Conditional heavy-tail behavior with applications to precipitation and river flow extremes

This article deals with the right-tail behavior of a response distribution F Y conditional on a regressor vector X = x restricted to the heavy-tailed case of Pareto-type conditional distributions F Y ( y | x ) = P ( Y ≤ y | X = x ) , with heaviness of the right tail characterized by the conditional...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic environmental research and risk assessment Vol. 31; no. 5; pp. 1155 - 1169
Main Authors: Kinsvater, Paul, Fried, Roland
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-07-2017
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article deals with the right-tail behavior of a response distribution F Y conditional on a regressor vector X = x restricted to the heavy-tailed case of Pareto-type conditional distributions F Y ( y | x ) = P ( Y ≤ y | X = x ) , with heaviness of the right tail characterized by the conditional extreme value index γ ( x ) > 0 . We particularly focus on testing the hypothesis H 0 , t a i l : γ ( x ) = γ 0 of constant tail behavior for some γ 0 > 0 and all possible x . When considering x as a time index, the term trend analysis is commonly used. In the recent past several such trend analyses in extreme value data have been published, mostly focusing on time-varying modeling of location or scale parameters of the response distribution. In many such environmental studies a simple test against trend based on Kendall’s tau statistic is applied. This test is powerful when the center of the conditional distribution F Y ( y | x ) changes monotonically in x , for instance, in a simple location model μ ( x ) = μ 0 + x · μ 1 , x = ( 1 , x ) ′ , but the test is rather insensitive against monotonic tail behavior, say, γ ( x ) = η 0 + x · η 1 . This has to be considered, since for many environmental applications the main interest is on the tail rather than the center of a distribution. Our work is motivated by this problem and it is our goal to demonstrate the opportunities and the limits of detecting and estimating non-constant conditional heavy-tail behavior with regard to applications from hydrology. We present and compare four different procedures by simulations and illustrate our findings on real data from hydrology: weekly maxima of hourly precipitation from France and monthly maximal river flows from Germany.
AbstractList This article deals with the right-tail behavior of a response distribution F Y conditional on a regressor vector X = x restricted to the heavy-tailed case of Pareto-type conditional distributions F Y ( y | x ) = P ( Y ≤ y | X = x ) , with heaviness of the right tail characterized by the conditional extreme value index γ ( x ) > 0 . We particularly focus on testing the hypothesis H 0 , t a i l : γ ( x ) = γ 0 of constant tail behavior for some γ 0 > 0 and all possible x . When considering x as a time index, the term trend analysis is commonly used. In the recent past several such trend analyses in extreme value data have been published, mostly focusing on time-varying modeling of location or scale parameters of the response distribution. In many such environmental studies a simple test against trend based on Kendall’s tau statistic is applied. This test is powerful when the center of the conditional distribution F Y ( y | x ) changes monotonically in x , for instance, in a simple location model μ ( x ) = μ 0 + x · μ 1 , x = ( 1 , x ) ′ , but the test is rather insensitive against monotonic tail behavior, say, γ ( x ) = η 0 + x · η 1 . This has to be considered, since for many environmental applications the main interest is on the tail rather than the center of a distribution. Our work is motivated by this problem and it is our goal to demonstrate the opportunities and the limits of detecting and estimating non-constant conditional heavy-tail behavior with regard to applications from hydrology. We present and compare four different procedures by simulations and illustrate our findings on real data from hydrology: weekly maxima of hourly precipitation from France and monthly maximal river flows from Germany.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) This article deals with the right-tail behavior of a response distribution ... conditional on a regressor vector ... restricted to the heavy-tailed case of Pareto-type conditional distributions ..., with heaviness of the right tail characterized by the conditional extreme value index ... We particularly focus on testing the hypothesis ... of constant tail behavior for some ... and all possible ... When considering ... as a time index, the term trend analysis is commonly used. In the recent past several such trend analyses in extreme value data have been published, mostly focusing on time-varying modeling of location or scale parameters of the response distribution. In many such environmental studies a simple test against trend based on Kendall's tau statistic is applied. This test is powerful when the center of the conditional distribution ... changes monotonically in ..., for instance, in a simple location model ..., ..., but the test is rather insensitive against monotonic tail behavior, say, ... This has to be considered, since for many environmental applications the main interest is on the tail rather than the center of a distribution. Our work is motivated by this problem and it is our goal to demonstrate the opportunities and the limits of detecting and estimating non-constant conditional heavy-tail behavior with regard to applications from hydrology. We present and compare four different procedures by simulations and illustrate our findings on real data from hydrology: weekly maxima of hourly precipitation from France and monthly maximal river flows from Germany.
Author Fried, Roland
Kinsvater, Paul
Author_xml – sequence: 1
  givenname: Paul
  orcidid: 0000-0002-5338-6424
  surname: Kinsvater
  fullname: Kinsvater, Paul
  email: kinsvater@statistik.tu-dortmund.de
  organization: Department of Statistics, TU Dortmund
– sequence: 2
  givenname: Roland
  surname: Fried
  fullname: Fried, Roland
  organization: Department of Statistics, TU Dortmund
BookMark eNp1kD1PwzAQhi1UJAr0B7BZYjac4ziOR1TxJVVigYXFcpILNUrjYLst_fekFCEWpjudnveV7jklk973SMgFhysOoK4jQK4UA14wLnLJ4IhMeS4KJjKpJ797DidkFqOrxowUWnOYkte57xuXnO9tR5doNzuWrOtohUu7cT7QrUtLaoehc7XdY5EmT4eAtRtc-r5Q2zc0uA0G2nZ-S_EzBVxhPCfHre0izn7mGXm5u32eP7DF0_3j_GbBaiF1YgKKEvPalhUvM8Sm0SBajUKVoCxvbaVbngnJrS2FlKUQmdJcgVYFClEoLs7I5aF3CP5jjTGZd78O4z_RcA1allJnxUjxA1UHH2PA1gzBrWzYGQ5mb9EcLJrRotlbNDBmskMmjmz_huFP87-hL57QdnE
CitedBy_id crossref_primary_10_1002_hyp_13359
crossref_primary_10_1061__ASCE_HE_1943_5584_0001620
crossref_primary_10_1111_anzs_12357
Cites_doi 10.1214/aos/1176343240
10.1002/env.865
10.2307/1913643
10.1029/96WR03847
10.1080/01621459.2013.820134
10.1198/016214506000000799
10.1002/env.1041
10.4310/SII.2015.v8.n1.a3
10.1007/s00477-006-0047-4
10.1111/rssb.12099
10.1016/j.jhydrol.2014.06.040
10.3150/08-BEJ157
10.1016/0022-1694(73)90051-6
10.3982/ECTA7880
10.1007/s00477-015-1180-8
10.1007/s00477-006-0068-z
10.1016/j.jhydrol.2016.01.032
10.1016/S0022-1694(01)00594-7
10.1198/016214506000001095
10.1007/s10687-014-0207-8
10.1007/s00477-013-0705-2
10.1214/aos/1176343247
10.1002/hyp.8179
10.1007/s10687-010-0100-z
10.1080/01621459.1978.10480104
10.1080/02664763.2015.1100589
10.1017/CBO9780511754098
10.1007/978-1-4757-2545-2
10.1007/0-387-34471-3
10.1007/s00477-015-1072-y
10.1016/j.jhydrol.2013.01.007
10.1175/JCLI-D-12-00836.1
10.1080/01621459.2012.716382
10.1111/j.1467-9876.2005.00479.x
10.1198/jasa.2009.tm08458
10.1007/s00477-015-1046-0
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7ST
7XB
88I
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L6V
M2P
M7S
PATMY
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
S0W
SOI
DOI 10.1007/s00477-016-1345-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Environment Abstracts
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList
ProQuest Central Student
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Physics
Computer Science
Environmental Sciences
EISSN 1436-3259
EndPage 1169
ExternalDocumentID 10_1007_s00477_016_1345_0
GrantInformation_xml – fundername: DFG SFB 823
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0VY
123
1N0
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67M
67Z
6NX
7XC
88I
8AO
8FE
8FG
8FH
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDZT
ABECU
ABEOS
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FIL
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
L8X
LAS
LLZTM
M2P
M4Y
M7S
MA-
ML.
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9J
OAM
P19
P2P
PATMY
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z86
Z8M
Z8S
Z8T
Z8U
Z8W
ZMTXR
~02
~A9
0R~
AACDK
AAEOY
AAHBH
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACZOJ
AEFQL
AEMSY
AFBBN
AFEUZ
AGQEE
AGRTI
AIGIU
CITATION
H13
7ST
7XB
8FD
8FK
C1K
FR3
KR7
PQEST
PQUKI
Q9U
SOI
ID FETCH-LOGICAL-c359t-3068e4ca8b182eedd903f9e37807a1fab9f12351aa8355833279170976e336713
IEDL.DBID AEJHL
ISSN 1436-3240
IngestDate Sun Nov 24 20:50:08 EST 2024
Thu Nov 21 21:22:24 EST 2024
Sat Dec 16 12:00:39 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Heavy tails
Relative excesses
Precipitation
Flood frequency
Extreme value index
Regression model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-3068e4ca8b182eedd903f9e37807a1fab9f12351aa8355833279170976e336713
ORCID 0000-0002-5338-6424
OpenAccessLink https://eldorado.tu-dortmund.de/bitstream/2003/35131/1/DP_3516_SFB823_Kinsvater_Fried.pdf
PQID 1909585926
PQPubID 31669
PageCount 15
ParticipantIDs proquest_journals_1909585926
crossref_primary_10_1007_s00477_016_1345_0
springer_journals_10_1007_s00477_016_1345_0
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Stochastic environmental research and risk assessment
PublicationTitleAbbrev Stoch Environ Res Risk Assess
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References WangHJLiDEstimation of extreme conditional quantiles through power transformationJ Am Stat Assoc2013108503106210741:CAS:528:DC%2BC2cXot1Sju7k%3D10.1080/01621459.2013.820134
Angrist J, Chernozhukov V, Fernández-Val I (2006) Quantile regression under misspecification, with an application to the US wage structure. Econometrica 74(2):539–563. http://www.jstor.org/stable/3598810
Koenker R, Bassett JG (1978) Regression quantiles. Econometrica 46(1):33–50. http://www.jstor.org/stable/1913643
KojadinovicINaveauPNonparametric tests for change-point detection in the distribution of block maxima based on probability weighted momentsArXiv2015150706121
BucherAKinsvaterPKojadinovicIDetecting breaks in the dependence of multivariate extreme-value distributionsArXiv2015150500954
Dierckx G (2011) Trends and change points in the tail behaviour of a heavy tailed distribution. In: Proceedings of 58th world statistical congress (ISI2011), Dublin. pp 290–299
GardesLGirardSConditional extremes from heavy-tailed distributions: an application to the estimation of extreme rainfall return levelsExtremes201013217720410.1007/s10687-010-0100-z
WeissmanIEstimation of parameters and large quantiles based on the k largest observationsJ Am Stat Assoc197873364812815
BeirlantJGoegebeurYSegersJTeugelsJStatistics of extremes: theory and applications2006HobokenWiley
Mediero L, Santillán D, Garrote L, Granados A (2014) Detection and attribution of trends in magnitude, frequency and timing of floods in spain. J Hydrol 517:1072–1088. doi:10.1016/j.jhydrol.2014.06.040; http://www.sciencedirect.com/science/article/pii/S00221694140
Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259(1–4):254–271. doi:10.1016/S0022-1694(01)00594-7, http://www.sciencedirect.com/science/article/pii/S00221694010
HillBMA simple general approach to inference about the tail of a distributionAnn Stat1975351163117410.1214/aos/1176343247
Mu Y, He X (2007) Power transformation toward a linear regression quantile. J Am Stat Assoc 102(477):269–279. http://www.jstor.org/stable/27639838url
KendallMGRank correlation methods1948LondonCharles Griffin
Teugels JL, Vanroelen G (2004) Box-cox transformations and heavy-tailed distributions. J Appl Probab 41:213–227. http://www.jstor.org/stable/3215978
ChernozhukovVFernndez-ValIGalichonAQuantile and probability curves without crossingEconometrica20107831093112510.3982/ECTA7880
DupuisDJSunYWangHJDetecting change-points in extremesStat Interface201581193110.4310/SII.2015.v8.n1.a3
Chebana F, Ouarda TB, Duong TC (2013) Testing for multivariate trends in hydrologic frequency analysis. J Hydrol 486:519–530. doi:10.1016/j.jhydrol.2013.01.007; http://www.sciencedirect.com/science/article/pii/S00221694130
KoenkerRQuantile regression2005CambridgeCambridge University Press10.1017/CBO9780511754098
EinmahlJHJde HaanLZhouCStatistics of heteroscedastic extremesJ R Stat Soc Ser B2016781315110.1111/rssb.12099
Rulfov Z, Buishand A, Roth M, Kysel J (2016) A two-component generalized extreme value distribution for precipitation frequency analysis. J Hydrol 534:659–668. doi:10.1016/j.jhydrol.2016.01.032; http://www.sciencedirect.com/science/article/pii/S0022169416000500
WangHJLiDHeXEstimation of high conditional quantiles for heavy-tailed distributionsJ Am Stat Assoc2012107500145314641:CAS:528:DC%2BC3sXms1Chug%3D%3D10.1080/01621459.2012.716382
GomesMIPestanaDA sturdy reduced-bias extreme quantile (var) estimatorJ Am Stat Assoc20071024772802921:CAS:528:DC%2BD2sXisVyqsLo%3D10.1198/016214506000000799
SilvaATNaghettiniMPortelaMMOn some aspects of peaks-over-threshold modeling of floods under nonstationarity using climate covariatesStoch Environ Res Risk Assess201630120722410.1007/s00477-015-1072-y
BickelPJLehmannELDescriptive statistics for nonparametric models ii. LocationAnn Stat1975351045106910.1214/aos/1176343240
StrupczewskiWGKochanekKBogdanowiczEMarkiewiczIOn seasonal approach to flood frequency modelling. Part i: two-component distribution revisitedHydrol Process201226570571610.1002/hyp.8179
SchumannAHochwasserstatistische bewertung des augusthochwassers 2002 im einzugsgebiet der mulde unter anwendung der saisonalen statistikHydrologie und Wasserbewirtschaftung2005494200206
WangHTsaiCLTail index regressionJ Am Stat Assoc2009104487123312401:CAS:528:DC%2BD1MXhtlWrtrnF10.1198/jasa.2009.tm08458
de HaanLFerreiraAExtreme value theory: an introduction2006ZurichSpringer10.1007/0-387-34471-3
RothMJongbloedGBuishandTThreshold selection for regional peaks-over-threshold dataJ Appl Stat20164371291130910.1080/02664763.2015.1100589
DierckxGTeugelsJLChange point analysis of extreme valuesEnvironmetrics2010217–866168610.1002/env.1041
Chavez-DemoulinVDavisonACGeneralized additive modelling of sample extremesJ R Stat Soc Ser C200554120722210.1111/j.1467-9876.2005.00479.x
ResnickSIHeavy-tail phenomena: probabilistic and statistical modeling2007New YorkSpringer
KimMLeeSTest for tail index change in stationary time series with pareto-type marginal distributionBernoulli200915232535610.3150/08-BEJ157
van der VaartAWWellnerJAWeak convergence and empirical processes—Springer series in statistics1996New YorkSpringer10.1007/978-1-4757-2545-2
WiSValdésJBSteinschneiderSKimTWNon-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maximaStoch Environ Res Risk Assess201630258360610.1007/s00477-015-1180-8
MadsenHRosbjergDThe partial duration series method in regional index-flood modelingWater Resour Res199733473774610.1029/96WR03847
Cunnane C (1973) A particular comparison of annual maxima and partial duration series methods of flood frequency prediction. J Hydrol 18(3):257–271. doi:10.1016/0022-1694(73)90051-6; http://www.sciencedirect.com/science/article/pii/002216947390
LekinaAChebanaFOuardaTWeighted estimate of extreme quantile: an application to the estimation of high flood return periodsStoch Environ Res Risk Assess201428214716510.1007/s00477-013-0705-2
TabariHTayeMTWillemsPStatistical assessment of precipitation trends in the upper Blue Nile river basinStoch Environ Res Risk Assess20152971751176110.1007/s00477-015-1046-0
BernardENaveauPVracMMestreOClustering of maxima: spatial dependencies among heavy rainfall in FranceJ Clim201326207929793710.1175/JCLI-D-12-00836.1
de HaanLTankANevesCOn tail trend detection: modeling relative riskExtremes201518214117810.1007/s10687-014-0207-8
JaruškováDRencováMAnalysis of annual maximal and minimal temperatures for some European cities by change point methodsEnvironmetrics200819322123310.1002/env.865
RenardBLangMBoisPStatistical analysis of extreme events in a non-stationary context via a bayesian framework: case study with peak-over-threshold dataStoch Environ Res Risk Assess20062129711210.1007/s00477-006-0047-4
RibatetMSauquetEGrésillonJMOuardaTBMJA regional Bayesian POT model for flood frequency analysisStoch Environ Res Risk Assess200721432733910.1007/s00477-006-0068-z
1345_CR9
L Haan de (1345_CR10) 2015; 18
E Bernard (1345_CR3) 2013; 26
1345_CR7
MG Kendall (1345_CR20) 1948
I Weissman (1345_CR43) 1978; 73
1345_CR23
1345_CR45
A Bucher (1345_CR5) 2015; 1505
L Haan de (1345_CR11) 2006
R Koenker (1345_CR22) 2005
1345_CR1
G Dierckx (1345_CR13) 2010; 21
MI Gomes (1345_CR17) 2007; 102
1345_CR27
1345_CR28
H Tabari (1345_CR37) 2015; 29
M Kim (1345_CR21) 2009; 15
A Lekina (1345_CR25) 2014; 28
SI Resnick (1345_CR30) 2007
HJ Wang (1345_CR41) 2013; 108
H Wang (1345_CR42) 2009; 104
AT Silva (1345_CR35) 2016; 30
S Wi (1345_CR44) 2016; 30
J Beirlant (1345_CR2) 2006
WG Strupczewski (1345_CR36) 2012; 26
I Kojadinovic (1345_CR24) 2015; 1507
JHJ Einmahl (1345_CR15) 2016; 78
D Jarušková (1345_CR19) 2008; 19
M Ribatet (1345_CR31) 2007; 21
AW Vaart van der (1345_CR39) 1996
BM Hill (1345_CR18) 1975; 3
1345_CR12
M Roth (1345_CR32) 2016; 43
A Schumann (1345_CR34) 2005; 49
DJ Dupuis (1345_CR14) 2015; 8
L Gardes (1345_CR16) 2010; 13
H Madsen (1345_CR26) 1997; 33
1345_CR33
V Chernozhukov (1345_CR8) 2010; 78
PJ Bickel (1345_CR4) 1975; 3
1345_CR38
V Chavez-Demoulin (1345_CR6) 2005; 54
B Renard (1345_CR29) 2006; 21
HJ Wang (1345_CR40) 2012; 107
References_xml – volume: 3
  start-page: 1045
  issue: 5
  year: 1975
  ident: 1345_CR4
  publication-title: Ann Stat
  doi: 10.1214/aos/1176343240
  contributor:
    fullname: PJ Bickel
– volume: 19
  start-page: 221
  issue: 3
  year: 2008
  ident: 1345_CR19
  publication-title: Environmetrics
  doi: 10.1002/env.865
  contributor:
    fullname: D Jarušková
– ident: 1345_CR23
  doi: 10.2307/1913643
– volume: 33
  start-page: 737
  issue: 4
  year: 1997
  ident: 1345_CR26
  publication-title: Water Resour Res
  doi: 10.1029/96WR03847
  contributor:
    fullname: H Madsen
– volume: 108
  start-page: 1062
  issue: 503
  year: 2013
  ident: 1345_CR41
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2013.820134
  contributor:
    fullname: HJ Wang
– volume: 102
  start-page: 280
  issue: 477
  year: 2007
  ident: 1345_CR17
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000000799
  contributor:
    fullname: MI Gomes
– volume: 21
  start-page: 661
  issue: 7–8
  year: 2010
  ident: 1345_CR13
  publication-title: Environmetrics
  doi: 10.1002/env.1041
  contributor:
    fullname: G Dierckx
– volume: 8
  start-page: 19
  issue: 1
  year: 2015
  ident: 1345_CR14
  publication-title: Stat Interface
  doi: 10.4310/SII.2015.v8.n1.a3
  contributor:
    fullname: DJ Dupuis
– volume: 21
  start-page: 97
  issue: 2
  year: 2006
  ident: 1345_CR29
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-006-0047-4
  contributor:
    fullname: B Renard
– volume: 78
  start-page: 31
  issue: 1
  year: 2016
  ident: 1345_CR15
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/rssb.12099
  contributor:
    fullname: JHJ Einmahl
– ident: 1345_CR27
  doi: 10.1016/j.jhydrol.2014.06.040
– volume: 15
  start-page: 325
  issue: 2
  year: 2009
  ident: 1345_CR21
  publication-title: Bernoulli
  doi: 10.3150/08-BEJ157
  contributor:
    fullname: M Kim
– volume-title: Rank correlation methods
  year: 1948
  ident: 1345_CR20
  contributor:
    fullname: MG Kendall
– ident: 1345_CR9
  doi: 10.1016/0022-1694(73)90051-6
– volume-title: Statistics of extremes: theory and applications
  year: 2006
  ident: 1345_CR2
  contributor:
    fullname: J Beirlant
– volume: 78
  start-page: 1093
  issue: 3
  year: 2010
  ident: 1345_CR8
  publication-title: Econometrica
  doi: 10.3982/ECTA7880
  contributor:
    fullname: V Chernozhukov
– ident: 1345_CR38
– volume: 30
  start-page: 583
  issue: 2
  year: 2016
  ident: 1345_CR44
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-015-1180-8
  contributor:
    fullname: S Wi
– volume: 21
  start-page: 327
  issue: 4
  year: 2007
  ident: 1345_CR31
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-006-0068-z
  contributor:
    fullname: M Ribatet
– ident: 1345_CR33
  doi: 10.1016/j.jhydrol.2016.01.032
– ident: 1345_CR45
  doi: 10.1016/S0022-1694(01)00594-7
– ident: 1345_CR28
  doi: 10.1198/016214506000001095
– volume: 18
  start-page: 141
  issue: 2
  year: 2015
  ident: 1345_CR10
  publication-title: Extremes
  doi: 10.1007/s10687-014-0207-8
  contributor:
    fullname: L Haan de
– volume: 28
  start-page: 147
  issue: 2
  year: 2014
  ident: 1345_CR25
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-013-0705-2
  contributor:
    fullname: A Lekina
– volume: 3
  start-page: 1163
  issue: 5
  year: 1975
  ident: 1345_CR18
  publication-title: Ann Stat
  doi: 10.1214/aos/1176343247
  contributor:
    fullname: BM Hill
– volume: 26
  start-page: 705
  issue: 5
  year: 2012
  ident: 1345_CR36
  publication-title: Hydrol Process
  doi: 10.1002/hyp.8179
  contributor:
    fullname: WG Strupczewski
– volume: 13
  start-page: 177
  issue: 2
  year: 2010
  ident: 1345_CR16
  publication-title: Extremes
  doi: 10.1007/s10687-010-0100-z
  contributor:
    fullname: L Gardes
– volume: 73
  start-page: 812
  issue: 364
  year: 1978
  ident: 1345_CR43
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1978.10480104
  contributor:
    fullname: I Weissman
– volume: 43
  start-page: 1291
  issue: 7
  year: 2016
  ident: 1345_CR32
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2015.1100589
  contributor:
    fullname: M Roth
– volume-title: Quantile regression
  year: 2005
  ident: 1345_CR22
  doi: 10.1017/CBO9780511754098
  contributor:
    fullname: R Koenker
– volume: 1507
  start-page: 06121
  year: 2015
  ident: 1345_CR24
  publication-title: ArXiv
  contributor:
    fullname: I Kojadinovic
– volume-title: Weak convergence and empirical processes—Springer series in statistics
  year: 1996
  ident: 1345_CR39
  doi: 10.1007/978-1-4757-2545-2
  contributor:
    fullname: AW Vaart van der
– volume-title: Extreme value theory: an introduction
  year: 2006
  ident: 1345_CR11
  doi: 10.1007/0-387-34471-3
  contributor:
    fullname: L Haan de
– volume: 30
  start-page: 207
  issue: 1
  year: 2016
  ident: 1345_CR35
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-015-1072-y
  contributor:
    fullname: AT Silva
– ident: 1345_CR1
– ident: 1345_CR7
  doi: 10.1016/j.jhydrol.2013.01.007
– volume: 26
  start-page: 7929
  issue: 20
  year: 2013
  ident: 1345_CR3
  publication-title: J Clim
  doi: 10.1175/JCLI-D-12-00836.1
  contributor:
    fullname: E Bernard
– volume: 107
  start-page: 1453
  issue: 500
  year: 2012
  ident: 1345_CR40
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2012.716382
  contributor:
    fullname: HJ Wang
– volume-title: Heavy-tail phenomena: probabilistic and statistical modeling
  year: 2007
  ident: 1345_CR30
  contributor:
    fullname: SI Resnick
– volume: 54
  start-page: 207
  issue: 1
  year: 2005
  ident: 1345_CR6
  publication-title: J R Stat Soc Ser C
  doi: 10.1111/j.1467-9876.2005.00479.x
  contributor:
    fullname: V Chavez-Demoulin
– ident: 1345_CR12
– volume: 1505
  start-page: 00954
  year: 2015
  ident: 1345_CR5
  publication-title: ArXiv
  contributor:
    fullname: A Bucher
– volume: 104
  start-page: 1233
  issue: 487
  year: 2009
  ident: 1345_CR42
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2009.tm08458
  contributor:
    fullname: H Wang
– volume: 49
  start-page: 200
  issue: 4
  year: 2005
  ident: 1345_CR34
  publication-title: Hydrologie und Wasserbewirtschaftung
  contributor:
    fullname: A Schumann
– volume: 29
  start-page: 1751
  issue: 7
  year: 2015
  ident: 1345_CR37
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-015-1046-0
  contributor:
    fullname: H Tabari
SSID ssib007539910
ssib001127189
ssj0017754
Score 2.1849296
Snippet This article deals with the right-tail behavior of a response distribution F Y conditional on a regressor vector X = x restricted to the heavy-tailed case of...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) This article deals with the right-tail behavior of a response distribution ......
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1155
SubjectTerms Aquatic Pollution
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Computer simulation
Earth and Environmental Science
Earth Sciences
Environment
Environmental studies
Estimation
Extreme values
Hydrology
Math. Appl. in Environmental Science
Mathematical models
Maxima
Original Paper
Pareto optimum
Physics
Precipitation
Probability Theory and Stochastic Processes
Random walk theory
Regression analysis
River flow
Rivers
Scale (ratio)
Statistics for Engineering
Trend analysis
Waste Water Technology
Water Management
Water Pollution Control
Title Conditional heavy-tail behavior with applications to precipitation and river flow extremes
URI https://link.springer.com/article/10.1007/s00477-016-1345-0
https://www.proquest.com/docview/1909585926
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IHpxdVVcX-TgSYl0m2bTHmXddRXxooJ4KWmTICjdxa6K_96Zmu6q6EFPhTa0NJPMzDePLwD7oRVayTzinVg7HmlleCal44F1RklprFPUnDy4Upe38UmPaHLCSeiieDiqM5KVop70uhGvIVVJEm1eJDnC9Hk0PRLX9vxx73xwMXUC2iEq3KmRVkS-SkbO5xaI863qORIdTnR0da7zp498tVZTF_Rb1rQyRv3Gf35jBZa968mOP9bKKszYogmN-lgH5nd5EzZ60-Y3HO_vl01Y9Cem3781YaEqHc3LNbjrDintXYUUGar2lzdOVamsJgBgFOplnxPlbDxkI2LVGHmCcKYLw56oQoS5x-ErQ4NBYctyHW76vevugPsTG3guZDLmiD9iG-U6zhC2oPU1SSBcYoWKA6XbTmeJo97cttYx0boLESqEiwG6RFaIDuLlDZgrhoXdBJZnJm-7OBJKZQjiNPpV2kRaGFQgMjCiBQe1ZNLRBzFHOqFgriY5peI1muQ0aMFOLbvU79EyRVcoQbCUhJ0WHNbC-vT4t5dt_Wn0NiyF5AlUFb47MDd-era7MFua5z2_cOl6dn3afwfzSeWo
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5RiNGLKEpEUXvwpGky1o1uR8KPYEQuYoJelm5t48EAYaDhv7dvdKBGD3rdmi7rj_e-r--9rwBXrmKC-4lHG4HQ1BNc0tj3NXWUltz3pdIci5N7D3wwCtodlMlheS1Mlu2ehyQzS70udkNhQ0yTRN08z6eGpxdR7NwtQLE5enpqb1BA3TUWd-OlOaqvopezwQUUfcuKjliDoh5dHuz86SNf3dUGg34Lm2beqFv6138cwL4Fn6S5Wi2HsKXGZSjlFzsQu8_LUOlsyt9Me_s8LcOuvTP9ZVmGnSx5NEmP4Lk1wcB3dqhIjHF_W1LMSyW5BADBw17yOVRO5hMyRV2NqZUIJ2IsyQxzRIh-nbwT4zLw4DI9hsduZ9jqUXtnA02YH86pYSCB8hIRxIa4GP8rQ4fpUDEeOFzUtYhDjdW5dSECFHZnzOWGMDoGFCnGGoYxV6AwnozVCZAklkldBx7jPDY0ThhkJaQnmDQmxHckq8J1PjXRdCXNEa1FmLNBjjB9DQc5cqpQyycvsrs0jQwYCg1dCt1GFW7yyfr0-rfOTv_U-hJ2e8P7ftS_HdydwZ6LuCDL961BYT5bqHPYTuXiwq7iD-D16Ew
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB604uPio1qszz14UhbTbNJNTiLaUh-IoIJ4CZvsLh4kLaYq_ffOpBurogfxmiwJyT5mvp3v-xZgzzdCyTALeDtSlgdKap6GoeWesVqGoTZWkji5dyOv7qPTDtnkHFVamJLtXpUkx5oGcmnKh4cDbQ8_hG9kckiUSfLQC0KOmH0mQCCDA33muHPeu5xkBC0fV99JxJbkxEoRzxUayACuFCCJNidvuqrw-dNLvoauST76rYRaRqbu0r-_aRkWXVLKjsejaAWmTF6HperAB-bmfx0anYksDtu760Ud5t1Z6o-jOsyWpNKsWIWHkz4VxMvNRoaL_uuIE1-VVdYAjDaB2ecSOhv22YD8NgbOOpypXLNn4o4w-9R_YxhKaEOzWIO7buf2pMfdWQ48E2E85IhMIhNkKkoR0GBc1rEnbGyEjDypWlalsSXVbkupiAzfhfAlAkkPkyUjRBuRdANqeT8368CyVGctGwVCyhThncKMS-lACY1LS-hp0YT9qpuSwdiyI_kwZy5_ckK0NvrJideEraojEzd7iwSTpBhhVOy3m3BQddyn2789bONPrXdh7vq0m1yeXV1swoJP6UJJA96C2vD5xWzDdKFfdtyAfgedXPDN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+heavy-tail+behavior+with+applications+to+precipitation+and+river+flow+extremes&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Kinsvater%2C+Paul&rft.au=Fried%2C+Roland&rft.date=2017-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=31&rft.issue=5&rft.spage=1155&rft.epage=1169&rft_id=info:doi/10.1007%2Fs00477-016-1345-0&rft.externalDocID=10_1007_s00477_016_1345_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon