Observations of Lake Baikal ice from satellite altimetry and radiometry

We demonstrate the potential of combining satellite altimetry and radiometry for lake ice studies using the example of Lake Baikal in Siberia. We show the synergy using active and passive microwave observations available from the recent satellite altimetry missions (TOPEX/Poseidon, Jason-1, ENVISAT...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment Vol. 108; no. 3; pp. 240 - 253
Main Authors: Kouraev, Alexei V., Semovski, Sergei V., Shimaraev, Michail N., Mognard, Nelly M., Légresy, Benoît, Remy, Frédérique
Format: Journal Article
Language:English
Published: Elsevier Inc 15-06-2007
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate the potential of combining satellite altimetry and radiometry for lake ice studies using the example of Lake Baikal in Siberia. We show the synergy using active and passive microwave observations available from the recent satellite altimetry missions (TOPEX/Poseidon, Jason-1, ENVISAT and Geosat Follow-On), complemented by the SSM/I passive data. We assess the applicability of altimetric and radiometric data for ice/water discrimination, and discuss the drawbacks and benefits of each type of sensor. An ice discrimination method, based on the combined use of the data from the four altimetric missions and SSM/I, is proposed and validated using available in situ observations and MODIS imagery. The method is applied to the entire satellite data set and used to define specific dates of ice events (first appearance of ice, formation of stable ice cover, first appearance of open water, complete disappearance of ice) and associated uncertainties. Using these satellite-derived estimates, we can extend the existing time series of ice events in the Southern Baikal up to 2004 and provide new information on the Middle and Northern Baikal, regions where no recent in situ ice cover observations are available. Our data show that over the last 10–15 years, trends towards earlier ice formation and later ice break-up result in a tendency for longer fast ice duration over the whole Lake Baikal. The methods proposed here have been tested for Lake Baikal, but they are applicable for other lakes and water bodies with seasonal ice cover.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2006.11.010