Personalized route recommendation through historical travel behavior analysis

Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers’ preferences when suggesting routes. Various unknown circumstances may affect users’ travel behaviors between two locations on the road network, hence it is complicated to provide sati...

Full description

Saved in:
Bibliographic Details
Published in:GeoInformatica Vol. 26; no. 3; pp. 505 - 540
Main Authors: de Oliveira e Silva, Rodrigo Augusto, Cui, Ge, Rahimi, Seyyed Mohammadreza, Wang, Xin
Format: Journal Article
Language:English
Published: New York Springer US 01-07-2022
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers’ preferences when suggesting routes. Various unknown circumstances may affect users’ travel behaviors between two locations on the road network, hence it is complicated to provide satisfactory personalized route recommendations. In this paper, it is believed that users’ travel behaviors are implicitly reflected and can be learned from their historical Global Positioning System (GPS) trajectories. The Behavior-based Route Recommendation (BR 2 ) method is proposed to compute personalized routes based exclusively on users’ travel preferences. The concepts of appearance and transition behaviors are defined to describe users’ travel behaviors. The behaviors are extracted from users’ past travels and the missing behaviors, of unvisited locations, are estimated with the Optimized Random Walk with Restart technique. Furthermore, the temporal dependency of travel behaviors is considered by constructing a time difference interval histogram. A behavior graph is generated to allow the maximum probability route computation with the shortest path algorithm, resulting in the most likely route to be taken by a user. An extension is proposed, named BR 2 +, to better consider the temporal dependency and incorporate distance in the recommendation process. Experiments conducted on two real GPS trajectory data sets demonstrate the efficiency and effectiveness of the proposed method. In addition, a web-based geographic information system (GIS) called MPR is implemented to demonstrate differences in route recommendation when time, distance, or users’ preferences are considered, besides providing insight about users’ movement through data visualization of their spatial and temporal coverage.
AbstractList Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers’ preferences when suggesting routes. Various unknown circumstances may affect users’ travel behaviors between two locations on the road network, hence it is complicated to provide satisfactory personalized route recommendations. In this paper, it is believed that users’ travel behaviors are implicitly reflected and can be learned from their historical Global Positioning System (GPS) trajectories. The Behavior-based Route Recommendation (BR 2 ) method is proposed to compute personalized routes based exclusively on users’ travel preferences. The concepts of appearance and transition behaviors are defined to describe users’ travel behaviors. The behaviors are extracted from users’ past travels and the missing behaviors, of unvisited locations, are estimated with the Optimized Random Walk with Restart technique. Furthermore, the temporal dependency of travel behaviors is considered by constructing a time difference interval histogram. A behavior graph is generated to allow the maximum probability route computation with the shortest path algorithm, resulting in the most likely route to be taken by a user. An extension is proposed, named BR 2 +, to better consider the temporal dependency and incorporate distance in the recommendation process. Experiments conducted on two real GPS trajectory data sets demonstrate the efficiency and effectiveness of the proposed method. In addition, a web-based geographic information system (GIS) called MPR is implemented to demonstrate differences in route recommendation when time, distance, or users’ preferences are considered, besides providing insight about users’ movement through data visualization of their spatial and temporal coverage.
Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers’ preferences when suggesting routes. Various unknown circumstances may affect users’ travel behaviors between two locations on the road network, hence it is complicated to provide satisfactory personalized route recommendations. In this paper, it is believed that users’ travel behaviors are implicitly reflected and can be learned from their historical Global Positioning System (GPS) trajectories. The Behavior-based Route Recommendation (BR2) method is proposed to compute personalized routes based exclusively on users’ travel preferences. The concepts of appearance and transition behaviors are defined to describe users’ travel behaviors. The behaviors are extracted from users’ past travels and the missing behaviors, of unvisited locations, are estimated with the Optimized Random Walk with Restart technique. Furthermore, the temporal dependency of travel behaviors is considered by constructing a time difference interval histogram. A behavior graph is generated to allow the maximum probability route computation with the shortest path algorithm, resulting in the most likely route to be taken by a user. An extension is proposed, named BR2+, to better consider the temporal dependency and incorporate distance in the recommendation process. Experiments conducted on two real GPS trajectory data sets demonstrate the efficiency and effectiveness of the proposed method. In addition, a web-based geographic information system (GIS) called MPR is implemented to demonstrate differences in route recommendation when time, distance, or users’ preferences are considered, besides providing insight about users’ movement through data visualization of their spatial and temporal coverage.
Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers' preferences when suggesting routes. Various unknown circumstances may affect users' travel behaviors between two locations on the road network, hence it is complicated to provide satisfactory personalized route recommendations. In this paper, it is believed that users' travel behaviors are implicitly reflected and can be learned from their historical Global Positioning System (GPS) trajectories. The Behavior-based Route Recommendation (BR.sup.2) method is proposed to compute personalized routes based exclusively on users' travel preferences. The concepts of appearance and transition behaviors are defined to describe users' travel behaviors. The behaviors are extracted from users' past travels and the missing behaviors, of unvisited locations, are estimated with the Optimized Random Walk with Restart technique. Furthermore, the temporal dependency of travel behaviors is considered by constructing a time difference interval histogram. A behavior graph is generated to allow the maximum probability route computation with the shortest path algorithm, resulting in the most likely route to be taken by a user. An extension is proposed, named BR.sup.2+, to better consider the temporal dependency and incorporate distance in the recommendation process. Experiments conducted on two real GPS trajectory data sets demonstrate the efficiency and effectiveness of the proposed method. In addition, a web-based geographic information system (GIS) called MPR is implemented to demonstrate differences in route recommendation when time, distance, or users' preferences are considered, besides providing insight about users' movement through data visualization of their spatial and temporal coverage.
Audience Academic
Author de Oliveira e Silva, Rodrigo Augusto
Rahimi, Seyyed Mohammadreza
Cui, Ge
Wang, Xin
Author_xml – sequence: 1
  givenname: Rodrigo Augusto
  surname: de Oliveira e Silva
  fullname: de Oliveira e Silva, Rodrigo Augusto
  organization: Department of Geomatics Engineering, University of Calgary
– sequence: 2
  givenname: Ge
  surname: Cui
  fullname: Cui, Ge
  organization: Department of Geomatics Engineering, University of Calgary
– sequence: 3
  givenname: Seyyed Mohammadreza
  surname: Rahimi
  fullname: Rahimi, Seyyed Mohammadreza
  organization: Department of Geomatics Engineering, University of Calgary
– sequence: 4
  givenname: Xin
  orcidid: 0000-0003-3569-2126
  surname: Wang
  fullname: Wang, Xin
  email: xcwang@ucalgary.ca
  organization: Department of Geomatics Engineering, University of Calgary
BookMark eNp9kF1LwzAUhoNMcJv-Aa8KXneeJE3TXY7hF0z0Qq9Dmp6uGV0zk25Qf73RCt5JLhJO3ufw8szIpHMdEnJNYUEB5G2gIEGmwGgKkAmeDmdkSoXkqcxZNolvXmRpTqW4ILMQdgAgIjElz6_og-t0az-xSrw79ph4NG6_x67SvXVd0jdxvG2SxobeeWt0m_Ren7BNSmz0yTqf6LhgCDZckvNatwGvfu85eb-_e1s_ppuXh6f1apMaLoo-Rca0YVWpoaKs4jUCLwsOvML4UwItaJ3xkktT6ErXnGZ5Jo0REeaZAG34nNyMew_efRwx9Grnjj6WCIrlSynYki6zmFqMqa1uUdmudrG3iafCvTVRYG3jfCUpEwy4XEaAjYDxLgSPtTp4u9d-UBTUt2c1elbRs_rxrIYI8REKMdxt0f91-Yf6Asdxg9g
CitedBy_id crossref_primary_10_1007_s10707_022_00483_0
crossref_primary_10_1016_j_inffus_2024_102413
crossref_primary_10_1155_2023_8333560
crossref_primary_10_3233_JIFS_222932
Cites_doi 10.1007/3-540-44593-5_26
10.1145/1526709.1526816
10.1007/978-3-030-18305-9_26
10.1007/s12652-018-1081-z
10.1145/3292500.3330824
10.1109/BigData.2017.8257991
10.1007/978-3-319-57529-2_14
10.1145/371920.372071
10.1109/ICDE.2019.00060
10.1145/2820783.2820830
10.1016/j.eswa.2013.11.035
10.1109/JPROC.2016.2591592
10.1109/ICDE.2011.5767890
10.1109/TITS.2016.2565643
10.1109/TVT.2017.2764999
10.1109/MC.2009.263
10.1007/978-3-319-11116-2_50
10.1109/MSN.2018.00027
10.1145/2339530.2339562
10.1007/s11042-018-6776-9
10.1145/3178876.3186058
10.1109/IVS.2010.5547968
10.1145/3308558.3313465
10.1109/CSSS.2012.507
10.1145/2484028.2484114
10.1109/ICDM.2006.70
10.1145/2484028.2484030
10.1080/17538947.2017.1326535
10.1109/ICDE.2010.5447845
10.1145/1653771.1653818
10.4018/ijsir.2015010102
10.1109/ICDE.2015.7113313
10.1007/s10707-019-00360-3
10.1145/1409635.1409677
10.1007/3-540-44527-7_37
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
JQ2
K7-
KR7
L.G
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
DOI 10.1007/s10707-021-00453-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Computer Science
EISSN 1573-7624
EndPage 540
ExternalDocumentID A712520379
10_1007_s10707_021_00453_y
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7XC
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LK5
LLZTM
M0N
M2P
M4Y
M7R
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9O
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XH6
YLTOR
Z45
Z7Z
Z83
Z88
ZMTXR
~8M
~A9
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
7SC
7XB
8AL
8FD
8FK
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c358t-e22ac2dba0d12d3fe03b8303dee22b0181f43b37c8adaf314647cc5c353450ac3
IEDL.DBID AEJHL
ISSN 1384-6175
IngestDate Wed Nov 06 08:56:39 EST 2024
Tue Nov 12 23:38:43 EST 2024
Thu Nov 21 22:03:50 EST 2024
Sat Dec 16 12:08:50 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords GPS trajectories
Personalized travel route recommendation
Random walk with restart
Temporal dependency
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-e22ac2dba0d12d3fe03b8303dee22b0181f43b37c8adaf314647cc5c353450ac3
ORCID 0000-0003-3569-2126
PQID 2697529194
PQPubID 105513
PageCount 36
ParticipantIDs proquest_journals_2697529194
gale_infotracacademiconefile_A712520379
crossref_primary_10_1007_s10707_021_00453_y
springer_journals_10_1007_s10707_021_00453_y
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal on Advances of Computer Science for Geographic Information Systems
PublicationTitle GeoInformatica
PublicationTitleAbbrev Geoinformatica
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References McGintyLSmythBPersonalised route planning: A case-based approachEuropean Workshop on Advances in Case-Based Reasoning2000BerlinSpringer43144310.1007/3-540-44527-7_37
Zheng Y, Li Q, Chen Y, Xie X, Ma WY (2008) Understanding mobility based on GPS data. In Proceedings of the 10th international conference on Ubiquitous computing, pp 312-321
Dwivedi VP, Joshi CK, Laurent T, Bengio Y, Bresson X (2020) Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982
Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining interesting locations and travel sequences from GPS trajectories. In Proceedings of the 18th international conference on World wide web, pp 791-800
Tawfik AM, Rakha HA, Miller SD (2010) Driver route choice behavior: Experiences, perceptions, and choices. In 2010 IEEE Intelligent Vehicles Symposium. IEEE, New York, pp 1195-1200
Wang J, Wu N, Zhao WX, Peng F, Lin X (2019) Empowering A* search algorithms with neural networks for personalized route recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 539-547
Yu W, Lin X (2013) IRWR: incremental random walk with restart. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pp 1017-1020
Park H, Jung J, Kang U (2017) A comparative study of matrix factorization and random walk with restart in recommender systems. In 2017 IEEE International Conference on Big Data (Big Data). IEEE, New York, pp 756-765
Wei S, Ye N, Zhang S, Huang X, Zhu J (2012) Item-based collaborative filtering recommendation algorithm combining item category with interestingness measure. In 2012 International Conference on Computer Science and Service System. IEEE, New York, pp 2038-2041
Funke S, Storandt S (2015) Personalized route planning in road networks. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp 1-10
LiuLXuJLiaoSSChenHA real-time personalized route recommendation system for self-drive tourists based on vehicle to vehicle communicationExpert Syst Appl20144173409341710.1016/j.eswa.2013.11.035
CuiGLuoJWangXPersonalized travel route recommendation using collaborative filtering based on GPS trajectoriesInt J Digit Earth201811328430710.1080/17538947.2017.1326535
ZhuXHaoRChiHDuXFineRoute: Personalized and time-aware route recommendation based on check-insIEEE Trans Veh Technol20176611104611046910.1109/TVT.2017.2764999
Tong H, Faloutsos C, Pan JY (2006) Fast random walk with restart and its applications. In Sixth international conference on data mining (ICDM’06). IEEE, New York, pp 613-622
ZhangYCaoTLiSTianXYuanLJiaHVasilakosAVParallel processing systems for big data: a surveyProc IEEE2016104112114213610.1109/JPROC.2016.2591592
Qiu Y, Xu X (2018) RPSBPT: A Route Planning Scheme with Best Profit for Taxi. In 2018 14th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN). IEEE, New York, pp 121-126
Yuen CF, Singh AP, Goyal S, Ranu S, Bagchi A (2019) Beyond shortest paths: Route recommendations for ride-sharing. In The World Wide Web Conference, pp 2258-2269
DuSZhangHXuHYangJTuOTo make the travel healthier: a new tourism personalized route recommendation algorithmJ Ambient Intell Humaniz Comput20191093551356210.1007/s12652-018-1081-z
Newson P, Krumm J (2009) Hidden Markov map matching through noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pp 336-343
Yawalkar P, Ranu S (2019) Route recommendations on road networks for arbitrary user preference functions. In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, New York, pp 602-613
Mc Ginty L, Smyth B (2001) Collaborative case-based reasoning: Applications in personalised route planning. In International Conference on Case-Based Reasoning. Springer, Berlin, Heidelberg, pp 362-376
Lv B, Yu W, Wang L, McCann JA (2014, September) Efficient processing node proximity via random walk with restart. In Asia-Pacific Web Conference. Springer, Cham, pp 542-549
Letchner J, Krumm J, Horvitz E (2006) Trip router with individualized preferences (trip): Incorporating personalization into route planning. In AAAI, pp 1795–1800
Bastos-FilhoCJGuimarãesACMulti-objective fish school searchInt J Swarm Intell Res201561234010.4018/ijsir.2015010102
CampigottoPRudloffCLeodolterMBauerDPersonalized and situation-aware multimodal route recommendations: the FAVOUR algorithmIEEE Trans Intell Transp Syst20161819210210.1109/TITS.2016.2565643
KorenYBellRVolinskyCMatrix factorization techniques for recommender systemsComputer2009428303710.1109/MC.2009.263
Cui G, Wang X (2017) MaP2R: a personalized maximum probability route recommendation method using GPS trajectories. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Cham, pp 168-180
Dai J, Yang B, Guo C, Ding Z (2015) Personalized route recommendation using big trajectory data. In 2015 IEEE 31st international conference on data engineering. IEEE, New York, pp 543-554
Rahimi SM, Silva e, Far RADO, B., & Wang X (2019) Optimized random walk with restart for recommendation systems. In Canadian Conference on Artificial Intelligence. Springer, Cham, pp 320-332
Wei LY, Zheng Y, Peng WC (2012) Constructing popular routes from uncertain trajectories. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 195-203
NadiSDelavarMRMulti-criteria, personalized route planning using quantifier-guided ordered weighted averaging operatorsInt J Appl Earth Obs Geoinf2011133322335
Yuan Q, Cong G, Ma Z, Sun A, Thalmann NM (2013). Time-aware point-of-interest recommendation. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pp 363-372
ZhengYXieXMaWYGeoLife: A collaborative social networking service among user, location and trajectoryIEEE Data Eng Bull20103323239
Chen Z, Shen HT, Zhou X (2011) Discovering popular routes from trajectories. In 2011 IEEE 27th International Conference on Data Engineering. IEEE, New York, pp 900-911
RahimiSMFarBWangXBehavior-based location recommendation on location-based social networksGeoInformatica202024347750410.1007/s10707-019-00360-3
Kriegel HP, Renz M, Schubert M (2010) Route skyline queries: A multi-preference path planning approach. In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010). IEEE, New York,  (pp.261-272
Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, pp 285-295
Feng J, Li Y, Zhang C, Sun F, Meng F, Guo A, Jin D (2018) Deepmove: Predicting human mobility with attentional recurrent networks. In Proceedings of the 2018 world wide web conference, pp 1459-1468
Hu G, Qin Y, Shao J (2020) Personalized travel route recommendation from multi-source social media data. Multimed Tools Appl 79(45):33365–33380
Y Zheng (453_CR37) 2010; 33
X Zhu (453_CR25) 2017; 66
S Du (453_CR24) 2019; 10
453_CR28
SM Rahimi (453_CR26) 2020; 24
453_CR30
453_CR9
453_CR31
453_CR8
453_CR10
453_CR32
453_CR11
453_CR33
453_CR6
P Campigotto (453_CR18) 2016; 18
CJ Bastos-Filho (453_CR34) 2015; 6
453_CR13
453_CR35
453_CR4
453_CR14
453_CR36
453_CR3
453_CR2
453_CR1
S Nadi (453_CR21) 2011; 13
G Cui (453_CR5) 2018; 11
453_CR15
L McGinty (453_CR27) 2000
453_CR16
453_CR38
453_CR17
453_CR39
453_CR19
453_CR20
453_CR22
Y Zhang (453_CR7) 2016; 104
453_CR23
Y Koren (453_CR12) 2009; 42
L Liu (453_CR29) 2014; 41
References_xml – ident: 453_CR2
  doi: 10.1007/3-540-44593-5_26
– ident: 453_CR28
– ident: 453_CR36
  doi: 10.1145/1526709.1526816
– ident: 453_CR9
  doi: 10.1007/978-3-030-18305-9_26
– volume: 10
  start-page: 3551
  issue: 9
  year: 2019
  ident: 453_CR24
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-018-1081-z
  contributor:
    fullname: S Du
– ident: 453_CR31
  doi: 10.1145/3292500.3330824
– ident: 453_CR8
  doi: 10.1109/BigData.2017.8257991
– ident: 453_CR4
  doi: 10.1007/978-3-319-57529-2_14
– ident: 453_CR11
  doi: 10.1145/371920.372071
– ident: 453_CR22
  doi: 10.1109/ICDE.2019.00060
– volume: 33
  start-page: 32
  issue: 2
  year: 2010
  ident: 453_CR37
  publication-title: IEEE Data Eng Bull
  contributor:
    fullname: Y Zheng
– ident: 453_CR19
  doi: 10.1145/2820783.2820830
– volume: 41
  start-page: 3409
  issue: 7
  year: 2014
  ident: 453_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.11.035
  contributor:
    fullname: L Liu
– volume: 104
  start-page: 2114
  issue: 11
  year: 2016
  ident: 453_CR7
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2016.2591592
  contributor:
    fullname: Y Zhang
– ident: 453_CR16
  doi: 10.1109/ICDE.2011.5767890
– volume: 18
  start-page: 92
  issue: 1
  year: 2016
  ident: 453_CR18
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2016.2565643
  contributor:
    fullname: P Campigotto
– volume: 13
  start-page: 322
  issue: 3
  year: 2011
  ident: 453_CR21
  publication-title: Int J Appl Earth Obs Geoinf
  contributor:
    fullname: S Nadi
– volume: 66
  start-page: 10461
  issue: 11
  year: 2017
  ident: 453_CR25
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2017.2764999
  contributor:
    fullname: X Zhu
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  ident: 453_CR12
  publication-title: Computer
  doi: 10.1109/MC.2009.263
  contributor:
    fullname: Y Koren
– ident: 453_CR13
  doi: 10.1007/978-3-319-11116-2_50
– ident: 453_CR14
  doi: 10.1109/MSN.2018.00027
– ident: 453_CR17
  doi: 10.1145/2339530.2339562
– ident: 453_CR23
  doi: 10.1007/s11042-018-6776-9
– ident: 453_CR30
  doi: 10.1145/3178876.3186058
– ident: 453_CR3
  doi: 10.1109/IVS.2010.5547968
– ident: 453_CR15
  doi: 10.1145/3308558.3313465
– ident: 453_CR10
  doi: 10.1109/CSSS.2012.507
– ident: 453_CR38
  doi: 10.1145/2484028.2484114
– ident: 453_CR6
  doi: 10.1109/ICDM.2006.70
– ident: 453_CR33
  doi: 10.1145/2484028.2484030
– volume: 11
  start-page: 284
  issue: 3
  year: 2018
  ident: 453_CR5
  publication-title: Int J Digit Earth
  doi: 10.1080/17538947.2017.1326535
  contributor:
    fullname: G Cui
– ident: 453_CR39
– ident: 453_CR20
  doi: 10.1109/ICDE.2010.5447845
– ident: 453_CR32
  doi: 10.1145/1653771.1653818
– volume: 6
  start-page: 23
  issue: 1
  year: 2015
  ident: 453_CR34
  publication-title: Int J Swarm Intell Res
  doi: 10.4018/ijsir.2015010102
  contributor:
    fullname: CJ Bastos-Filho
– ident: 453_CR1
  doi: 10.1109/ICDE.2015.7113313
– volume: 24
  start-page: 477
  issue: 3
  year: 2020
  ident: 453_CR26
  publication-title: GeoInformatica
  doi: 10.1007/s10707-019-00360-3
  contributor:
    fullname: SM Rahimi
– ident: 453_CR35
  doi: 10.1145/1409635.1409677
– start-page: 431
  volume-title: European Workshop on Advances in Case-Based Reasoning
  year: 2000
  ident: 453_CR27
  doi: 10.1007/3-540-44527-7_37
  contributor:
    fullname: L McGinty
SSID ssj0005070
Score 2.3897521
Snippet Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers’ preferences when suggesting routes....
Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers' preferences when suggesting routes....
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 505
SubjectTerms Algorithms
Analysis
Behavior
Computation
Computer Science
Customization
Data Structures and Information Theory
Distance
Geographic information systems
Geographical information systems
Geographical Information Systems/Cartography
Geospatial data
Global positioning systems
GPS
Histograms
Information Storage and Retrieval
Information systems
Multimedia Information Systems
Navigation
Positioning systems
Probability theory
Random walk
Recommender systems
Remote sensing
Roads
Scientific visualization
Shortest-path problems
Trajectories
Travel
Title Personalized route recommendation through historical travel behavior analysis
URI https://link.springer.com/article/10.1007/s10707-021-00453-y
https://www.proquest.com/docview/2697529194
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWChUEAUCvKAxABBiR3XyVjRVhUChARI7WQ5sSMkIKA-hvLrOadOy3OAKYMdOzn7fHe2v-8AjgIVNzlNCmRu5IVUoM5poTxjhMl4qNGlt_sdvVtx3Y_aHUuTw-ZbF_njWXkiWSzUH7Buwu6qUYx-0Q1h3nQZVtD2cJzcK63ORe9ycbPDFzNwcBRaBBx3WJmfW_lkj76uyt-ORwur063-63s3YN05maQ1mxWbsGTyGlTLBA7E6XMNVl0K9IfpFlzdlG75m9Fk-II1iY2Wn5-Ny7tEXE4f8jCnFiFjm73oiZRgf6Icx8k23Hc7d-c9z-Va8FLGo7FnKFUp1YnydUA1y4zPkgjNmzZYklhWryxkCRNppLTKGK6voUhTji-zkPsqZTtQyV9yswskM1mCcaNC5yIJg9RElnAnoApdrzjiTVWHk1Li8nVGqSEX5MlWahKlJgupyWkdju2gSKtv-E-pcrAB7MsyV8kWNs2pz0Rch0Y5btIp4kjSZiw4jYM4rMNpOVCL4t_73ftb9X1YoxYYUVzkbUBlPJyYA1ge6cmhm5722R8M2u-3Z-B6
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGcpCoYAoFPCAxACREj_qZKygpQiokCgSm-XEjjpAQdAO5ddzTh3Kc4DZju2c787nx_cdwEGkk5agaYHMjQNOJdqckTqwVtpccIMhvTvv6N3I_l182nE0ObzEwhSv3csrycJTfwC7SXesRnH7i3EIC6aLsMSTFkddXmqfD86686cdoZyhg2PuIHDCg2V-buXTgvTVLX-7Hy2WnW7tfwNehRUfZpL2TC_WYMGO6lArUzgQb9F1qPok6MPpOlxdl4H5qzXk-RFrErdffniwPvMS8Vl9yPCdXISMXf6ie1LC_Yn2LCcbcNvtDE56gc-2EGRMxOPAUqozalIdmogaltuQpTEucMZiSep4vXLOUiazWBudM_SwXGaZwI8ZF6HO2CZURo8juwUkt3mKO0eN4UXKo8zGjnInohqDryQWLd2Ao1Lk6mlGqqHm9MlOagqlpgqpqWkDDt2sKGdx-E-Z9sAB7MtxV6k2Ni1oyGTSgGY5ccqb4ouirUQKmkQJb8BxOVHz4t_73f5b9X2o9gZXl-ryvH-xA8vUwSSKZ71NqIyfJ3YXFl_MZM_r6hsl3OK4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH6CIgELN6JQwAMSA0QkPupkrKBVgYKQAInNcmJHHaAg2g7l1_OcOi3ngFhjx07eYT8f3_cADiKd1AVNC2RuHHAq0eeM1IG10uaCGwzp3X5H-1ZeP8RnTUeTM0HxF7fdyyPJMabBsTT1BicvJj_5AHyTbouN4lIYYxIWjGZhjuNDtPS5RvOi3Zle8wjlGCkccweHEx4483Mrnyanr0P0t7PSYgpqLf__41dgyYefpDG2l1WYsb01WC5TOxDv6Wuw4JOjd0frcHVTBuxv1pDXZ6xJ3Dr66cn6jEzEZ_sh3QnpCBm4vEaPpKQBINqzn2zAfat5d9oOfBaGIGMiHgSWUp1Rk-rQRNSw3IYsjXHiMxZLUsf3lXOWMpnF2uic4cjLZZYJfJlxEeqMbUKl99yzW0Bym6e4otQYdqQ8ymzsqHgiqjEoS2JR11U4KsWvXsZkG2pKq-ykplBqqpCaGlXh0GlIOU_Ef8q0BxRgX47TSjWwaUFDJpMq1EolKu-ifUXriRQ0iRJeheNSadPi3_vd_lv1fZi_OWupzvn15Q4sUoeeKG771qAyeB3aXZjtm-GeN9t3abLrew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+route+recommendation+through+historical+travel+behavior+analysis&rft.jtitle=GeoInformatica&rft.au=de+Oliveira+e+Silva%2C+Rodrigo+Augusto&rft.au=Cui%2C+Ge&rft.au=Rahimi%2C+Seyyed+Mohammadreza&rft.au=Wang%2C+Xin&rft.date=2022-07-01&rft.pub=Springer+US&rft.issn=1384-6175&rft.eissn=1573-7624&rft.volume=26&rft.issue=3&rft.spage=505&rft.epage=540&rft_id=info:doi/10.1007%2Fs10707-021-00453-y&rft.externalDocID=10_1007_s10707_021_00453_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-6175&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-6175&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-6175&client=summon