Personalized route recommendation through historical travel behavior analysis
Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers’ preferences when suggesting routes. Various unknown circumstances may affect users’ travel behaviors between two locations on the road network, hence it is complicated to provide sati...
Saved in:
Published in: | GeoInformatica Vol. 26; no. 3; pp. 505 - 540 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-07-2022
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers’ preferences when suggesting routes. Various unknown circumstances may affect users’ travel behaviors between two locations on the road network, hence it is complicated to provide satisfactory personalized route recommendations. In this paper, it is believed that users’ travel behaviors are implicitly reflected and can be learned from their historical Global Positioning System (GPS) trajectories. The Behavior-based Route Recommendation (BR
2
) method is proposed to compute personalized routes based exclusively on users’ travel preferences. The concepts of appearance and transition behaviors are defined to describe users’ travel behaviors. The behaviors are extracted from users’ past travels and the missing behaviors, of unvisited locations, are estimated with the Optimized Random Walk with Restart technique. Furthermore, the temporal dependency of travel behaviors is considered by constructing a time difference interval histogram. A behavior graph is generated to allow the maximum probability route computation with the shortest path algorithm, resulting in the most likely route to be taken by a user. An extension is proposed, named BR
2
+, to better consider the temporal dependency and incorporate distance in the recommendation process. Experiments conducted on two real GPS trajectory data sets demonstrate the efficiency and effectiveness of the proposed method. In addition, a web-based geographic information system (GIS) called MPR is implemented to demonstrate differences in route recommendation when time, distance, or users’ preferences are considered, besides providing insight about users’ movement through data visualization of their spatial and temporal coverage. |
---|---|
AbstractList | Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers’ preferences when suggesting routes. Various unknown circumstances may affect users’ travel behaviors between two locations on the road network, hence it is complicated to provide satisfactory personalized route recommendations. In this paper, it is believed that users’ travel behaviors are implicitly reflected and can be learned from their historical Global Positioning System (GPS) trajectories. The Behavior-based Route Recommendation (BR
2
) method is proposed to compute personalized routes based exclusively on users’ travel preferences. The concepts of appearance and transition behaviors are defined to describe users’ travel behaviors. The behaviors are extracted from users’ past travels and the missing behaviors, of unvisited locations, are estimated with the Optimized Random Walk with Restart technique. Furthermore, the temporal dependency of travel behaviors is considered by constructing a time difference interval histogram. A behavior graph is generated to allow the maximum probability route computation with the shortest path algorithm, resulting in the most likely route to be taken by a user. An extension is proposed, named BR
2
+, to better consider the temporal dependency and incorporate distance in the recommendation process. Experiments conducted on two real GPS trajectory data sets demonstrate the efficiency and effectiveness of the proposed method. In addition, a web-based geographic information system (GIS) called MPR is implemented to demonstrate differences in route recommendation when time, distance, or users’ preferences are considered, besides providing insight about users’ movement through data visualization of their spatial and temporal coverage. Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers’ preferences when suggesting routes. Various unknown circumstances may affect users’ travel behaviors between two locations on the road network, hence it is complicated to provide satisfactory personalized route recommendations. In this paper, it is believed that users’ travel behaviors are implicitly reflected and can be learned from their historical Global Positioning System (GPS) trajectories. The Behavior-based Route Recommendation (BR2) method is proposed to compute personalized routes based exclusively on users’ travel preferences. The concepts of appearance and transition behaviors are defined to describe users’ travel behaviors. The behaviors are extracted from users’ past travels and the missing behaviors, of unvisited locations, are estimated with the Optimized Random Walk with Restart technique. Furthermore, the temporal dependency of travel behaviors is considered by constructing a time difference interval histogram. A behavior graph is generated to allow the maximum probability route computation with the shortest path algorithm, resulting in the most likely route to be taken by a user. An extension is proposed, named BR2+, to better consider the temporal dependency and incorporate distance in the recommendation process. Experiments conducted on two real GPS trajectory data sets demonstrate the efficiency and effectiveness of the proposed method. In addition, a web-based geographic information system (GIS) called MPR is implemented to demonstrate differences in route recommendation when time, distance, or users’ preferences are considered, besides providing insight about users’ movement through data visualization of their spatial and temporal coverage. Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers' preferences when suggesting routes. Various unknown circumstances may affect users' travel behaviors between two locations on the road network, hence it is complicated to provide satisfactory personalized route recommendations. In this paper, it is believed that users' travel behaviors are implicitly reflected and can be learned from their historical Global Positioning System (GPS) trajectories. The Behavior-based Route Recommendation (BR.sup.2) method is proposed to compute personalized routes based exclusively on users' travel preferences. The concepts of appearance and transition behaviors are defined to describe users' travel behaviors. The behaviors are extracted from users' past travels and the missing behaviors, of unvisited locations, are estimated with the Optimized Random Walk with Restart technique. Furthermore, the temporal dependency of travel behaviors is considered by constructing a time difference interval histogram. A behavior graph is generated to allow the maximum probability route computation with the shortest path algorithm, resulting in the most likely route to be taken by a user. An extension is proposed, named BR.sup.2+, to better consider the temporal dependency and incorporate distance in the recommendation process. Experiments conducted on two real GPS trajectory data sets demonstrate the efficiency and effectiveness of the proposed method. In addition, a web-based geographic information system (GIS) called MPR is implemented to demonstrate differences in route recommendation when time, distance, or users' preferences are considered, besides providing insight about users' movement through data visualization of their spatial and temporal coverage. |
Audience | Academic |
Author | de Oliveira e Silva, Rodrigo Augusto Rahimi, Seyyed Mohammadreza Cui, Ge Wang, Xin |
Author_xml | – sequence: 1 givenname: Rodrigo Augusto surname: de Oliveira e Silva fullname: de Oliveira e Silva, Rodrigo Augusto organization: Department of Geomatics Engineering, University of Calgary – sequence: 2 givenname: Ge surname: Cui fullname: Cui, Ge organization: Department of Geomatics Engineering, University of Calgary – sequence: 3 givenname: Seyyed Mohammadreza surname: Rahimi fullname: Rahimi, Seyyed Mohammadreza organization: Department of Geomatics Engineering, University of Calgary – sequence: 4 givenname: Xin orcidid: 0000-0003-3569-2126 surname: Wang fullname: Wang, Xin email: xcwang@ucalgary.ca organization: Department of Geomatics Engineering, University of Calgary |
BookMark | eNp9kF1LwzAUhoNMcJv-Aa8KXneeJE3TXY7hF0z0Qq9Dmp6uGV0zk25Qf73RCt5JLhJO3ufw8szIpHMdEnJNYUEB5G2gIEGmwGgKkAmeDmdkSoXkqcxZNolvXmRpTqW4ILMQdgAgIjElz6_og-t0az-xSrw79ph4NG6_x67SvXVd0jdxvG2SxobeeWt0m_Ren7BNSmz0yTqf6LhgCDZckvNatwGvfu85eb-_e1s_ppuXh6f1apMaLoo-Rca0YVWpoaKs4jUCLwsOvML4UwItaJ3xkktT6ErXnGZ5Jo0REeaZAG34nNyMew_efRwx9Grnjj6WCIrlSynYki6zmFqMqa1uUdmudrG3iafCvTVRYG3jfCUpEwy4XEaAjYDxLgSPtTp4u9d-UBTUt2c1elbRs_rxrIYI8REKMdxt0f91-Yf6Asdxg9g |
CitedBy_id | crossref_primary_10_1007_s10707_022_00483_0 crossref_primary_10_1016_j_inffus_2024_102413 crossref_primary_10_1155_2023_8333560 crossref_primary_10_3233_JIFS_222932 |
Cites_doi | 10.1007/3-540-44593-5_26 10.1145/1526709.1526816 10.1007/978-3-030-18305-9_26 10.1007/s12652-018-1081-z 10.1145/3292500.3330824 10.1109/BigData.2017.8257991 10.1007/978-3-319-57529-2_14 10.1145/371920.372071 10.1109/ICDE.2019.00060 10.1145/2820783.2820830 10.1016/j.eswa.2013.11.035 10.1109/JPROC.2016.2591592 10.1109/ICDE.2011.5767890 10.1109/TITS.2016.2565643 10.1109/TVT.2017.2764999 10.1109/MC.2009.263 10.1007/978-3-319-11116-2_50 10.1109/MSN.2018.00027 10.1145/2339530.2339562 10.1007/s11042-018-6776-9 10.1145/3178876.3186058 10.1109/IVS.2010.5547968 10.1145/3308558.3313465 10.1109/CSSS.2012.507 10.1145/2484028.2484114 10.1109/ICDM.2006.70 10.1145/2484028.2484030 10.1080/17538947.2017.1326535 10.1109/ICDE.2010.5447845 10.1145/1653771.1653818 10.4018/ijsir.2015010102 10.1109/ICDE.2015.7113313 10.1007/s10707-019-00360-3 10.1145/1409635.1409677 10.1007/3-540-44527-7_37 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2022 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2022 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ JQ2 K7- KR7 L.G L7M L~C L~D M0N M2P P5Z P62 PATMY PCBAR PQEST PQQKQ PQUKI PYCSY Q9U |
DOI | 10.1007/s10707-021-00453-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Computer Science |
EISSN | 1573-7624 |
EndPage | 540 |
ExternalDocumentID | A712520379 10_1007_s10707_021_00453_y |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7XC 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LK5 LLZTM M0N M2P M4Y M7R MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P62 P9O PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOS R89 R9I RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XH6 YLTOR Z45 Z7Z Z83 Z88 ZMTXR ~8M ~A9 AACDK AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 7SC 7XB 8AL 8FD 8FK F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c358t-e22ac2dba0d12d3fe03b8303dee22b0181f43b37c8adaf314647cc5c353450ac3 |
IEDL.DBID | AEJHL |
ISSN | 1384-6175 |
IngestDate | Wed Nov 06 08:56:39 EST 2024 Tue Nov 12 23:38:43 EST 2024 Thu Nov 21 22:03:50 EST 2024 Sat Dec 16 12:08:50 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | GPS trajectories Personalized travel route recommendation Random walk with restart Temporal dependency |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-e22ac2dba0d12d3fe03b8303dee22b0181f43b37c8adaf314647cc5c353450ac3 |
ORCID | 0000-0003-3569-2126 |
PQID | 2697529194 |
PQPubID | 105513 |
PageCount | 36 |
ParticipantIDs | proquest_journals_2697529194 gale_infotracacademiconefile_A712520379 crossref_primary_10_1007_s10707_021_00453_y springer_journals_10_1007_s10707_021_00453_y |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal on Advances of Computer Science for Geographic Information Systems |
PublicationTitle | GeoInformatica |
PublicationTitleAbbrev | Geoinformatica |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | McGintyLSmythBPersonalised route planning: A case-based approachEuropean Workshop on Advances in Case-Based Reasoning2000BerlinSpringer43144310.1007/3-540-44527-7_37 Zheng Y, Li Q, Chen Y, Xie X, Ma WY (2008) Understanding mobility based on GPS data. In Proceedings of the 10th international conference on Ubiquitous computing, pp 312-321 Dwivedi VP, Joshi CK, Laurent T, Bengio Y, Bresson X (2020) Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982 Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining interesting locations and travel sequences from GPS trajectories. In Proceedings of the 18th international conference on World wide web, pp 791-800 Tawfik AM, Rakha HA, Miller SD (2010) Driver route choice behavior: Experiences, perceptions, and choices. In 2010 IEEE Intelligent Vehicles Symposium. IEEE, New York, pp 1195-1200 Wang J, Wu N, Zhao WX, Peng F, Lin X (2019) Empowering A* search algorithms with neural networks for personalized route recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 539-547 Yu W, Lin X (2013) IRWR: incremental random walk with restart. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pp 1017-1020 Park H, Jung J, Kang U (2017) A comparative study of matrix factorization and random walk with restart in recommender systems. In 2017 IEEE International Conference on Big Data (Big Data). IEEE, New York, pp 756-765 Wei S, Ye N, Zhang S, Huang X, Zhu J (2012) Item-based collaborative filtering recommendation algorithm combining item category with interestingness measure. In 2012 International Conference on Computer Science and Service System. IEEE, New York, pp 2038-2041 Funke S, Storandt S (2015) Personalized route planning in road networks. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp 1-10 LiuLXuJLiaoSSChenHA real-time personalized route recommendation system for self-drive tourists based on vehicle to vehicle communicationExpert Syst Appl20144173409341710.1016/j.eswa.2013.11.035 CuiGLuoJWangXPersonalized travel route recommendation using collaborative filtering based on GPS trajectoriesInt J Digit Earth201811328430710.1080/17538947.2017.1326535 ZhuXHaoRChiHDuXFineRoute: Personalized and time-aware route recommendation based on check-insIEEE Trans Veh Technol20176611104611046910.1109/TVT.2017.2764999 Tong H, Faloutsos C, Pan JY (2006) Fast random walk with restart and its applications. In Sixth international conference on data mining (ICDM’06). IEEE, New York, pp 613-622 ZhangYCaoTLiSTianXYuanLJiaHVasilakosAVParallel processing systems for big data: a surveyProc IEEE2016104112114213610.1109/JPROC.2016.2591592 Qiu Y, Xu X (2018) RPSBPT: A Route Planning Scheme with Best Profit for Taxi. In 2018 14th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN). IEEE, New York, pp 121-126 Yuen CF, Singh AP, Goyal S, Ranu S, Bagchi A (2019) Beyond shortest paths: Route recommendations for ride-sharing. In The World Wide Web Conference, pp 2258-2269 DuSZhangHXuHYangJTuOTo make the travel healthier: a new tourism personalized route recommendation algorithmJ Ambient Intell Humaniz Comput20191093551356210.1007/s12652-018-1081-z Newson P, Krumm J (2009) Hidden Markov map matching through noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pp 336-343 Yawalkar P, Ranu S (2019) Route recommendations on road networks for arbitrary user preference functions. In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, New York, pp 602-613 Mc Ginty L, Smyth B (2001) Collaborative case-based reasoning: Applications in personalised route planning. In International Conference on Case-Based Reasoning. Springer, Berlin, Heidelberg, pp 362-376 Lv B, Yu W, Wang L, McCann JA (2014, September) Efficient processing node proximity via random walk with restart. In Asia-Pacific Web Conference. Springer, Cham, pp 542-549 Letchner J, Krumm J, Horvitz E (2006) Trip router with individualized preferences (trip): Incorporating personalization into route planning. In AAAI, pp 1795–1800 Bastos-FilhoCJGuimarãesACMulti-objective fish school searchInt J Swarm Intell Res201561234010.4018/ijsir.2015010102 CampigottoPRudloffCLeodolterMBauerDPersonalized and situation-aware multimodal route recommendations: the FAVOUR algorithmIEEE Trans Intell Transp Syst20161819210210.1109/TITS.2016.2565643 KorenYBellRVolinskyCMatrix factorization techniques for recommender systemsComputer2009428303710.1109/MC.2009.263 Cui G, Wang X (2017) MaP2R: a personalized maximum probability route recommendation method using GPS trajectories. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Cham, pp 168-180 Dai J, Yang B, Guo C, Ding Z (2015) Personalized route recommendation using big trajectory data. In 2015 IEEE 31st international conference on data engineering. IEEE, New York, pp 543-554 Rahimi SM, Silva e, Far RADO, B., & Wang X (2019) Optimized random walk with restart for recommendation systems. In Canadian Conference on Artificial Intelligence. Springer, Cham, pp 320-332 Wei LY, Zheng Y, Peng WC (2012) Constructing popular routes from uncertain trajectories. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 195-203 NadiSDelavarMRMulti-criteria, personalized route planning using quantifier-guided ordered weighted averaging operatorsInt J Appl Earth Obs Geoinf2011133322335 Yuan Q, Cong G, Ma Z, Sun A, Thalmann NM (2013). Time-aware point-of-interest recommendation. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pp 363-372 ZhengYXieXMaWYGeoLife: A collaborative social networking service among user, location and trajectoryIEEE Data Eng Bull20103323239 Chen Z, Shen HT, Zhou X (2011) Discovering popular routes from trajectories. In 2011 IEEE 27th International Conference on Data Engineering. IEEE, New York, pp 900-911 RahimiSMFarBWangXBehavior-based location recommendation on location-based social networksGeoInformatica202024347750410.1007/s10707-019-00360-3 Kriegel HP, Renz M, Schubert M (2010) Route skyline queries: A multi-preference path planning approach. In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010). IEEE, New York, (pp.261-272 Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, pp 285-295 Feng J, Li Y, Zhang C, Sun F, Meng F, Guo A, Jin D (2018) Deepmove: Predicting human mobility with attentional recurrent networks. In Proceedings of the 2018 world wide web conference, pp 1459-1468 Hu G, Qin Y, Shao J (2020) Personalized travel route recommendation from multi-source social media data. Multimed Tools Appl 79(45):33365–33380 Y Zheng (453_CR37) 2010; 33 X Zhu (453_CR25) 2017; 66 S Du (453_CR24) 2019; 10 453_CR28 SM Rahimi (453_CR26) 2020; 24 453_CR30 453_CR9 453_CR31 453_CR8 453_CR10 453_CR32 453_CR11 453_CR33 453_CR6 P Campigotto (453_CR18) 2016; 18 CJ Bastos-Filho (453_CR34) 2015; 6 453_CR13 453_CR35 453_CR4 453_CR14 453_CR36 453_CR3 453_CR2 453_CR1 S Nadi (453_CR21) 2011; 13 G Cui (453_CR5) 2018; 11 453_CR15 L McGinty (453_CR27) 2000 453_CR16 453_CR38 453_CR17 453_CR39 453_CR19 453_CR20 453_CR22 Y Zhang (453_CR7) 2016; 104 453_CR23 Y Koren (453_CR12) 2009; 42 L Liu (453_CR29) 2014; 41 |
References_xml | – ident: 453_CR2 doi: 10.1007/3-540-44593-5_26 – ident: 453_CR28 – ident: 453_CR36 doi: 10.1145/1526709.1526816 – ident: 453_CR9 doi: 10.1007/978-3-030-18305-9_26 – volume: 10 start-page: 3551 issue: 9 year: 2019 ident: 453_CR24 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-018-1081-z contributor: fullname: S Du – ident: 453_CR31 doi: 10.1145/3292500.3330824 – ident: 453_CR8 doi: 10.1109/BigData.2017.8257991 – ident: 453_CR4 doi: 10.1007/978-3-319-57529-2_14 – ident: 453_CR11 doi: 10.1145/371920.372071 – ident: 453_CR22 doi: 10.1109/ICDE.2019.00060 – volume: 33 start-page: 32 issue: 2 year: 2010 ident: 453_CR37 publication-title: IEEE Data Eng Bull contributor: fullname: Y Zheng – ident: 453_CR19 doi: 10.1145/2820783.2820830 – volume: 41 start-page: 3409 issue: 7 year: 2014 ident: 453_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.11.035 contributor: fullname: L Liu – volume: 104 start-page: 2114 issue: 11 year: 2016 ident: 453_CR7 publication-title: Proc IEEE doi: 10.1109/JPROC.2016.2591592 contributor: fullname: Y Zhang – ident: 453_CR16 doi: 10.1109/ICDE.2011.5767890 – volume: 18 start-page: 92 issue: 1 year: 2016 ident: 453_CR18 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2016.2565643 contributor: fullname: P Campigotto – volume: 13 start-page: 322 issue: 3 year: 2011 ident: 453_CR21 publication-title: Int J Appl Earth Obs Geoinf contributor: fullname: S Nadi – volume: 66 start-page: 10461 issue: 11 year: 2017 ident: 453_CR25 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2017.2764999 contributor: fullname: X Zhu – volume: 42 start-page: 30 issue: 8 year: 2009 ident: 453_CR12 publication-title: Computer doi: 10.1109/MC.2009.263 contributor: fullname: Y Koren – ident: 453_CR13 doi: 10.1007/978-3-319-11116-2_50 – ident: 453_CR14 doi: 10.1109/MSN.2018.00027 – ident: 453_CR17 doi: 10.1145/2339530.2339562 – ident: 453_CR23 doi: 10.1007/s11042-018-6776-9 – ident: 453_CR30 doi: 10.1145/3178876.3186058 – ident: 453_CR3 doi: 10.1109/IVS.2010.5547968 – ident: 453_CR15 doi: 10.1145/3308558.3313465 – ident: 453_CR10 doi: 10.1109/CSSS.2012.507 – ident: 453_CR38 doi: 10.1145/2484028.2484114 – ident: 453_CR6 doi: 10.1109/ICDM.2006.70 – ident: 453_CR33 doi: 10.1145/2484028.2484030 – volume: 11 start-page: 284 issue: 3 year: 2018 ident: 453_CR5 publication-title: Int J Digit Earth doi: 10.1080/17538947.2017.1326535 contributor: fullname: G Cui – ident: 453_CR39 – ident: 453_CR20 doi: 10.1109/ICDE.2010.5447845 – ident: 453_CR32 doi: 10.1145/1653771.1653818 – volume: 6 start-page: 23 issue: 1 year: 2015 ident: 453_CR34 publication-title: Int J Swarm Intell Res doi: 10.4018/ijsir.2015010102 contributor: fullname: CJ Bastos-Filho – ident: 453_CR1 doi: 10.1109/ICDE.2015.7113313 – volume: 24 start-page: 477 issue: 3 year: 2020 ident: 453_CR26 publication-title: GeoInformatica doi: 10.1007/s10707-019-00360-3 contributor: fullname: SM Rahimi – ident: 453_CR35 doi: 10.1145/1409635.1409677 – start-page: 431 volume-title: European Workshop on Advances in Case-Based Reasoning year: 2000 ident: 453_CR27 doi: 10.1007/3-540-44527-7_37 contributor: fullname: L McGinty |
SSID | ssj0005070 |
Score | 2.3897521 |
Snippet | Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers’ preferences when suggesting routes.... Popular navigation applications and services optimize routes based on either distance or time, disregarding drivers' preferences when suggesting routes.... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 505 |
SubjectTerms | Algorithms Analysis Behavior Computation Computer Science Customization Data Structures and Information Theory Distance Geographic information systems Geographical information systems Geographical Information Systems/Cartography Geospatial data Global positioning systems GPS Histograms Information Storage and Retrieval Information systems Multimedia Information Systems Navigation Positioning systems Probability theory Random walk Recommender systems Remote sensing Roads Scientific visualization Shortest-path problems Trajectories Travel |
Title | Personalized route recommendation through historical travel behavior analysis |
URI | https://link.springer.com/article/10.1007/s10707-021-00453-y https://www.proquest.com/docview/2697529194 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWChUEAUCvKAxABBiR3XyVjRVhUChARI7WQ5sSMkIKA-hvLrOadOy3OAKYMdOzn7fHe2v-8AjgIVNzlNCmRu5IVUoM5poTxjhMl4qNGlt_sdvVtx3Y_aHUuTw-ZbF_njWXkiWSzUH7Buwu6qUYx-0Q1h3nQZVtD2cJzcK63ORe9ycbPDFzNwcBRaBBx3WJmfW_lkj76uyt-ORwur063-63s3YN05maQ1mxWbsGTyGlTLBA7E6XMNVl0K9IfpFlzdlG75m9Fk-II1iY2Wn5-Ny7tEXE4f8jCnFiFjm73oiZRgf6Icx8k23Hc7d-c9z-Va8FLGo7FnKFUp1YnydUA1y4zPkgjNmzZYklhWryxkCRNppLTKGK6voUhTji-zkPsqZTtQyV9yswskM1mCcaNC5yIJg9RElnAnoApdrzjiTVWHk1Li8nVGqSEX5MlWahKlJgupyWkdju2gSKtv-E-pcrAB7MsyV8kWNs2pz0Rch0Y5btIp4kjSZiw4jYM4rMNpOVCL4t_73ftb9X1YoxYYUVzkbUBlPJyYA1ge6cmhm5722R8M2u-3Z-B6 |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGcpCoYAoFPCAxACREj_qZKygpQiokCgSm-XEjjpAQdAO5ddzTh3Kc4DZju2c787nx_cdwEGkk5agaYHMjQNOJdqckTqwVtpccIMhvTvv6N3I_l182nE0ObzEwhSv3csrycJTfwC7SXesRnH7i3EIC6aLsMSTFkddXmqfD86686cdoZyhg2PuIHDCg2V-buXTgvTVLX-7Hy2WnW7tfwNehRUfZpL2TC_WYMGO6lArUzgQb9F1qPok6MPpOlxdl4H5qzXk-RFrErdffniwPvMS8Vl9yPCdXISMXf6ie1LC_Yn2LCcbcNvtDE56gc-2EGRMxOPAUqozalIdmogaltuQpTEucMZiSep4vXLOUiazWBudM_SwXGaZwI8ZF6HO2CZURo8juwUkt3mKO0eN4UXKo8zGjnInohqDryQWLd2Ao1Lk6mlGqqHm9MlOagqlpgqpqWkDDt2sKGdx-E-Z9sAB7MtxV6k2Ni1oyGTSgGY5ccqb4ouirUQKmkQJb8BxOVHz4t_73f5b9X2o9gZXl-ryvH-xA8vUwSSKZ71NqIyfJ3YXFl_MZM_r6hsl3OK4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH6CIgELN6JQwAMSA0QkPupkrKBVgYKQAInNcmJHHaAg2g7l1_OcOi3ngFhjx07eYT8f3_cADiKd1AVNC2RuHHAq0eeM1IG10uaCGwzp3X5H-1ZeP8RnTUeTM0HxF7fdyyPJMabBsTT1BicvJj_5AHyTbouN4lIYYxIWjGZhjuNDtPS5RvOi3Zle8wjlGCkccweHEx4483Mrnyanr0P0t7PSYgpqLf__41dgyYefpDG2l1WYsb01WC5TOxDv6Wuw4JOjd0frcHVTBuxv1pDXZ6xJ3Dr66cn6jEzEZ_sh3QnpCBm4vEaPpKQBINqzn2zAfat5d9oOfBaGIGMiHgSWUp1Rk-rQRNSw3IYsjXHiMxZLUsf3lXOWMpnF2uic4cjLZZYJfJlxEeqMbUKl99yzW0Bym6e4otQYdqQ8ymzsqHgiqjEoS2JR11U4KsWvXsZkG2pKq-ykplBqqpCaGlXh0GlIOU_Ef8q0BxRgX47TSjWwaUFDJpMq1EolKu-ifUXriRQ0iRJeheNSadPi3_vd_lv1fZi_OWupzvn15Q4sUoeeKG771qAyeB3aXZjtm-GeN9t3abLrew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+route+recommendation+through+historical+travel+behavior+analysis&rft.jtitle=GeoInformatica&rft.au=de+Oliveira+e+Silva%2C+Rodrigo+Augusto&rft.au=Cui%2C+Ge&rft.au=Rahimi%2C+Seyyed+Mohammadreza&rft.au=Wang%2C+Xin&rft.date=2022-07-01&rft.pub=Springer+US&rft.issn=1384-6175&rft.eissn=1573-7624&rft.volume=26&rft.issue=3&rft.spage=505&rft.epage=540&rft_id=info:doi/10.1007%2Fs10707-021-00453-y&rft.externalDocID=10_1007_s10707_021_00453_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-6175&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-6175&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-6175&client=summon |