Conditional heavy-tail behavior with applications to precipitation and river flow extremes
This article deals with the right-tail behavior of a response distribution F Y conditional on a regressor vector X = x restricted to the heavy-tailed case of Pareto-type conditional distributions F Y ( y | x ) = P ( Y ≤ y | X = x ) , with heaviness of the right tail characterized by the conditional...
Saved in:
Published in: | Stochastic environmental research and risk assessment Vol. 31; no. 5; pp. 1155 - 1169 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-07-2017
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This article deals with the right-tail behavior of a response distribution
F
Y
conditional on a regressor vector
X
=
x
restricted to the heavy-tailed case of Pareto-type conditional distributions
F
Y
(
y
|
x
)
=
P
(
Y
≤
y
|
X
=
x
)
, with heaviness of the right tail characterized by the conditional extreme value index
γ
(
x
)
>
0
. We particularly focus on testing the hypothesis
H
0
,
t
a
i
l
:
γ
(
x
)
=
γ
0
of constant tail behavior for some
γ
0
>
0
and all possible
x
. When considering
x
as a time index, the term trend analysis is commonly used. In the recent past several such trend analyses in extreme value data have been published, mostly focusing on time-varying modeling of location or scale parameters of the response distribution. In many such environmental studies a simple test against trend based on Kendall’s tau statistic is applied. This test is powerful when the center of the conditional distribution
F
Y
(
y
|
x
)
changes monotonically in
x
, for instance, in a simple location model
μ
(
x
)
=
μ
0
+
x
·
μ
1
,
x
=
(
1
,
x
)
′
, but the test is rather insensitive against monotonic tail behavior, say,
γ
(
x
)
=
η
0
+
x
·
η
1
. This has to be considered, since for many environmental applications the main interest is on the tail rather than the center of a distribution. Our work is motivated by this problem and it is our goal to demonstrate the opportunities and the limits of detecting and estimating non-constant conditional heavy-tail behavior with regard to applications from hydrology. We present and compare four different procedures by simulations and illustrate our findings on real data from hydrology: weekly maxima of hourly precipitation from France and monthly maximal river flows from Germany. |
---|---|
AbstractList | This article deals with the right-tail behavior of a response distribution
F
Y
conditional on a regressor vector
X
=
x
restricted to the heavy-tailed case of Pareto-type conditional distributions
F
Y
(
y
|
x
)
=
P
(
Y
≤
y
|
X
=
x
)
, with heaviness of the right tail characterized by the conditional extreme value index
γ
(
x
)
>
0
. We particularly focus on testing the hypothesis
H
0
,
t
a
i
l
:
γ
(
x
)
=
γ
0
of constant tail behavior for some
γ
0
>
0
and all possible
x
. When considering
x
as a time index, the term trend analysis is commonly used. In the recent past several such trend analyses in extreme value data have been published, mostly focusing on time-varying modeling of location or scale parameters of the response distribution. In many such environmental studies a simple test against trend based on Kendall’s tau statistic is applied. This test is powerful when the center of the conditional distribution
F
Y
(
y
|
x
)
changes monotonically in
x
, for instance, in a simple location model
μ
(
x
)
=
μ
0
+
x
·
μ
1
,
x
=
(
1
,
x
)
′
, but the test is rather insensitive against monotonic tail behavior, say,
γ
(
x
)
=
η
0
+
x
·
η
1
. This has to be considered, since for many environmental applications the main interest is on the tail rather than the center of a distribution. Our work is motivated by this problem and it is our goal to demonstrate the opportunities and the limits of detecting and estimating non-constant conditional heavy-tail behavior with regard to applications from hydrology. We present and compare four different procedures by simulations and illustrate our findings on real data from hydrology: weekly maxima of hourly precipitation from France and monthly maximal river flows from Germany. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) This article deals with the right-tail behavior of a response distribution ... conditional on a regressor vector ... restricted to the heavy-tailed case of Pareto-type conditional distributions ..., with heaviness of the right tail characterized by the conditional extreme value index ... We particularly focus on testing the hypothesis ... of constant tail behavior for some ... and all possible ... When considering ... as a time index, the term trend analysis is commonly used. In the recent past several such trend analyses in extreme value data have been published, mostly focusing on time-varying modeling of location or scale parameters of the response distribution. In many such environmental studies a simple test against trend based on Kendall's tau statistic is applied. This test is powerful when the center of the conditional distribution ... changes monotonically in ..., for instance, in a simple location model ..., ..., but the test is rather insensitive against monotonic tail behavior, say, ... This has to be considered, since for many environmental applications the main interest is on the tail rather than the center of a distribution. Our work is motivated by this problem and it is our goal to demonstrate the opportunities and the limits of detecting and estimating non-constant conditional heavy-tail behavior with regard to applications from hydrology. We present and compare four different procedures by simulations and illustrate our findings on real data from hydrology: weekly maxima of hourly precipitation from France and monthly maximal river flows from Germany. |
Author | Fried, Roland Kinsvater, Paul |
Author_xml | – sequence: 1 givenname: Paul orcidid: 0000-0002-5338-6424 surname: Kinsvater fullname: Kinsvater, Paul email: kinsvater@statistik.tu-dortmund.de organization: Department of Statistics, TU Dortmund – sequence: 2 givenname: Roland surname: Fried fullname: Fried, Roland organization: Department of Statistics, TU Dortmund |
BookMark | eNp1kD1PwzAQhi1UJAr0B7BZYjac4ziOR1TxJVVigYXFcpILNUrjYLst_fekFCEWpjudnveV7jklk973SMgFhysOoK4jQK4UA14wLnLJ4IhMeS4KJjKpJ797DidkFqOrxowUWnOYkte57xuXnO9tR5doNzuWrOtohUu7cT7QrUtLaoehc7XdY5EmT4eAtRtc-r5Q2zc0uA0G2nZ-S_EzBVxhPCfHre0izn7mGXm5u32eP7DF0_3j_GbBaiF1YgKKEvPalhUvM8Sm0SBajUKVoCxvbaVbngnJrS2FlKUQmdJcgVYFClEoLs7I5aF3CP5jjTGZd78O4z_RcA1allJnxUjxA1UHH2PA1gzBrWzYGQ5mb9EcLJrRotlbNDBmskMmjmz_huFP87-hL57QdnE |
CitedBy_id | crossref_primary_10_1002_hyp_13359 crossref_primary_10_1061__ASCE_HE_1943_5584_0001620 crossref_primary_10_1111_anzs_12357 |
