0AOtpL1UGqLde1vYa7a9MfdN8Ud8OvcuY
  priority: 102
  providerName: Directory of Open Access Journals
Title FuSC: Fusing Superpixels for Improved Semantic Consistency
URI https://ieeexplore.ieee.org/document/10418501
https://www.proquest.com/docview/2926267692
https://doaj.org/article/2670ea385df345d79c4a2f7a594f3853
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xWGDgjSiPKgMjgTR-xWxQWjEgloDEZjnxGTFQKkok-Pf4nFCBEANbZCWK810u98jddwDHlgezgoVNOQ5kyolsqKiFT7VE573V6Dg1Cl-X6vahuBoRTU4674VBxFh8hqd0GP_lu5e6oVRZ0HCiWqFurUWli7ZZa55QoQkSWqiOWWiQ6bOL4TA8RIgBc37KmAyxu_xhfSJJfzdV5denONqX8fo_d7YBa50jmVy0kt-EBZxsweo3esFtOB835fA8GVNt-2NSNlN8nT69B2OYBE81adMJ6JISnwO8T3USh3fOyIn-2IH78ehueJ12sxLSmgn9lnIlvEShXJBJwSteKRnEMwhYDwoqfamU90SenldC1bWqZGUz6XLmrQ86a2u2C0uTlwnuQUJctUpmvqik5lJYHYQpuci8dchc7npw8oWhmbaUGCaGEpk2LeSGIDcd5D24JJznpxKfdVwIAJpOPUwuVYaWFcJ5xoVTuuY298oKzX1YZT3YIdC_3a_FuweHX2IznfLNTE4ciFS6m-__cdkBrNAW21TKISy9vTZ4BIsz1_RjUN6H5VF5eXXTj6_YJ3ePzDA
link.rule.ids 315,782,786,798,866,2108,4030,27644,27934,27935,27936,54770,54945
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7R5EB7aCkPNS1QHzhicLwvLzcIiVI1cDFI3FZr7yzKgSRKsNT---7YTgRCHHqzVra8_sbjeXjmG4ATy4NZwczGHPsy5kQ2lJXCx1qi895qdJwahce5un3IrodEkxNvemEQsS4-wzM6rP_lu3lZUaosaDhRrVC3VjeENVx0oDvMr64nm6QKTZHQQrXsQv1En18OBuFBQhyY8jPGZIjf5SsLVBP1t5NV3nyOaxsz-vKfu9uBz60zGV020v8KWzjbhU8vKAb34GJU5YOLaET17Y9RXi1wuZj-CQYxCt5q1KQU0EU5PgWIp2VUD_BckSP9dx_uR8O7wThu5yXEJRP6OeZKeIlCuSCXjBe8UDKIqB_w7mdU_lIo74lAPS2EKktVyMIm0qXMWx_01pbsADqz-Qy_QUR8tUomPiuk5lJYHQQquUi8dchc6npwusbQLBpaDFOHE4k2DeSGIDct5D24Ipw3pxKndb0QADStiphUqgQty4TzjAundMlt6pUVmvuwynqwT6C_uF-Ddw8O12IzrQKuTEo8iFS-m35_57KfsD2-u5mYya_b3z_gI223Sa0cQud5WeERfFi56rh9xf4BSSPOFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FuSC%3A+Fusing+Superpixels+for+Improved+Semantic+Consistency&rft.jtitle=IEEE+access&rft.au=Nunes%2C+Ian+Monteiro&rft.au=Pereira%2C+Matheus+B.&rft.au=Oliveira%2C+Hugo&rft.au=Santos%2C+Jefersson+Alex+Dos&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=20232&rft.epage=20250&rft_id=info:doi/10.1109%2FACCESS.2024.3360936&rft.externalDocID=10418501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon