A Characterization of Normal Forms for Control Systems

Our goal in this paper is to generalize the method of inner-product normal forms to nonlinear control systems.

Saved in:
Bibliographic Details
Published in:Journal of dynamical and control systems Vol. 21; no. 2; pp. 273 - 284
Main Authors: Hamzi, Boumediene, Lamb, Jeroen S. W., Lewis, Debra
Format: Journal Article
Language:English
Published: Boston Springer US 01-04-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Our goal in this paper is to generalize the method of inner-product normal forms to nonlinear control systems.
AbstractList Our goal in this paper is to generalize the method of inner-product normal forms to nonlinear control systems.
Author Hamzi, Boumediene
Lewis, Debra
Lamb, Jeroen S. W.
Author_xml – sequence: 1
  givenname: Boumediene
  surname: Hamzi
  fullname: Hamzi, Boumediene
  email: b.hamzi@imperial.ac.uk
  organization: Department of Mathematics, Imperial College London
– sequence: 2
  givenname: Jeroen S. W.
  surname: Lamb
  fullname: Lamb, Jeroen S. W.
  organization: Department of Mathematics, Imperial College London
– sequence: 3
  givenname: Debra
  surname: Lewis
  fullname: Lewis, Debra
  organization: Mathematics Department, UC Santa Cruz
BookMark eNp9j8tOwzAQRS1UJNrCB7DzDxj8ijNeVhGFShUsgLXlOjakSmJkh0X5elyFNas7Gs0Z3bNCizGOHqFbRu8YpfV9ZhRAEMok0VxJwi7QklW1IKA0LMpMa014zeUVWuV8pJRqELBEaoObT5usm3zqfuzUxRHHgJ9jGmyPtyUyDjHhJo5Tij1-PeXJD_kaXQbbZ3_zl2v0vn14a57I_uVx12z2xIkKJmJBlVYyWF5DcD4oLg-ayZYrxYOuWxAhMO0spw5aKOvKi4MMgjsOknkn1ojNf12KOScfzFfqBptOhlFzFjezuCni5ixuWGH4zORyO374ZI7xO42l5j_QL0CaXJs
CitedBy_id crossref_primary_10_1007_s00220_022_04470_2
crossref_primary_10_1016_j_jde_2021_05_022
crossref_primary_10_1016_j_physd_2023_133813
crossref_primary_10_1137_18M1210769
crossref_primary_10_1115_1_4045286
crossref_primary_10_1007_s41980_022_00698_9
crossref_primary_10_1016_j_jde_2022_04_011
crossref_primary_10_1016_j_sysconle_2023_105529
Cites_doi 10.1080/002071797224081
10.1007/978-1-4612-1140-2
10.1007/b97515
10.1016/0375-9601(88)90207-1
10.1137/S0363012900381753
10.1137/S0363012900372714
10.1016/j.jde.2004.02.015
10.1016/S0167-6911(01)00136-0
10.1201/9781315220925-4
10.1023/A:1013909812387
10.1137/0330070
10.1016/j.sysconle.2006.01.001
10.1137/040603139
10.1017/CBO9780511665639
10.1007/BF01076439
10.1016/0167-2789(87)90049-2
10.1007/978-0-387-09724-4
10.1016/S1474-6670(17)35167-4
10.1007/978-1-4684-0147-9
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
Copyright_xml – notice: Springer Science+Business Media New York 2014
DBID AAYXX
CITATION
DOI 10.1007/s10883-014-9264-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
EISSN 1573-8698
EndPage 284
ExternalDocumentID 10_1007_s10883_014_9264_1
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z8M
ZMTXR
ZWQNP
_50
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c358t-a868834fa278fcef624b914d2662f97d83ff19ca20c8d8d265e3b4f32c2841ec3
IEDL.DBID AEJHL
ISSN 1079-2724
IngestDate Fri Nov 22 00:37:02 EST 2024
Sat Dec 16 12:07:48 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nonlinear control systems
93C10
34A34
93C15
Inner product normal forms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-a868834fa278fcef624b914d2662f97d83ff19ca20c8d8d265e3b4f32c2841ec3
PageCount 12
ParticipantIDs crossref_primary_10_1007_s10883_014_9264_1
springer_journals_10_1007_s10883_014_9264_1
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Journal of dynamical and control systems
PublicationTitleAbbrev J Dyn Control Syst
PublicationYear 2015
Publisher Springer US
Publisher_xml – name: Springer US
References Hamzi B. Quadratic stabilization of nonlinear control systems with a double-zero control bifurcation, Proceedings of the 5th IFAC symposium on Nonlinear Control Systems (NOLCOS’2001) 2001: 161–166.
Tall IA, Respondek W. 2004. Weighted canonical forms. Proceedings of the 43rd IEEE Conference on Decision and Control, pp. 1617–1622.
CourantRHilbertDMethods of mathematical physics, vol. II1961New YorkInterscience
TallIARespondekWFeedback classification of nonlinear single-input control systems with controllable linearization: normal forms, canonical forms, and invariantsSIAM J Control Optim20034151498153110.1137/S03630129003817531054.930131971960
ChowS-NLiCWangDNormal forms and bifurcation of planar vector fields1994CambridgeCambridge University Press10.1017/CBO97805116656390804.34041
BelitskiiGRInvariant normal forms and formal seriesFunct Anal Appl1979135960.10.1007/BF010764390406.22007527522
MurdockJNormal forms and unfoldings for local dynamical systems2003BerlinSpringer10.1007/b975151014.37001
Kang W, Krener AJ. 2006. Normal forms of nonlinear control systems. In Perruquetti W, Barbot, J-P, editors. Chaos in automatic control. p. 345–376.
BelitskiiGRC$^{\infty }$∞-normal forms of local vector fieldsActa Appl Math200270234110.1023/A:10139098123871011.340261892374
Hamzi B, Tall IA. Normal forms for discrete-time control systems, Proceedings of the 42nd IEEE Conference on Decision and Control 2003;2:1357–1361.
GuckenheimerJHolmesPNonlinear oscillations, dynamical systems, and bifurcations of vector fields1983BerlinSpringer10.1007/978-1-4612-1140-20515.34001
HamziBKangWKrenerAJThe controlled center dynamicsSIAM J Multiscale Model Simul20053483885210.1137/0406031391108.930272164238
ElphickCGlobal aspects of hamiltonian normal formsPhys Lett A198812741842410.1016/0375-9601(88)90207-1933024
HamziBKrenerAJKangWThe controlled center dynamics of discrete-time control bifurcationsSyst Control Lett200655758559610.1016/j.sysconle.2006.01.0011129.935012225369
MeyerKRHallGROffinDIntroduction to Hamiltonian dynamical systems and the N-body problem2009BerlinSpringer1179.70002
Hamzi B, Barbot J-P, Kang W. Normal forms for discrete-time parameterized systems with uncontrollable linearization, Proceedings of the 38th IEEE Conference on Decision and Control 1999: 2035–2039.
HamziBKangWBarbotJ-PAnalysis and control of Hopf bifurcationsSIAM J Control Optim20044262200222010.1137/S03630129003727141069.930142081416
PoincaréHMémoire sur les courbes définies par une équation différentielleJ Maths Pures Appl188541167244
Respondek W, Tall IA. 2006. Feedback equivalence of nonlinear control systems: a survey on formal approach. In W. Perruquetti and J-P. Barbot editors. Chaos in Automatic Control. p. 137–262.
ElphickCTirapeguiEBrachetMECoulletPIoossGA simple global characterization for normal forms of singular vector fieldsPhysica D1987299512710.1016/0167-2789(87)90049-20633.58020923885
MeyerKRNormal forms for the general equilibriumFunkcialaj Ekvacioj1984272612710558.34045775210
KangWKrenerAJExtended quadratic controller normal form and dynamic state feedback linearization of nonlinear systemsSIAM J. Control Optim1992301319133710.1137/03300700771.930341185625
MurdockJHypernormal form theory: foundations and algorithmsJ Differ Equ200420542446510.1016/j.jde.2004.02.0151062.340422092866
HamziBBarbotJ-PMonacoSNormand-CyrotDNonlinear discrete-time control of systems with a Naimark-Sacker bifurcationSyst Control Lett20014424525810.1016/S0167-6911(01)00136-00986.930582021960
BarbotJ-PMonacoSNormand-CyrotDQuadratic forms and approximated feedback linearization in discrete timeInt J Control199767456758710.1080/0020717972240810886.930381688107
ArnoldVIGeometrical methods in the theory of ordinary differential equations1983BerlinSpringer10.1007/978-1-4684-0147-90507.34003
J-P Barbot (9264_CR2) 1997; 67
KR Meyer (9264_CR19) 1984; 27
9264_CR25
9264_CR24
S-N Chow (9264_CR5) 1994
C Elphick (9264_CR7) 1987; 29
VI Arnold (9264_CR1) 1983
H Poincaré (9264_CR26) 1885; 4
GR Belitskii (9264_CR4) 2002; 70
B Hamzi (9264_CR11) 2005; 3
C Elphick (9264_CR8) 1988; 127
J Murdock (9264_CR22) 2004; 205
J Murdock (9264_CR21) 2003
IA Tall (9264_CR23) 2003; 41
9264_CR18
B Hamzi (9264_CR10) 2006; 55
9264_CR16
9264_CR14
9264_CR15
GR Belitskii (9264_CR3) 1979; 13
W Kang (9264_CR17) 1992; 30
KR Meyer (9264_CR20) 2009
J Guckenheimer (9264_CR9) 1983
B Hamzi (9264_CR13) 2001; 44
R Courant (9264_CR6) 1961
B Hamzi (9264_CR12) 2004; 42
References_xml – volume: 67
  start-page: 567
  issue: 4
  year: 1997
  ident: 9264_CR2
  publication-title: Int J Control
  doi: 10.1080/002071797224081
  contributor:
    fullname: J-P Barbot
– volume: 4
  start-page: 167
  issue: 1
  year: 1885
  ident: 9264_CR26
  publication-title: J Maths Pures Appl
  contributor:
    fullname: H Poincaré
– ident: 9264_CR24
– volume-title: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields
  year: 1983
  ident: 9264_CR9
  doi: 10.1007/978-1-4612-1140-2
  contributor:
    fullname: J Guckenheimer
– volume-title: Normal forms and unfoldings for local dynamical systems
  year: 2003
  ident: 9264_CR21
  doi: 10.1007/b97515
  contributor:
    fullname: J Murdock
– volume: 127
  start-page: 418
  year: 1988
  ident: 9264_CR8
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(88)90207-1
  contributor:
    fullname: C Elphick
– volume: 41
  start-page: 1498
  issue: 5
  year: 2003
  ident: 9264_CR23
  publication-title: SIAM J Control Optim
  doi: 10.1137/S0363012900381753
  contributor:
    fullname: IA Tall
– ident: 9264_CR16
– volume: 42
  start-page: 2200
  issue: 6
  year: 2004
  ident: 9264_CR12
  publication-title: SIAM J Control Optim
  doi: 10.1137/S0363012900372714
  contributor:
    fullname: B Hamzi
– ident: 9264_CR18
– volume: 205
  start-page: 424
  year: 2004
  ident: 9264_CR22
  publication-title: J Differ Equ
  doi: 10.1016/j.jde.2004.02.015
  contributor:
    fullname: J Murdock
– volume: 44
  start-page: 245
  year: 2001
  ident: 9264_CR13
  publication-title: Syst Control Lett
  doi: 10.1016/S0167-6911(01)00136-0
  contributor:
    fullname: B Hamzi
– ident: 9264_CR25
  doi: 10.1201/9781315220925-4
– volume: 70
  start-page: 23
  year: 2002
  ident: 9264_CR4
  publication-title: Acta Appl Math
  doi: 10.1023/A:1013909812387
  contributor:
    fullname: GR Belitskii
– volume: 30
  start-page: 1319
  year: 1992
  ident: 9264_CR17
  publication-title: SIAM J. Control Optim
  doi: 10.1137/0330070
  contributor:
    fullname: W Kang
– volume: 55
  start-page: 585
  issue: 7
  year: 2006
  ident: 9264_CR10
  publication-title: Syst Control Lett
  doi: 10.1016/j.sysconle.2006.01.001
  contributor:
    fullname: B Hamzi
– volume: 27
  start-page: 261
  year: 1984
  ident: 9264_CR19
  publication-title: Funkcialaj Ekvacioj
  contributor:
    fullname: KR Meyer
– volume: 3
  start-page: 838
  issue: 4
  year: 2005
  ident: 9264_CR11
  publication-title: SIAM J Multiscale Model Simul
  doi: 10.1137/040603139
  contributor:
    fullname: B Hamzi
– volume-title: Methods of mathematical physics, vol. II
  year: 1961
  ident: 9264_CR6
  contributor:
    fullname: R Courant
– ident: 9264_CR15
– volume-title: Normal forms and bifurcation of planar vector fields
  year: 1994
  ident: 9264_CR5
  doi: 10.1017/CBO9780511665639
  contributor:
    fullname: S-N Chow
– volume: 13
  start-page: 59
  year: 1979
  ident: 9264_CR3
  publication-title: Funct Anal Appl
  doi: 10.1007/BF01076439
  contributor:
    fullname: GR Belitskii
– volume: 29
  start-page: 95
  year: 1987
  ident: 9264_CR7
  publication-title: Physica D
  doi: 10.1016/0167-2789(87)90049-2
  contributor:
    fullname: C Elphick
– volume-title: Introduction to Hamiltonian dynamical systems and the N-body problem
  year: 2009
  ident: 9264_CR20
  doi: 10.1007/978-0-387-09724-4
  contributor:
    fullname: KR Meyer
– ident: 9264_CR14
  doi: 10.1016/S1474-6670(17)35167-4
– volume-title: Geometrical methods in the theory of ordinary differential equations
  year: 1983
  ident: 9264_CR1
  doi: 10.1007/978-1-4684-0147-9
  contributor:
    fullname: VI Arnold
SSID ssj0009838
Score 2.1257513
Snippet Our goal in this paper is to generalize the method of inner-product normal forms to nonlinear control systems.
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 273
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Control
Dynamical Systems
Dynamical Systems and Ergodic Theory
Mathematics
Mathematics and Statistics
Systems Theory
Vibration
Title A Characterization of Normal Forms for Control Systems
URI https://link.springer.com/article/10.1007/s10883-014-9264-1
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7ohqAPXqbivJEHn5TKmqRN-jjnyhQdggq-lTRNXpRO7Pb_PellF9AHfQotoQ2nJ_2-Jt_5CnDBZE_pVDrNE05yztPIk1pEHkcyYFWGGVGq3UfPYvwmb4fOJofOly7y9-tmR7J8US_VuknppD_cixDEPfziaSP0BJjb7f7wfvSwsNqVrCqAw1tSQXmzl_nTRVbRaHUrtESYeOc_Y9uF7ZpPkn6VAHuwZvIObC25DOLR49yatejARqn51MU-hH0ymNs1V9WYZGLJ2LHYDxJjUxCktGRQqdlJbW5-AK_x8GUw8urfKHiaBXLqKRni6LhVVEirjQ0pPhGfZwjN1EYik8xaP9KK9rTMJJ4ODEu5ZVQjdPlGs0No5ZPcHAGxQSpSZ-GlfMV5IJT0NVISI5iNuEh5Fy6bcCaflVtGsvBFdkFKMEiJC1Lid-GqiWZST5zi997Hf-p9ApvIbIJKYnMKrenXzJzBepHNzut0wTa-G988fQPat7f-
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BKwQcWAqIsvrACRSJ2E7sHKvS0Iq2F4rEzXKc-IRaRNr_Z5yliwQHOEWJrMQaj_NeNG9eAO6YfNQmkU7zhJuc8yTypBGRx5EMWJ1iRhRq9_6rGL_Lp56zyWF1L0yhdq9LksWbeq3ZTUqn_eFehCju4SdPk0chx1RudgaT53jltStZ2QGHz6SC8rqY-dNNNuFosxZaQEx8-K_JHcFBxShJp0yBY9jKpi3YX_MZxLPR0pw1b8FOofo0-QmEHdJdGjaX_ZhkZsnY8dgPEuMhJ0hqSbfUs5PK3vwU3uLepNv3qh8peIYFcu5pGeLsuNVUSGsyG1JcE5-nCM7URiKVzFo_Mpo-GplKvBxkLOGWUYPg5WeGnUFjOptm50BskIjEmXhpX3MeCC19g6QkE8xGXCS8Dfd1PNVn6ZehVs7ILkgKg6RckJTfhoc6mqraOvnvoy_-NPoWdvuT0VANB-OXS9hDnhOUgpsraMy_Ftk1bOfp4qbKnW86Vrpc
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7ohqIPXqbivObBJ6VsbdIlfZKxrUydQ1DBt5KmyZN0w27_35NedgF9EJ9KS2jD1xPOF853vgDcUNGWKhZW84SLnLE4cITigcOQDBiZYETkavfhKx9_iP7A2uTcV70wudq9KkkWPQ3WpSmdtaaJaa00vglhdUDMCTCjO7j9qTPcyGCg17uDx-Fo6bsraNENh9_3uMeqwuZPL1lPTet10TzdhPv_nugB7JVMk3SL0DiEDZ02YHfFfxDvnhemrVkDtnI1qMqOoNMlvYWRc9GnSSaGjC2__SQhXjKCZJf0Cp07KW3Pj-E9HLz1hk55wIKjqC9mjhQdnB0z0uPCKG06Hv4rlyWYtD0T8ERQY9xASa-tRCLwsa9pzAz1FCY1Vyt6ArV0kupTIMaPeWzNvaQrGfO5FK5CsqI5NQHjMWvCbYVtNC18NKKlY7IFKUKQIgtS5DbhrkI2KpdU9vvosz-Nvobtl34YjR7GT-ewg_THL3Q4F1Cbfc31JWxmyfyqDKNvrE3DHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Characterization+of+Normal+Forms+for+Control+Systems&rft.jtitle=Journal+of+dynamical+and+control+systems&rft.au=Hamzi%2C+Boumediene&rft.au=Lamb%2C+Jeroen+S.+W.&rft.au=Lewis%2C+Debra&rft.date=2015-04-01&rft.pub=Springer+US&rft.issn=1079-2724&rft.eissn=1573-8698&rft.volume=21&rft.issue=2&rft.spage=273&rft.epage=284&rft_id=info:doi/10.1007%2Fs10883-014-9264-1&rft.externalDocID=10_1007_s10883_014_9264_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-2724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-2724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-2724&client=summon