Cites_doi | 10.1214/aos/1176343240 10.1002/env.865 10.2307/1913643 10.1029/96WR03847 10.1080/01621459.2013.820134 10.1198/016214506000000799 10.1002/env.1041 10.4310/SII.2015.v8.n1.a3 10.1007/s00477-006-0047-4 10.1111/rssb.12099 10.1016/j.jhydrol.2014.06.040 10.3150/08-BEJ157 10.1016/0022-1694(73)90051-6 10.3982/ECTA7880 10.1007/s00477-015-1180-8 10.1007/s00477-006-0068-z 10.1016/j.jhydrol.2016.01.032 10.1016/S0022-1694(01)00594-7 10.1198/016214506000001095 10.1007/s10687-014-0207-8 10.1007/s00477-013-0705-2 10.1214/aos/1176343247 10.1002/hyp.8179 10.1007/s10687-010-0100-z 10.1080/01621459.1978.10480104 10.1080/02664763.2015.1100589 10.1017/CBO9780511754098 10.1007/978-1-4757-2545-2 10.1007/0-387-34471-3 10.1007/s00477-015-1072-y 10.1016/j.jhydrol.2013.01.007 10.1175/JCLI-D-12-00836.1 10.1080/01621459.2012.716382 10.1111/j.1467-9876.2005.00479.x 10.1198/jasa.2009.tm08458 10.1007/s00477-015-1046-0 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2016 Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: Stochastic Environmental Research and Risk Assessment is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 3V. 7ST 7XB 88I 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L6V M2P M7S PATMY PQEST PQQKQ PQUKI PTHSS PYCSY Q9U S0W SOI |
DOI | 10.1007/s00477-016-1345-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic DELNET Engineering & Technology Collection Environment Abstracts |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | ProQuest Central Student |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Physics Computer Science Environmental Sciences |
EISSN | 1436-3259 |
EndPage | 1169 |
ExternalDocumentID | 10_1007_s00477_016_1345_0 |
GrantInformation_xml | – fundername: DFG SFB 823 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0VY 123 1N0 2.D 203 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67M 67Z 6NX 7XC 88I 8AO 8FE 8FG 8FH 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FIL FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V L8X LAS LLZTM M2P M4Y M7S MA- ML. N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9J OAM P19 P2P PATMY PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOS R89 R9I RIG RNS ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z86 Z8M Z8S Z8T Z8U Z8W ZMTXR ~02 ~A9 0R~ AACDK AAEOY AAHBH AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACZOJ AEFQL AEMSY AFBBN AFEUZ AGQEE AGRTI AIGIU CITATION H13 7ST 7XB 8FD 8FK C1K FR3 KR7 PQEST PQUKI Q9U SOI |
ID | FETCH-LOGICAL-c359t-3068e4ca8b182eedd903f9e37807a1fab9f12351aa8355833279170976e336713 |
IEDL.DBID | AEJHL |
ISSN | 1436-3240 |
IngestDate | Sun Nov 24 20:50:08 EST 2024 Thu Nov 21 21:22:24 EST 2024 Sat Dec 16 12:00:39 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Heavy tails Relative excesses Precipitation Flood frequency Extreme value index Regression model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-3068e4ca8b182eedd903f9e37807a1fab9f12351aa8355833279170976e336713 |
ORCID | 0000-0002-5338-6424 |
OpenAccessLink | https://eldorado.tu-dortmund.de/bitstream/2003/35131/1/DP_3516_SFB823_Kinsvater_Fried.pdf |
PQID | 1909585926 |
PQPubID | 31669 |
PageCount | 15 |
ParticipantIDs | proquest_journals_1909585926 crossref_primary_10_1007_s00477_016_1345_0 springer_journals_10_1007_s00477_016_1345_0 |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Stochastic environmental research and risk assessment |
PublicationTitleAbbrev | Stoch Environ Res Risk Assess |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | WangHJLiDEstimation of extreme conditional quantiles through power transformationJ Am Stat Assoc2013108503106210741:CAS:528:DC%2BC2cXot1Sju7k%3D10.1080/01621459.2013.820134 Angrist J, Chernozhukov V, Fernández-Val I (2006) Quantile regression under misspecification, with an application to the US wage structure. Econometrica 74(2):539–563. http://www.jstor.org/stable/3598810 Koenker R, Bassett JG (1978) Regression quantiles. Econometrica 46(1):33–50. http://www.jstor.org/stable/1913643 KojadinovicINaveauPNonparametric tests for change-point detection in the distribution of block maxima based on probability weighted momentsArXiv2015150706121 BucherAKinsvaterPKojadinovicIDetecting breaks in the dependence of multivariate extreme-value distributionsArXiv2015150500954 Dierckx G (2011) Trends and change points in the tail behaviour of a heavy tailed distribution. In: Proceedings of 58th world statistical congress (ISI2011), Dublin. pp 290–299 GardesLGirardSConditional extremes from heavy-tailed distributions: an application to the estimation of extreme rainfall return levelsExtremes201013217720410.1007/s10687-010-0100-z WeissmanIEstimation of parameters and large quantiles based on the k largest observationsJ Am Stat Assoc197873364812815 BeirlantJGoegebeurYSegersJTeugelsJStatistics of extremes: theory and applications2006HobokenWiley Mediero L, Santillán D, Garrote L, Granados A (2014) Detection and attribution of trends in magnitude, frequency and timing of floods in spain. J Hydrol 517:1072–1088. doi:10.1016/j.jhydrol.2014.06.040; http://www.sciencedirect.com/science/article/pii/S00221694140 Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259(1–4):254–271. doi:10.1016/S0022-1694(01)00594-7, http://www.sciencedirect.com/science/article/pii/S00221694010 HillBMA simple general approach to inference about the tail of a distributionAnn Stat1975351163117410.1214/aos/1176343247 Mu Y, He X (2007) Power transformation toward a linear regression quantile. J Am Stat Assoc 102(477):269–279. http://www.jstor.org/stable/27639838url KendallMGRank correlation methods1948LondonCharles Griffin Teugels JL, Vanroelen G (2004) Box-cox transformations and heavy-tailed distributions. J Appl Probab 41:213–227. http://www.jstor.org/stable/3215978 ChernozhukovVFernndez-ValIGalichonAQuantile and probability curves without crossingEconometrica20107831093112510.3982/ECTA7880 DupuisDJSunYWangHJDetecting change-points in extremesStat Interface201581193110.4310/SII.2015.v8.n1.a3 Chebana F, Ouarda TB, Duong TC (2013) Testing for multivariate trends in hydrologic frequency analysis. J Hydrol 486:519–530. doi:10.1016/j.jhydrol.2013.01.007; http://www.sciencedirect.com/science/article/pii/S00221694130 KoenkerRQuantile regression2005CambridgeCambridge University Press10.1017/CBO9780511754098 EinmahlJHJde HaanLZhouCStatistics of heteroscedastic extremesJ R Stat Soc Ser B2016781315110.1111/rssb.12099 Rulfov Z, Buishand A, Roth M, Kysel J (2016) A two-component generalized extreme value distribution for precipitation frequency analysis. J Hydrol 534:659–668. doi:10.1016/j.jhydrol.2016.01.032; http://www.sciencedirect.com/science/article/pii/S0022169416000500 WangHJLiDHeXEstimation of high conditional quantiles for heavy-tailed distributionsJ Am Stat Assoc2012107500145314641:CAS:528:DC%2BC3sXms1Chug%3D%3D10.1080/01621459.2012.716382 GomesMIPestanaDA sturdy reduced-bias extreme quantile (var) estimatorJ Am Stat Assoc20071024772802921:CAS:528:DC%2BD2sXisVyqsLo%3D10.1198/016214506000000799 SilvaATNaghettiniMPortelaMMOn some aspects of peaks-over-threshold modeling of floods under nonstationarity using climate covariatesStoch Environ Res Risk Assess201630120722410.1007/s00477-015-1072-y BickelPJLehmannELDescriptive statistics for nonparametric models ii. LocationAnn Stat1975351045106910.1214/aos/1176343240 StrupczewskiWGKochanekKBogdanowiczEMarkiewiczIOn seasonal approach to flood frequency modelling. Part i: two-component distribution revisitedHydrol Process201226570571610.1002/hyp.8179 SchumannAHochwasserstatistische bewertung des augusthochwassers 2002 im einzugsgebiet der mulde unter anwendung der saisonalen statistikHydrologie und Wasserbewirtschaftung2005494200206 WangHTsaiCLTail index regressionJ Am Stat Assoc2009104487123312401:CAS:528:DC%2BD1MXhtlWrtrnF10.1198/jasa.2009.tm08458 de HaanLFerreiraAExtreme value theory: an introduction2006ZurichSpringer10.1007/0-387-34471-3 RothMJongbloedGBuishandTThreshold selection for regional peaks-over-threshold dataJ Appl Stat20164371291130910.1080/02664763.2015.1100589 DierckxGTeugelsJLChange point analysis of extreme valuesEnvironmetrics2010217–866168610.1002/env.1041 Chavez-DemoulinVDavisonACGeneralized additive modelling of sample extremesJ R Stat Soc Ser C200554120722210.1111/j.1467-9876.2005.00479.x ResnickSIHeavy-tail phenomena: probabilistic and statistical modeling2007New YorkSpringer KimMLeeSTest for tail index change in stationary time series with pareto-type marginal distributionBernoulli200915232535610.3150/08-BEJ157 van der VaartAWWellnerJAWeak convergence and empirical processes—Springer series in statistics1996New YorkSpringer10.1007/978-1-4757-2545-2 WiSValdésJBSteinschneiderSKimTWNon-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maximaStoch Environ Res Risk Assess201630258360610.1007/s00477-015-1180-8 MadsenHRosbjergDThe partial duration series method in regional index-flood modelingWater Resour Res199733473774610.1029/96WR03847 Cunnane C (1973) A particular comparison of annual maxima and partial duration series methods of flood frequency prediction. J Hydrol 18(3):257–271. doi:10.1016/0022-1694(73)90051-6; http://www.sciencedirect.com/science/article/pii/002216947390 LekinaAChebanaFOuardaTWeighted estimate of extreme quantile: an application to the estimation of high flood return periodsStoch Environ Res Risk Assess201428214716510.1007/s00477-013-0705-2 TabariHTayeMTWillemsPStatistical assessment of precipitation trends in the upper Blue Nile river basinStoch Environ Res Risk Assess20152971751176110.1007/s00477-015-1046-0 BernardENaveauPVracMMestreOClustering of maxima: spatial dependencies among heavy rainfall in FranceJ Clim201326207929793710.1175/JCLI-D-12-00836.1 de HaanLTankANevesCOn tail trend detection: modeling relative riskExtremes201518214117810.1007/s10687-014-0207-8 JaruškováDRencováMAnalysis of annual maximal and minimal temperatures for some European cities by change point methodsEnvironmetrics200819322123310.1002/env.865 RenardBLangMBoisPStatistical analysis of extreme events in a non-stationary context via a bayesian framework: case study with peak-over-threshold dataStoch Environ Res Risk Assess20062129711210.1007/s00477-006-0047-4 RibatetMSauquetEGrésillonJMOuardaTBMJA regional Bayesian POT model for flood frequency analysisStoch Environ Res Risk Assess200721432733910.1007/s00477-006-0068-z 1345_CR9 L Haan de (1345_CR10) 2015; 18 E Bernard (1345_CR3) 2013; 26 1345_CR7 MG Kendall (1345_CR20) 1948 I Weissman (1345_CR43) 1978; 73 1345_CR23 1345_CR45 A Bucher (1345_CR5) 2015; 1505 L Haan de (1345_CR11) 2006 R Koenker (1345_CR22) 2005 1345_CR1 G Dierckx (1345_CR13) 2010; 21 MI Gomes (1345_CR17) 2007; 102 1345_CR27 1345_CR28 H Tabari (1345_CR37) 2015; 29 M Kim (1345_CR21) 2009; 15 A Lekina (1345_CR25) 2014; 28 SI Resnick (1345_CR30) 2007 HJ Wang (1345_CR41) 2013; 108 H Wang (1345_CR42) 2009; 104 AT Silva (1345_CR35) 2016; 30 S Wi (1345_CR44) 2016; 30 J Beirlant (1345_CR2) 2006 WG Strupczewski (1345_CR36) 2012; 26 I Kojadinovic (1345_CR24) 2015; 1507 JHJ Einmahl (1345_CR15) 2016; 78 D Jarušková (1345_CR19) 2008; 19 M Ribatet (1345_CR31) 2007; 21 AW Vaart van der (1345_CR39) 1996 BM Hill (1345_CR18) 1975; 3 1345_CR12 M Roth (1345_CR32) 2016; 43 A Schumann (1345_CR34) 2005; 49 DJ Dupuis (1345_CR14) 2015; 8 L Gardes (1345_CR16) 2010; 13 H Madsen (1345_CR26) 1997; 33 1345_CR33 V Chernozhukov (1345_CR8) 2010; 78 PJ Bickel (1345_CR4) 1975; 3 1345_CR38 V Chavez-Demoulin (1345_CR6) 2005; 54 B Renard (1345_CR29) 2006; 21 HJ Wang (1345_CR40) 2012; 107 |
References_xml | – volume: 3 start-page: 1045 issue: 5 year: 1975 ident: 1345_CR4 publication-title: Ann Stat doi: 10.1214/aos/1176343240 contributor: fullname: PJ Bickel – volume: 19 start-page: 221 issue: 3 year: 2008 ident: 1345_CR19 publication-title: Environmetrics doi: 10.1002/env.865 contributor: fullname: D Jarušková – ident: 1345_CR23 doi: 10.2307/1913643 – volume: 33 start-page: 737 issue: 4 year: 1997 ident: 1345_CR26 publication-title: Water Resour Res doi: 10.1029/96WR03847 contributor: fullname: H Madsen – volume: 108 start-page: 1062 issue: 503 year: 2013 ident: 1345_CR41 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2013.820134 contributor: fullname: HJ Wang – volume: 102 start-page: 280 issue: 477 year: 2007 ident: 1345_CR17 publication-title: J Am Stat Assoc doi: 10.1198/016214506000000799 contributor: fullname: MI Gomes – volume: 21 start-page: 661 issue: 7–8 year: 2010 ident: 1345_CR13 publication-title: Environmetrics doi: 10.1002/env.1041 contributor: fullname: G Dierckx – volume: 8 start-page: 19 issue: 1 year: 2015 ident: 1345_CR14 publication-title: Stat Interface doi: 10.4310/SII.2015.v8.n1.a3 contributor: fullname: DJ Dupuis – volume: 21 start-page: 97 issue: 2 year: 2006 ident: 1345_CR29 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-006-0047-4 contributor: fullname: B Renard – volume: 78 start-page: 31 issue: 1 year: 2016 ident: 1345_CR15 publication-title: J R Stat Soc Ser B doi: 10.1111/rssb.12099 contributor: fullname: JHJ Einmahl – ident: 1345_CR27 doi: 10.1016/j.jhydrol.2014.06.040 – volume: 15 start-page: 325 issue: 2 year: 2009 ident: 1345_CR21 publication-title: Bernoulli doi: 10.3150/08-BEJ157 contributor: fullname: M Kim – volume-title: Rank correlation methods year: 1948 ident: 1345_CR20 contributor: fullname: MG Kendall – ident: 1345_CR9 doi: 10.1016/0022-1694(73)90051-6 – volume-title: Statistics of extremes: theory and applications year: 2006 ident: 1345_CR2 contributor: fullname: J Beirlant – volume: 78 start-page: 1093 issue: 3 year: 2010 ident: 1345_CR8 publication-title: Econometrica doi: 10.3982/ECTA7880 contributor: fullname: V Chernozhukov – ident: 1345_CR38 – volume: 30 start-page: 583 issue: 2 year: 2016 ident: 1345_CR44 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-015-1180-8 contributor: fullname: S Wi – volume: 21 start-page: 327 issue: 4 year: 2007 ident: 1345_CR31 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-006-0068-z contributor: fullname: M Ribatet – ident: 1345_CR33 doi: 10.1016/j.jhydrol.2016.01.032 – ident: 1345_CR45 doi: 10.1016/S0022-1694(01)00594-7 – ident: 1345_CR28 doi: 10.1198/016214506000001095 – volume: 18 start-page: 141 issue: 2 year: 2015 ident: 1345_CR10 publication-title: Extremes doi: 10.1007/s10687-014-0207-8 contributor: fullname: L Haan de – volume: 28 start-page: 147 issue: 2 year: 2014 ident: 1345_CR25 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-013-0705-2 contributor: fullname: A Lekina – volume: 3 start-page: 1163 issue: 5 year: 1975 ident: 1345_CR18 publication-title: Ann Stat doi: 10.1214/aos/1176343247 contributor: fullname: BM Hill – volume: 26 start-page: 705 issue: 5 year: 2012 ident: 1345_CR36 publication-title: Hydrol Process doi: 10.1002/hyp.8179 contributor: fullname: WG Strupczewski – volume: 13 start-page: 177 issue: 2 year: 2010 ident: 1345_CR16 publication-title: Extremes doi: 10.1007/s10687-010-0100-z contributor: fullname: L Gardes – volume: 73 start-page: 812 issue: 364 year: 1978 ident: 1345_CR43 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1978.10480104 contributor: fullname: I Weissman – volume: 43 start-page: 1291 issue: 7 year: 2016 ident: 1345_CR32 publication-title: J Appl Stat doi: 10.1080/02664763.2015.1100589 contributor: fullname: M Roth – volume-title: Quantile regression year: 2005 ident: 1345_CR22 doi: 10.1017/CBO9780511754098 contributor: fullname: R Koenker – volume: 1507 start-page: 06121 year: 2015 ident: 1345_CR24 publication-title: ArXiv contributor: fullname: I Kojadinovic – volume-title: Weak convergence and empirical processes—Springer series in statistics year: 1996 ident: 1345_CR39 doi: 10.1007/978-1-4757-2545-2 contributor: fullname: AW Vaart van der – volume-title: Extreme value theory: an introduction year: 2006 ident: 1345_CR11 doi: 10.1007/0-387-34471-3 contributor: fullname: L Haan de – volume: 30 start-page: 207 issue: 1 year: 2016 ident: 1345_CR35 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-015-1072-y contributor: fullname: AT Silva – ident: 1345_CR1 – ident: 1345_CR7 doi: 10.1016/j.jhydrol.2013.01.007 – volume: 26 start-page: 7929 issue: 20 year: 2013 ident: 1345_CR3 publication-title: J Clim doi: 10.1175/JCLI-D-12-00836.1 contributor: fullname: E Bernard – volume: 107 start-page: 1453 issue: 500 year: 2012 ident: 1345_CR40 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2012.716382 contributor: fullname: HJ Wang – volume-title: Heavy-tail phenomena: probabilistic and statistical modeling year: 2007 ident: 1345_CR30 contributor: fullname: SI Resnick – volume: 54 start-page: 207 issue: 1 year: 2005 ident: 1345_CR6 publication-title: J R Stat Soc Ser C doi: 10.1111/j.1467-9876.2005.00479.x contributor: fullname: V Chavez-Demoulin – ident: 1345_CR12 – volume: 1505 start-page: 00954 year: 2015 ident: 1345_CR5 publication-title: ArXiv contributor: fullname: A Bucher – volume: 104 start-page: 1233 issue: 487 year: 2009 ident: 1345_CR42 publication-title: J Am Stat Assoc doi: 10.1198/jasa.2009.tm08458 contributor: fullname: H Wang – volume: 49 start-page: 200 issue: 4 year: 2005 ident: 1345_CR34 publication-title: Hydrologie und Wasserbewirtschaftung contributor: fullname: A Schumann – volume: 29 start-page: 1751 issue: 7 year: 2015 ident: 1345_CR37 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-015-1046-0 contributor: fullname: H Tabari |
SSID | ssib007539910 ssib001127189 ssj0017754 |
Score | 2.1849296 |
Snippet | This article deals with the right-tail behavior of a response distribution
F
Y
conditional on a regressor vector
X
=
x
restricted to the heavy-tailed case of... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) This article deals with the right-tail behavior of a response distribution ...... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1155 |
SubjectTerms | Aquatic Pollution Chemistry and Earth Sciences Computational Intelligence Computer Science Computer simulation Earth and Environmental Science Earth Sciences Environment Environmental studies Estimation Extreme values Hydrology Math. Appl. in Environmental Science Mathematical models Maxima Original Paper Pareto optimum Physics Precipitation Probability Theory and Stochastic Processes Random walk theory Regression analysis River flow Rivers Scale (ratio) Statistics for Engineering Trend analysis Waste Water Technology Water Management Water Pollution Control |
Title | Conditional heavy-tail behavior with applications to precipitation and river flow extremes |
URI | https://link.springer.com/article/10.1007/s00477-016-1345-0 https://www.proquest.com/docview/1909585926 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IHpxdVVcX-TgSYl0m2bTHmXddRXxooJ4KWmTICjdxa6K_96Zmu6q6EFPhTa0NJPMzDePLwD7oRVayTzinVg7HmlleCal44F1RklprFPUnDy4Upe38UmPaHLCSeiieDiqM5KVop70uhGvIVVJEm1eJDnC9Hk0PRLX9vxx73xwMXUC2iEq3KmRVkS-SkbO5xaI863qORIdTnR0da7zp498tVZTF_Rb1rQyRv3Gf35jBZa968mOP9bKKszYogmN-lgH5nd5EzZ60-Y3HO_vl01Y9Cem3781YaEqHc3LNbjrDintXYUUGar2lzdOVamsJgBgFOplnxPlbDxkI2LVGHmCcKYLw56oQoS5x-ErQ4NBYctyHW76vevugPsTG3guZDLmiD9iG-U6zhC2oPU1SSBcYoWKA6XbTmeJo97cttYx0boLESqEiwG6RFaIDuLlDZgrhoXdBJZnJm-7OBJKZQjiNPpV2kRaGFQgMjCiBQe1ZNLRBzFHOqFgriY5peI1muQ0aMFOLbvU79EyRVcoQbCUhJ0WHNbC-vT4t5dt_Wn0NiyF5AlUFb47MDd-era7MFua5z2_cOl6dn3afwfzSeWo |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5RiNGLKEpEUXvwpGky1o1uR8KPYEQuYoJelm5t48EAYaDhv7dvdKBGD3rdmi7rj_e-r--9rwBXrmKC-4lHG4HQ1BNc0tj3NXWUltz3pdIci5N7D3wwCtodlMlheS1Mlu2ehyQzS70udkNhQ0yTRN08z6eGpxdR7NwtQLE5enpqb1BA3TUWd-OlOaqvopezwQUUfcuKjliDoh5dHuz86SNf3dUGg34Lm2beqFv6138cwL4Fn6S5Wi2HsKXGZSjlFzsQu8_LUOlsyt9Me_s8LcOuvTP9ZVmGnSx5NEmP4Lk1wcB3dqhIjHF_W1LMSyW5BADBw17yOVRO5hMyRV2NqZUIJ2IsyQxzRIh-nbwT4zLw4DI9hsduZ9jqUXtnA02YH86pYSCB8hIRxIa4GP8rQ4fpUDEeOFzUtYhDjdW5dSECFHZnzOWGMDoGFCnGGoYxV6AwnozVCZAklkldBx7jPDY0ThhkJaQnmDQmxHckq8J1PjXRdCXNEa1FmLNBjjB9DQc5cqpQyycvsrs0jQwYCg1dCt1GFW7yyfr0-rfOTv_U-hJ2e8P7ftS_HdydwZ6LuCDL961BYT5bqHPYTuXiwq7iD-D16Ew |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB604uPio1qszz14UhbTbNJNTiLaUh-IoIJ4CZvsLh4kLaYq_ffOpBurogfxmiwJyT5mvp3v-xZgzzdCyTALeDtSlgdKap6GoeWesVqGoTZWkji5dyOv7qPTDtnkHFVamJLtXpUkx5oGcmnKh4cDbQ8_hG9kckiUSfLQC0KOmH0mQCCDA33muHPeu5xkBC0fV99JxJbkxEoRzxUayACuFCCJNidvuqrw-dNLvoauST76rYRaRqbu0r-_aRkWXVLKjsejaAWmTF6HperAB-bmfx0anYksDtu760Ud5t1Z6o-jOsyWpNKsWIWHkz4VxMvNRoaL_uuIE1-VVdYAjDaB2ecSOhv22YD8NgbOOpypXLNn4o4w-9R_YxhKaEOzWIO7buf2pMfdWQ48E2E85IhMIhNkKkoR0GBc1rEnbGyEjDypWlalsSXVbkupiAzfhfAlAkkPkyUjRBuRdANqeT8368CyVGctGwVCyhThncKMS-lACY1LS-hp0YT9qpuSwdiyI_kwZy5_ckK0NvrJideEraojEzd7iwSTpBhhVOy3m3BQddyn2789bONPrXdh7vq0m1yeXV1swoJP6UJJA96C2vD5xWzDdKFfdtyAfgedXPDN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+heavy-tail+behavior+with+applications+to+precipitation+and+river+flow+extremes&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Kinsvater%2C+Paul&rft.au=Fried%2C+Roland&rft.date=2017-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=31&rft.issue=5&rft.spage=1155&rft.epage=1169&rft_id=info:doi/10.1007%2Fs00477-016-1345-0&rft.externalDocID=10_1007_s00477_016_1345_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon |