Fatty acid recycling in adipocytes: a role for glyceroneogenesis and phosphoenolpyruvate carboxykinase

FA (fatty acid) recycling in adipose tissue appears to be an important pathway for regulating FA release into the blood during fasting. Re-esterification requires G3P (glycerol 3-phosphate), which cannot be synthesized from glucose because glycolysis is much reduced under such circumstances. In addi...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical Society transactions Vol. 31; no. Pt 6; p. 1125
Main Authors: Forest, C, Tordjman, J, Glorian, M, Duplus, E, Chauvet, G, Quette, J, Beale, E G, Antoine, B
Format: Journal Article
Language:English
Published: England 01-12-2003
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:FA (fatty acid) recycling in adipose tissue appears to be an important pathway for regulating FA release into the blood during fasting. Re-esterification requires G3P (glycerol 3-phosphate), which cannot be synthesized from glucose because glycolysis is much reduced under such circumstances. In addition, G3P can scarcely originate from glycerol since glycerol kinase has a very low activity in white adipose tissue. It was shown about 35 years ago that a metabolic pathway named glyceroneogenesis, which allows G3P synthesis from non-carbohydrate precursors like pyruvate, lactate or amino acids, is activated during fasting. The major enzyme in this pathway was shown to be PEPCK-C [cytosolic phosphoenolpyruvate carboxykinase (GTP); EC 4.1.1.32]. The present review analyses the mechanisms by which a series of hormones and nutrients affect PEPCK-C gene transcription and glyceroneogenesis and describes evidence for dysregulation of this pathway in type 2 diabetes.
ISSN:0300-5127
DOI:10.1042/bst0311125