Light-Emitting Silicon Nanocrystals and Photonic Structures in Silicon Nitride

In this paper, we review our main results on the optical and electrical properties of light-emitting silicon nanocrystals (Si-ncs) obtained from the thermally induced nucleation in amorphous silicon-rich nitride (SRN) films deposited either by plasma-enhanced chemical vapor deposition (PE-CVD) or ma...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in quantum electronics Vol. 12; no. 6; pp. 1628 - 1635
Main Authors: Negro, L.D., Jae Hyung Yi, Michel, J., Kimerling, L.C., Hamel, S., Williamson, A., Galli, G.
Format: Journal Article
Language:English
Published: New York IEEE 01-11-2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we review our main results on the optical and electrical properties of light-emitting silicon nanocrystals (Si-ncs) obtained from the thermally induced nucleation in amorphous silicon-rich nitride (SRN) films deposited either by plasma-enhanced chemical vapor deposition (PE-CVD) or magnetron sputtering. In particular, we discuss the Si-ncs microscopic light emission mechanism combining the optical data with the first-principle calculations of the absorption/emission Stokes shifts and recombination lifetimes. In addition, we report on the electrical injection characteristics of simple p-i-n device structures showing efficient bipolar transport and room temperature electroluminescence, and demonstrate efficient energy sensitization of erbium (Er) ions from the Si-ncs embedded in the SRN matrices. We further show that the light-emitting nanocrystals in SRN can be embedded in aperiodic photonic environments, where the localized optical modes can be used to significantly enhance the Si-ncs emission intensity at different emission wavelengths. These results suggest that the Si-ncs embedded in the SRN matrices have a large potential for the fabrication of optically active photonic devices based on the Si technology
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2006.883138