Predicting solutions of large-scale optimization problems via machine learning: A case study in blood supply chain management
•A new methodology is developed that uses machine learning to predict the solution of large-scale stochastics optimization models.•The proposed approach is discussed in the context of operational decision making and operations management.•The proposed approach is tested on the blood transhipment pro...
Saved in:
Published in: | Computers & operations research Vol. 119; pp. 104941 - 20 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Elsevier Ltd
01-07-2020
Pergamon Press Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •A new methodology is developed that uses machine learning to predict the solution of large-scale stochastics optimization models.•The proposed approach is discussed in the context of operational decision making and operations management.•The proposed approach is tested on the blood transhipment problem under demand uncertainty.•Various machine learning models including ANN, KNN, CART and RF are implemented and compared.
Practical constrained optimization models are often large, and solving them in a reasonable time is a challenge in many applications. Further, many industries have limited access to professional commercial optimization solvers or computational power for use in their day-to-day operational decisions. In this paper, we propose a novel approach to deal with the issue of solving large operational stochastic optimization problems (SOPs) by using machine learning models. We assume that decision makers have access to facilities to optimally solve their large-scale optimization model for some initial and limited period and for some test instances. This might be through a collaborative project with research institutes or through short-term use of high-performance computing facilities. We propose that longer term support can be provided by utilizing the solutions (i.e., the optimal value of the actionable decision variables) of the stochastic optimization model from this initial period to train a machine learning model to learn optimal operational decisions in the future. In this study, the proposed approach is employed to make decisions on transshipment of blood units in a network of hospitals. We compare the decisions learned by several machine learning models with the optimal results obtained if the hospitals had access to commercial optimization solvers and computational power, and with the hospital network’s current empirical heuristic policy. The results show that using a trained neural network model reduces the average daily cost by about 29% compared with current policy, while the exact optimal policy reduces the average daily cost by 37%. Although optimization models cannot be fully replaced by machine learning, our proposed approach while not guaranteed to be optimal can improve operational decisions when optimization models are computationally expensive and infeasible for daily operational decisions in organizations such as not-for-profit and small and medium-sized enterprises. |
---|---|
AbstractList | •A new methodology is developed that uses machine learning to predict the solution of large-scale stochastics optimization models.•The proposed approach is discussed in the context of operational decision making and operations management.•The proposed approach is tested on the blood transhipment problem under demand uncertainty.•Various machine learning models including ANN, KNN, CART and RF are implemented and compared.
Practical constrained optimization models are often large, and solving them in a reasonable time is a challenge in many applications. Further, many industries have limited access to professional commercial optimization solvers or computational power for use in their day-to-day operational decisions. In this paper, we propose a novel approach to deal with the issue of solving large operational stochastic optimization problems (SOPs) by using machine learning models. We assume that decision makers have access to facilities to optimally solve their large-scale optimization model for some initial and limited period and for some test instances. This might be through a collaborative project with research institutes or through short-term use of high-performance computing facilities. We propose that longer term support can be provided by utilizing the solutions (i.e., the optimal value of the actionable decision variables) of the stochastic optimization model from this initial period to train a machine learning model to learn optimal operational decisions in the future. In this study, the proposed approach is employed to make decisions on transshipment of blood units in a network of hospitals. We compare the decisions learned by several machine learning models with the optimal results obtained if the hospitals had access to commercial optimization solvers and computational power, and with the hospital network’s current empirical heuristic policy. The results show that using a trained neural network model reduces the average daily cost by about 29% compared with current policy, while the exact optimal policy reduces the average daily cost by 37%. Although optimization models cannot be fully replaced by machine learning, our proposed approach while not guaranteed to be optimal can improve operational decisions when optimization models are computationally expensive and infeasible for daily operational decisions in organizations such as not-for-profit and small and medium-sized enterprises. Practical constrained optimization models are often large, and solving them in a reasonable time is a challenge in many applications. Further, many industries have limited access to professional commercial optimization solvers or computational power for use in their day-to-day operational decisions. In this paper, we propose a novel approach to deal with the issue of solving large operational stochastic optimization problems (SOPs) by using machine learning models. We assume that decision makers have access to facilities to optimally solve their large-scale optimization model for some initial and limited period and for some test instances. This might be through a collaborative project with research institutes or through short-term use of high-performance computing facilities. We propose that longer term support can be provided by utilizing the solutions (i.e., the optimal value of the actionable decision variables) of the stochastic optimization model from this initial period to train a machine learning model to learn optimal operational decisions in the future. In this study, the proposed approach is employed to make decisions on transshipment of blood units in a network of hospitals. We compare the decisions learned by several machine learning models with the optimal results obtained if the hospitals had access to commercial optimization solvers and computational power, and with the hospital network’s current empirical heuristic policy. The results show that using a trained neural network model reduces the average daily cost by about 29% compared with current policy, while the exact optimal policy reduces the average daily cost by 37%. Although optimization models cannot be fully replaced by machine learning, our proposed approach while not guaranteed to be optimal can improve operational decisions when optimization models are computationally expensive and infeasible for daily operational decisions in organizations such as not-for-profit and small and medium-sized enterprises. |
ArticleNumber | 104941 |
Author | Hosseinifard, Zahra Babaei, Toktam Dehghani, Maryam Smith-Miles, Kate Abbasi, Babak |
Author_xml | – sequence: 1 givenname: Babak orcidid: 0000-0002-4332-2662 surname: Abbasi fullname: Abbasi, Babak email: babak.Abbasi@rmit.edu.au organization: College of Business and Law, RMIT University, Melbourne, VIC 3000, Australia – sequence: 2 givenname: Toktam surname: Babaei fullname: Babaei, Toktam email: Toki.babaei@qut.edu.au organization: School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia – sequence: 3 givenname: Zahra surname: Hosseinifard fullname: Hosseinifard, Zahra email: zahra.h@unimelb.edu.au organization: Faculty of Business and Economics, The University of Melbourne, Parkville, VIC 3010, Australia – sequence: 4 givenname: Kate surname: Smith-Miles fullname: Smith-Miles, Kate email: smith-miles@unimelb.edu.au organization: School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia – sequence: 5 givenname: Maryam surname: Dehghani fullname: Dehghani, Maryam email: maryam.dehghani@rmit.edu.au organization: College of Business and Law, RMIT University, Melbourne, VIC 3000, Australia |
BookMark | eNp9kE1LxDAQhoOs4O7qD_AW8Nw1adMvPS2LX7CgBwVvIU2nu1napCbpwgr-d1Pq2bkM8_G-MzwLNNNGA0LXlKwoodntYSWNXcUkHmtWMnqG5rTIkyjP0s8ZmpOEpBFJWXGBFs4dSIg8pnP082ahVtIrvcPOtINXRjtsGtwKu4PISdECNr1XnfoW4xD31lQtdA4flcCdkHulAbcgrA4ed3iNpXCAnR_qE1YaV60xNXZD37cnLPcitDqhxQ460P4SnTeidXD1l5fo4_HhffMcbV-fXjbrbSSTNPeRrGpgIpF1CrQqYxkzlhKR1UI2UDQZqxghZU5LUjV1AxREysoslRWrkjwhpEmW6GbyDc9_DeA8P5jB6nCSxyzLCxqIkbBFpy1pjXMWGt5b1Ql74pTwkTI_8ECZj5T5RDlo7icNhPePCix3UoGWAaoF6Xlt1D_qX5g3iYs |
CitedBy_id | crossref_primary_10_1016_j_jprocont_2023_103049 crossref_primary_10_1007_s13369_020_05261_4 crossref_primary_10_1016_j_cor_2022_105769 crossref_primary_10_1007_s12063_021_00201_3 crossref_primary_10_3390_su13168997 crossref_primary_10_1016_j_cor_2021_105287 crossref_primary_10_1080_00207543_2022_2113928 crossref_primary_10_1016_j_engappai_2024_108472 crossref_primary_10_1016_j_asoc_2023_110357 crossref_primary_10_1108_JM2_12_2020_0322 crossref_primary_10_3390_systems11030124 crossref_primary_10_1080_16258312_2022_2161287 crossref_primary_10_1016_j_seps_2021_101121 crossref_primary_10_1016_j_cie_2021_107693 crossref_primary_10_1108_JM2_05_2022_0132 crossref_primary_10_1080_00207543_2023_2263088 crossref_primary_10_3390_ijerph19042139 crossref_primary_10_1007_s11831_022_09879_5 crossref_primary_10_1016_j_seps_2022_101439 crossref_primary_10_1080_01605682_2020_1821586 crossref_primary_10_1016_j_ijforecast_2023_05_004 crossref_primary_10_56203_iyd_1375921 crossref_primary_10_1007_s11590_023_02009_5 crossref_primary_10_1016_j_eswa_2023_120629 crossref_primary_10_1016_j_ijpe_2022_108743 crossref_primary_10_1016_j_matpr_2020_11_558 crossref_primary_10_1109_ACCESS_2021_3052835 crossref_primary_10_1007_s10479_024_06100_7 crossref_primary_10_1007_s12063_022_00302_7 crossref_primary_10_1016_j_eswa_2023_122976 crossref_primary_10_1016_j_ijpe_2021_108250 crossref_primary_10_3390_sym13101934 crossref_primary_10_1007_s00500_021_05618_3 crossref_primary_10_1109_TEVC_2022_3201691 crossref_primary_10_1007_s10479_023_05390_7 crossref_primary_10_1016_j_ejor_2023_04_037 crossref_primary_10_1093_cercor_bhae012 crossref_primary_10_1016_j_ijforecast_2022_07_004 crossref_primary_10_1007_s10479_024_05879_9 crossref_primary_10_1016_j_sca_2023_100024 crossref_primary_10_1080_09537287_2023_2286523 crossref_primary_10_1016_j_cor_2024_106751 crossref_primary_10_1016_j_resconrec_2024_107671 crossref_primary_10_1016_j_cie_2024_110149 crossref_primary_10_1007_s43926_023_00040_7 crossref_primary_10_1016_j_ijpe_2022_108440 crossref_primary_10_1111_itor_12981 crossref_primary_10_1080_00207543_2021_1946614 crossref_primary_10_1016_j_eswa_2024_123947 crossref_primary_10_1016_j_ejor_2023_04_041 crossref_primary_10_1016_j_engappai_2020_103789 crossref_primary_10_1016_j_engappai_2024_108837 crossref_primary_10_1287_ijoc_2021_1091 crossref_primary_10_1016_j_compchemeng_2024_108725 crossref_primary_10_1007_s00779_022_01679_9 crossref_primary_10_1016_j_ejor_2023_01_054 |
Cites_doi | 10.1287/inte.2017.0899 10.1016/j.cor.2018.04.006 10.1287/msom.2015.0557 10.1016/j.ejor.2018.05.046 10.1016/j.ijpe.2018.01.028 10.1016/j.eswa.2007.10.005 10.1016/j.ejor.2012.03.004 10.1016/0305-0548(92)90043-5 10.1039/a703565i 10.1016/j.ijpe.2017.02.006 10.1007/s11750-017-0451-6 10.1504/EJIE.2008.018438 10.1016/j.cor.2016.08.014 10.1016/S0305-0548(99)00141-0 10.1016/S1364-8152(99)00007-9 10.1287/opre.2016.1504 10.1145/1456650.1456656 10.1111/deci.12092 10.1111/j.2517-6161.1974.tb00994.x 10.1080/02626667.2010.512867 10.1287/ijoc.11.1.15 10.1057/jors.1994.62 10.1016/j.ress.2010.02.001 10.1007/s00521-015-1852-9 10.1038/35016072 10.1016/j.asoc.2007.02.001 10.1109/TSMC.1976.5408784 10.1016/S0377-2217(00)00248-4 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Pergamon Press Inc. Jul 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Jul 2020 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.cor.2020.104941 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Business |
EISSN | 1873-765X 0305-0548 |
EndPage | 20 |
ExternalDocumentID | 10_1016_j_cor_2020_104941 S0305054820300587 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEFWE AEHXG AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UAO UPT VH1 WUQ XFK XPP ZMT ~02 ~G- AAXKI AAYXX ABDPE AFJKZ AKRWK CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c357t-cbde4a3cd5e1b92c24450a6dacfe8f64b40097190bfdfe1ea54965cb4b37300f3 |
ISSN | 0305-0548 |
IngestDate | Mon Nov 18 21:26:37 EST 2024 Thu Nov 21 21:38:29 EST 2024 Fri Feb 23 02:50:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | k-NN Neural networks Large-Scale optimization Blood supply chain Machine learning Data mining Perishable inventory management CART |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c357t-cbde4a3cd5e1b92c24450a6dacfe8f64b40097190bfdfe1ea54965cb4b37300f3 |
ORCID | 0000-0002-4332-2662 |
PQID | 2467814940 |
PQPubID | 45870 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2467814940 crossref_primary_10_1016_j_cor_2020_104941 elsevier_sciencedirect_doi_10_1016_j_cor_2020_104941 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Computers & operations research |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
References | Abbasi, Hosseinifard (bib0001) 2014; 45 Vinyals, Fortunato, Jaitly (bib0045) 2015 Dehghani, Abbasi, Oliveira (bib0014) 2019; Online-published Hahnloser, Sarpeshkar, Mahowald, Douglas, Seung (bib0022) 2000; 405 Mossina, Rachelson, Delahaye (bib0034) 2019 Vaclavik, Novak, Scha, Hanzlek (bib0044) 2018 Dillon, Oliveira, Abbasi (bib0016) 2017; 187 Kosorok (bib0027) 2008 Xu, Caramanis, Mannor (bib0046) 2016; 64 Stone (bib0043) 1974 Burke, Ignizio (bib0011) 1992; 19 Bello, Pham, Le, Norouzi, Bengio (bib0006) 2016 Freeman, Melouk, Mittenthal (bib0019) 2015; 18 Larsen, Lachapelle, Bengio, Frejinger, Lacoste-Julien, Lodi (bib0029) 2018 Goyal, Giri (bib0020) 2001; 134 Bakker, Riezebos, Teunter (bib0005) 2012; 221 Dudani (bib0017) 1976; 4 Powell (bib0037) 2016 Kruber, Lübbecke, Parmentier (bib0028) 2017 Kingma, Ba (bib0026) 2014 Maier, Dandy (bib0033) 2000; 15 Deist, Patti, Wang, Krane, Sorenson, Craft (bib0015) 2018 Smith-Miles (bib0042) 2009; 41 Abbasi, Vakili, Chesneau (bib0004) 2017; 47 Zhu, Fan, Yang, Pei, Pardalos (bib0048) 2018 Lodi, Mossina, Rachelson (bib0030) 2019 Burden, Brereton, Walsh (bib0010) 1997; 122 Bengio, Grandvalet (bib0007) 2004; 5 Abbasi, Hosseinifard, Coit (bib0002) 2010; 95 Graves, Mohamed, Hinton (bib0021) 2013 Dehghani, Abbasi (bib0013) 2018; 198 Pasiouras, Tanna, Zopounidis (bib0036) 2005; 5 Curram, Mingers (bib0012) 1994; 45 Smith, Gupta (bib0041) 2000; 27 Hsu, Chang, Lin (bib0025) 2003 Londhe, Charhate (bib0032) 2010; 55 Lodi, Zarpellon (bib0031) 2017; 25 Hosseinifard, Abbasi (bib0024) 2018; 89 Zhang (bib0047) 2018 Bengio, Lodi, Prouvost (bib0008) 2018 Seera, Lim, Tan, Loo (bib0039) 2015; 26 Smith (bib0040) 1999; 11 Bishop (bib0009) 1995 Abbasi, Rabelo, Hosseinkouchack (bib0003) 2008; 2 Fischetti, Fraccaro (bib0018) 2019; 106 Ravi, Kurniawan, Thai, Kumar (bib0038) 2008; 8 Han, Pei, Kamber (bib0023) 2011 Paliwal, Kumar (bib0035) 2009; 36 Bello (10.1016/j.cor.2020.104941_bib0006) 2016 Curram (10.1016/j.cor.2020.104941_bib0012) 1994; 45 Kosorok (10.1016/j.cor.2020.104941_bib0027) 2008 Abbasi (10.1016/j.cor.2020.104941_bib0003) 2008; 2 Deist (10.1016/j.cor.2020.104941_bib0015) 2018 Kingma (10.1016/j.cor.2020.104941_bib0026) 2014 Vinyals (10.1016/j.cor.2020.104941_bib0045) 2015 Ravi (10.1016/j.cor.2020.104941_bib0038) 2008; 8 Bengio (10.1016/j.cor.2020.104941_bib0007) 2004; 5 Han (10.1016/j.cor.2020.104941_bib0023) 2011 Pasiouras (10.1016/j.cor.2020.104941_bib0036) 2005; 5 Kruber (10.1016/j.cor.2020.104941_bib0028) 2017 Abbasi (10.1016/j.cor.2020.104941_bib0004) 2017; 47 Mossina (10.1016/j.cor.2020.104941_bib0034) 2019 Bishop (10.1016/j.cor.2020.104941_bib0009) 1995 Vaclavik (10.1016/j.cor.2020.104941_bib0044) 2018 Lodi (10.1016/j.cor.2020.104941_bib0030) 2019 Lodi (10.1016/j.cor.2020.104941_bib0031) 2017; 25 Zhu (10.1016/j.cor.2020.104941_bib0048) 2018 Larsen (10.1016/j.cor.2020.104941_bib0029) 2018 Freeman (10.1016/j.cor.2020.104941_bib0019) 2015; 18 Fischetti (10.1016/j.cor.2020.104941_bib0018) 2019; 106 Graves (10.1016/j.cor.2020.104941_bib0021) 2013 Hosseinifard (10.1016/j.cor.2020.104941_bib0024) 2018; 89 Stone (10.1016/j.cor.2020.104941_bib0043) 1974 Abbasi (10.1016/j.cor.2020.104941_bib0001) 2014; 45 Paliwal (10.1016/j.cor.2020.104941_bib0035) 2009; 36 Dehghani (10.1016/j.cor.2020.104941_bib0014) 2019; Online-published Powell (10.1016/j.cor.2020.104941_bib0037) 2016 Xu (10.1016/j.cor.2020.104941_bib0046) 2016; 64 Seera (10.1016/j.cor.2020.104941_bib0039) 2015; 26 Maier (10.1016/j.cor.2020.104941_bib0033) 2000; 15 Dillon (10.1016/j.cor.2020.104941_bib0016) 2017; 187 Hsu (10.1016/j.cor.2020.104941_bib0025) 2003 Smith (10.1016/j.cor.2020.104941_bib0040) 1999; 11 Dudani (10.1016/j.cor.2020.104941_bib0017) 1976; 4 Smith-Miles (10.1016/j.cor.2020.104941_bib0042) 2009; 41 Dehghani (10.1016/j.cor.2020.104941_bib0013) 2018; 198 Goyal (10.1016/j.cor.2020.104941_bib0020) 2001; 134 Abbasi (10.1016/j.cor.2020.104941_bib0002) 2010; 95 Zhang (10.1016/j.cor.2020.104941_bib0047) 2018 Hahnloser (10.1016/j.cor.2020.104941_bib0022) 2000; 405 Londhe (10.1016/j.cor.2020.104941_bib0032) 2010; 55 Smith (10.1016/j.cor.2020.104941_bib0041) 2000; 27 Bengio (10.1016/j.cor.2020.104941_bib0008) 2018 Bakker (10.1016/j.cor.2020.104941_bib0005) 2012; 221 Burden (10.1016/j.cor.2020.104941_bib0010) 1997; 122 Burke (10.1016/j.cor.2020.104941_bib0011) 1992; 19 |
References_xml | – volume: 26 start-page: 1799 year: 2015 end-page: 1811 ident: bib0039 article-title: A hybrid fam–cart model and its application to medical data classification publication-title: Neural Comput. Appl. contributor: fullname: Loo – start-page: 1 year: 2018 end-page: 35 ident: bib0047 article-title: Artificial neural network publication-title: Multivariate Time Series Analysis in Climate and Environmental Research contributor: fullname: Zhang – year: 2018 ident: bib0008 article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon publication-title: arXiv preprint arXiv:1811.06128 contributor: fullname: Prouvost – volume: 89 start-page: 206 year: 2018 end-page: 212 ident: bib0024 article-title: The inventory centralization impacts on sustainability of the blood supply chain publication-title: Comput. Oper. Res. contributor: fullname: Abbasi – volume: 187 start-page: 27 year: 2017 end-page: 41 ident: bib0016 article-title: A two-stage stochastic programming model for inventory management in the blood supply chain publication-title: Int. J. Prod. Econ. contributor: fullname: Abbasi – volume: 5 year: 2005 ident: bib0036 article-title: Application of quantitative techniques for the prediction of bank acquisition targets contributor: fullname: Zopounidis – start-page: 1 year: 2018 end-page: 15 ident: bib0015 article-title: Simulation assisted machine learning publication-title: Working paper contributor: fullname: Craft – year: 2018 ident: bib0029 article-title: Predicting solution summaries to integer linear programs under imperfect information with machine learning publication-title: arXiv preprint arXiv:1807.11876 contributor: fullname: Lodi – volume: 45 start-page: 995 year: 2014 end-page: 1020 ident: bib0001 article-title: On the issuing policies for perishable items such as red blood cells and platelets in blood service publication-title: Decis. Sci. contributor: fullname: Hosseinifard – volume: 18 start-page: 245 year: 2015 end-page: 261 ident: bib0019 article-title: A scenario-based approach for operating theater scheduling under uncertainty publication-title: Manuf. Serv. Oper. Manage. contributor: fullname: Mittenthal – volume: 25 start-page: 207 year: 2017 end-page: 236 ident: bib0031 article-title: On learning and branching: a survey publication-title: TOP contributor: fullname: Zarpellon – year: 1995 ident: bib0009 article-title: Neural Networks for Pattern Recognition contributor: fullname: Bishop – start-page: 1 year: 2018 end-page: 49 ident: bib0048 article-title: Operating room planning and surgical case scheduling: a review of literature publication-title: J. Combin. Optim. contributor: fullname: Pardalos – volume: 11 start-page: 15 year: 1999 end-page: 34 ident: bib0040 article-title: Neural networks for combinatorial optimization: a review of more than a decade of research publication-title: INFORMS J. Comput. contributor: fullname: Smith – year: 2019 ident: bib0034 article-title: Multi-label classification for the generation of sub-problems in time-constrained combinatorial optimization publication-title: https://hal-enac.archives-ouvertes.fr/hal-02120128/document contributor: fullname: Delahaye – year: 2014 ident: bib0026 article-title: Adam: a method for stochastic optimization publication-title: arXiv preprint arXiv:1412.6980 contributor: fullname: Ba – volume: 8 start-page: 305 year: 2008 end-page: 315 ident: bib0038 article-title: Soft computing system for bank performance prediction publication-title: Appl. Soft Comput. contributor: fullname: Kumar – start-page: 2692 year: 2015 end-page: 2700 ident: bib0045 article-title: Pointer networks publication-title: Advances in Neural Information Processing Systems contributor: fullname: Jaitly – volume: Online-published start-page: 1 year: 2019 end-page: 16 ident: bib0014 article-title: Proactive transshipment in the blood supply chain: a stochastic programming approach publication-title: Omega contributor: fullname: Oliveira – volume: 106 start-page: 289 year: 2019 end-page: 297 ident: bib0018 article-title: Machine learning meets mathematical optimization to predict the optimal production of offshore wind parks publication-title: Comput. Oper. Res. contributor: fullname: Fraccaro – volume: 134 start-page: 1 year: 2001 end-page: 16 ident: bib0020 article-title: Recent trends in modeling of deteriorating inventory publication-title: Eur. J. Oper. Res. contributor: fullname: Giri – year: 2003 ident: bib0025 article-title: A practical guide to support vector classification publication-title: Working paper contributor: fullname: Lin – volume: 2 start-page: 428 year: 2008 end-page: 445 ident: bib0003 article-title: Estimating parameters of the three-parameter Weibull distribution using a neural network publication-title: Eur. J. Ind. Eng. contributor: fullname: Hosseinkouchack – volume: 198 start-page: 93 year: 2018 end-page: 103 ident: bib0013 article-title: An age-based lateral-transshipment policy for perishable items publication-title: Int. J. Prod. Econ. contributor: fullname: Abbasi – volume: 4 start-page: 325 year: 1976 end-page: 327 ident: bib0017 article-title: The distance-weighted k-nearest-neighbor rule publication-title: IEEE Trans. Syst. Man Cybern. contributor: fullname: Dudani – volume: 19 start-page: 179 year: 1992 end-page: 189 ident: bib0011 article-title: Neural networks and operations research: an overview publication-title: Comput. Oper. Res. contributor: fullname: Ignizio – volume: 5 start-page: 1089 year: 2004 end-page: 1105 ident: bib0007 article-title: No unbiased estimator of the variance of k-fold cross-validation publication-title: J. Mach. Learn. Res. contributor: fullname: Grandvalet – volume: 95 start-page: 647 year: 2010 end-page: 654 ident: bib0002 article-title: A neural network applied to estimate burr xii distribution parameters publication-title: Reliab. Eng. Syst. Saf. contributor: fullname: Coit – volume: 64 start-page: 958 year: 2016 end-page: 979 ident: bib0046 article-title: Statistical optimization in high dimensions publication-title: Oper. Res. contributor: fullname: Mannor – volume: 27 start-page: 1023 year: 2000 end-page: 1044 ident: bib0041 article-title: Neural networks in business: techniques and applications for the operations researcher publication-title: Comput. Oper. Res. contributor: fullname: Gupta – start-page: 6645 year: 2013 end-page: 6649 ident: bib0021 article-title: Speech recognition with deep recurrent neural networks publication-title: Acoustics, speech and signal processing (icassp), 2013 ieee international conference on contributor: fullname: Hinton – volume: 122 start-page: 1015 year: 1997 end-page: 1022 ident: bib0010 article-title: Cross-validatory selection of test and validation sets in multivariate calibration and neural networks as applied to spectroscopy publication-title: Analyst contributor: fullname: Walsh – volume: 47 start-page: 336 year: 2017 end-page: 351 ident: bib0004 article-title: Impacts of reducing the shelf life of red blood cells: a view from down under publication-title: Interfaces contributor: fullname: Chesneau – year: 2016 ident: bib0006 article-title: Neural combinatorial optimization with reinforcement learning publication-title: arXiv preprint arXiv:1611.09940 contributor: fullname: Bengio – volume: 15 start-page: 101 year: 2000 end-page: 124 ident: bib0033 article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications publication-title: Environ. Model. & Softw. contributor: fullname: Dandy – volume: 221 start-page: 275 year: 2012 end-page: 284 ident: bib0005 article-title: Review of inventory systems with deterioration since 2001 publication-title: Eur. J. Oper. Res. contributor: fullname: Teunter – start-page: 45 year: 2016 end-page: 83 ident: bib0037 article-title: A unified framework for optimization under uncertainty tutorials in operations research publication-title: Tutor. Oper. Res. contributor: fullname: Powell – year: 2011 ident: bib0023 article-title: Data Mining: Concepts and Techniques contributor: fullname: Kamber – start-page: 111 year: 1974 end-page: 147 ident: bib0043 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J. R. Stat. Soc. Series B (Methodological) contributor: fullname: Stone – volume: 36 start-page: 2 year: 2009 end-page: 17 ident: bib0035 article-title: Neural networks and statistical techniques: a review of applications publication-title: Expert Syst. Appl. contributor: fullname: Kumar – volume: 45 start-page: 440 year: 1994 end-page: 450 ident: bib0012 article-title: Neural networks, decision tree induction and discriminant analysis: an empirical comparison publication-title: J. Oper. Res. Soc. contributor: fullname: Mingers – year: 2008 ident: bib0027 article-title: Introduction to Empirical Processes and Semiparametric Inference. contributor: fullname: Kosorok – year: 2018 ident: bib0044 article-title: Accelerating the branch-and-price algorithm using machine learning publication-title: Eur. J. Oper. Res. contributor: fullname: Hanzlek – year: 2019 ident: bib0030 article-title: Learning to handle parameter perturbations in combinatorial optimization: an application to facility location publication-title: arXiv preprint arXiv:1907.05765 contributor: fullname: Rachelson – volume: 55 start-page: 1163 year: 2010 end-page: 1174 ident: bib0032 article-title: Comparison of data-driven modelling techniques for river flow forecasting publication-title: Hydrol. Sci. J.–Journal des Sciences Hydrologiques contributor: fullname: Charhate – volume: 41 start-page: 6 year: 2009 ident: bib0042 article-title: Cross-disciplinary perspectives on meta-learning for algorithm selection publication-title: ACM Comput. Surv. (CSUR) contributor: fullname: Smith-Miles – start-page: 202 year: 2017 end-page: 210 ident: bib0028 article-title: Learning when to use a decomposition publication-title: International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems contributor: fullname: Parmentier – volume: 405 start-page: 947 year: 2000 ident: bib0022 article-title: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit publication-title: Nature contributor: fullname: Seung – year: 2014 ident: 10.1016/j.cor.2020.104941_bib0026 article-title: Adam: a method for stochastic optimization publication-title: arXiv preprint arXiv:1412.6980 contributor: fullname: Kingma – year: 2016 ident: 10.1016/j.cor.2020.104941_bib0006 article-title: Neural combinatorial optimization with reinforcement learning publication-title: arXiv preprint arXiv:1611.09940 contributor: fullname: Bello – year: 2019 ident: 10.1016/j.cor.2020.104941_bib0030 article-title: Learning to handle parameter perturbations in combinatorial optimization: an application to facility location publication-title: arXiv preprint arXiv:1907.05765 contributor: fullname: Lodi – year: 1995 ident: 10.1016/j.cor.2020.104941_bib0009 contributor: fullname: Bishop – start-page: 1 year: 2018 ident: 10.1016/j.cor.2020.104941_bib0048 article-title: Operating room planning and surgical case scheduling: a review of literature publication-title: J. Combin. Optim. contributor: fullname: Zhu – year: 2008 ident: 10.1016/j.cor.2020.104941_bib0027 contributor: fullname: Kosorok – volume: 5 year: 2005 ident: 10.1016/j.cor.2020.104941_bib0036 contributor: fullname: Pasiouras – volume: 5 start-page: 1089 issue: Sep year: 2004 ident: 10.1016/j.cor.2020.104941_bib0007 article-title: No unbiased estimator of the variance of k-fold cross-validation publication-title: J. Mach. Learn. Res. contributor: fullname: Bengio – volume: 47 start-page: 336 issue: 4 year: 2017 ident: 10.1016/j.cor.2020.104941_bib0004 article-title: Impacts of reducing the shelf life of red blood cells: a view from down under publication-title: Interfaces doi: 10.1287/inte.2017.0899 contributor: fullname: Abbasi – volume: 106 start-page: 289 year: 2019 ident: 10.1016/j.cor.2020.104941_bib0018 article-title: Machine learning meets mathematical optimization to predict the optimal production of offshore wind parks publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2018.04.006 contributor: fullname: Fischetti – volume: 18 start-page: 245 issue: 2 year: 2015 ident: 10.1016/j.cor.2020.104941_bib0019 article-title: A scenario-based approach for operating theater scheduling under uncertainty publication-title: Manuf. Serv. Oper. Manage. doi: 10.1287/msom.2015.0557 contributor: fullname: Freeman – year: 2018 ident: 10.1016/j.cor.2020.104941_bib0044 article-title: Accelerating the branch-and-price algorithm using machine learning publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2018.05.046 contributor: fullname: Vaclavik – start-page: 45 year: 2016 ident: 10.1016/j.cor.2020.104941_bib0037 article-title: A unified framework for optimization under uncertainty tutorials in operations research publication-title: Tutor. Oper. Res. contributor: fullname: Powell – volume: 198 start-page: 93 year: 2018 ident: 10.1016/j.cor.2020.104941_bib0013 article-title: An age-based lateral-transshipment policy for perishable items publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2018.01.028 contributor: fullname: Dehghani – volume: 36 start-page: 2 issue: 1 year: 2009 ident: 10.1016/j.cor.2020.104941_bib0035 article-title: Neural networks and statistical techniques: a review of applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.10.005 contributor: fullname: Paliwal – volume: 221 start-page: 275 issue: 2 year: 2012 ident: 10.1016/j.cor.2020.104941_bib0005 article-title: Review of inventory systems with deterioration since 2001 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2012.03.004 contributor: fullname: Bakker – start-page: 1 year: 2018 ident: 10.1016/j.cor.2020.104941_bib0015 article-title: Simulation assisted machine learning publication-title: Working paper contributor: fullname: Deist – start-page: 6645 year: 2013 ident: 10.1016/j.cor.2020.104941_bib0021 article-title: Speech recognition with deep recurrent neural networks contributor: fullname: Graves – volume: 19 start-page: 179 issue: 3–4 year: 1992 ident: 10.1016/j.cor.2020.104941_bib0011 article-title: Neural networks and operations research: an overview publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(92)90043-5 contributor: fullname: Burke – volume: 122 start-page: 1015 issue: 10 year: 1997 ident: 10.1016/j.cor.2020.104941_bib0010 article-title: Cross-validatory selection of test and validation sets in multivariate calibration and neural networks as applied to spectroscopy publication-title: Analyst doi: 10.1039/a703565i contributor: fullname: Burden – year: 2011 ident: 10.1016/j.cor.2020.104941_bib0023 contributor: fullname: Han – volume: 187 start-page: 27 year: 2017 ident: 10.1016/j.cor.2020.104941_bib0016 article-title: A two-stage stochastic programming model for inventory management in the blood supply chain publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2017.02.006 contributor: fullname: Dillon – volume: 25 start-page: 207 issue: 2 year: 2017 ident: 10.1016/j.cor.2020.104941_bib0031 article-title: On learning and branching: a survey publication-title: TOP doi: 10.1007/s11750-017-0451-6 contributor: fullname: Lodi – volume: 2 start-page: 428 issue: 4 year: 2008 ident: 10.1016/j.cor.2020.104941_bib0003 article-title: Estimating parameters of the three-parameter Weibull distribution using a neural network publication-title: Eur. J. Ind. Eng. doi: 10.1504/EJIE.2008.018438 contributor: fullname: Abbasi – volume: 89 start-page: 206 year: 2018 ident: 10.1016/j.cor.2020.104941_bib0024 article-title: The inventory centralization impacts on sustainability of the blood supply chain publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.08.014 contributor: fullname: Hosseinifard – start-page: 202 year: 2017 ident: 10.1016/j.cor.2020.104941_bib0028 article-title: Learning when to use a decomposition contributor: fullname: Kruber – start-page: 1 year: 2018 ident: 10.1016/j.cor.2020.104941_bib0047 article-title: Artificial neural network contributor: fullname: Zhang – volume: 27 start-page: 1023 issue: 11–12 year: 2000 ident: 10.1016/j.cor.2020.104941_bib0041 article-title: Neural networks in business: techniques and applications for the operations researcher publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(99)00141-0 contributor: fullname: Smith – volume: Online-published start-page: 1 year: 2019 ident: 10.1016/j.cor.2020.104941_bib0014 article-title: Proactive transshipment in the blood supply chain: a stochastic programming approach publication-title: Omega contributor: fullname: Dehghani – volume: 15 start-page: 101 issue: 1 year: 2000 ident: 10.1016/j.cor.2020.104941_bib0033 article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications publication-title: Environ. Model. & Softw. doi: 10.1016/S1364-8152(99)00007-9 contributor: fullname: Maier – year: 2018 ident: 10.1016/j.cor.2020.104941_bib0008 article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon publication-title: arXiv preprint arXiv:1811.06128 contributor: fullname: Bengio – year: 2018 ident: 10.1016/j.cor.2020.104941_bib0029 article-title: Predicting solution summaries to integer linear programs under imperfect information with machine learning publication-title: arXiv preprint arXiv:1807.11876 contributor: fullname: Larsen – volume: 64 start-page: 958 issue: 4 year: 2016 ident: 10.1016/j.cor.2020.104941_bib0046 article-title: Statistical optimization in high dimensions publication-title: Oper. Res. doi: 10.1287/opre.2016.1504 contributor: fullname: Xu – volume: 41 start-page: 6 issue: 1 year: 2009 ident: 10.1016/j.cor.2020.104941_bib0042 article-title: Cross-disciplinary perspectives on meta-learning for algorithm selection publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/1456650.1456656 contributor: fullname: Smith-Miles – volume: 45 start-page: 995 issue: 5 year: 2014 ident: 10.1016/j.cor.2020.104941_bib0001 article-title: On the issuing policies for perishable items such as red blood cells and platelets in blood service publication-title: Decis. Sci. doi: 10.1111/deci.12092 contributor: fullname: Abbasi – start-page: 111 year: 1974 ident: 10.1016/j.cor.2020.104941_bib0043 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J. R. Stat. Soc. Series B (Methodological) doi: 10.1111/j.2517-6161.1974.tb00994.x contributor: fullname: Stone – start-page: 2692 year: 2015 ident: 10.1016/j.cor.2020.104941_bib0045 article-title: Pointer networks contributor: fullname: Vinyals – volume: 55 start-page: 1163 issue: 7 year: 2010 ident: 10.1016/j.cor.2020.104941_bib0032 article-title: Comparison of data-driven modelling techniques for river flow forecasting publication-title: Hydrol. Sci. J.–Journal des Sciences Hydrologiques doi: 10.1080/02626667.2010.512867 contributor: fullname: Londhe – year: 2019 ident: 10.1016/j.cor.2020.104941_bib0034 article-title: Multi-label classification for the generation of sub-problems in time-constrained combinatorial optimization publication-title: https://hal-enac.archives-ouvertes.fr/hal-02120128/document contributor: fullname: Mossina – volume: 11 start-page: 15 issue: 1 year: 1999 ident: 10.1016/j.cor.2020.104941_bib0040 article-title: Neural networks for combinatorial optimization: a review of more than a decade of research publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.11.1.15 contributor: fullname: Smith – volume: 45 start-page: 440 issue: 4 year: 1994 ident: 10.1016/j.cor.2020.104941_bib0012 article-title: Neural networks, decision tree induction and discriminant analysis: an empirical comparison publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.1994.62 contributor: fullname: Curram – volume: 95 start-page: 647 issue: 6 year: 2010 ident: 10.1016/j.cor.2020.104941_bib0002 article-title: A neural network applied to estimate burr xii distribution parameters publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2010.02.001 contributor: fullname: Abbasi – year: 2003 ident: 10.1016/j.cor.2020.104941_bib0025 article-title: A practical guide to support vector classification publication-title: Working paper contributor: fullname: Hsu – volume: 26 start-page: 1799 issue: 8 year: 2015 ident: 10.1016/j.cor.2020.104941_bib0039 article-title: A hybrid fam–cart model and its application to medical data classification publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1852-9 contributor: fullname: Seera – volume: 405 start-page: 947 issue: 6789 year: 2000 ident: 10.1016/j.cor.2020.104941_bib0022 article-title: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit publication-title: Nature doi: 10.1038/35016072 contributor: fullname: Hahnloser – volume: 8 start-page: 305 issue: 1 year: 2008 ident: 10.1016/j.cor.2020.104941_bib0038 article-title: Soft computing system for bank performance prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.02.001 contributor: fullname: Ravi – volume: 4 start-page: 325 year: 1976 ident: 10.1016/j.cor.2020.104941_bib0017 article-title: The distance-weighted k-nearest-neighbor rule publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1976.5408784 contributor: fullname: Dudani – volume: 134 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.cor.2020.104941_bib0020 article-title: Recent trends in modeling of deteriorating inventory publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(00)00248-4 contributor: fullname: Goyal |
SSID | ssj0000721 |
Score | 2.580468 |
Snippet | •A new methodology is developed that uses machine learning to predict the solution of large-scale stochastics optimization models.•The proposed approach is... Practical constrained optimization models are often large, and solving them in a reasonable time is a challenge in many applications. Further, many industries... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 104941 |
SubjectTerms | Blood Blood supply chain CART Data mining Decisions Hospitals k-NN Large-Scale optimization Machine learning Neural networks Operations research Optimization Perishable inventory management Research facilities Solvers Supply chain management Supply chains |
Title | Predicting solutions of large-scale optimization problems via machine learning: A case study in blood supply chain management |
URI | https://dx.doi.org/10.1016/j.cor.2020.104941 https://www.proquest.com/docview/2467814940 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6uxKCA48CYmFBPnAiMmriPFxuFRQtIBDSFqniEtmOvWShyarpInHgvzN-Jd0iECBxiVpXrat-X2cm429mEHrMwK1XyVQSCK0pSYWKCbgFQRiVKpeSglMw-Y7jk-Ldkr2Yp_PRKEyoGtb-K9KwBlibytm_QLv_UFiAx4A5XAF1uP4R7u_X5ujFipn7jUxE-MVIvkkHkKioBTux8gWYkR8p00Vfax6trLZShWESp65wXYKrc41oTXrEat2jzowD_WYKh2FpdVlEEzof-IkRneVXe67WXnfnOwz1meiZAGdau-MPwYfaIXii7PKi_bzhq56C4NhV3dSaO13-R_5p3XsXmyoib2s_y_sN90omn9mA29iggvXptlByM-ibbJmXURtmrj3nU-WsNisoKfJsecmsO1P8k4tw2YozgNi0g03sKffUNd_a6bx9YvYyWyUT09SfFXvoIAF7Bub0YPZqvnw9uPzCFvj13y0cn1sh4c5GvwqAdkIBG98sbqLr_sYEzxyjbqGRasboSqiLGKMbAU3s3cEYXdtqZnkbfR-Yh3vm4VbjLebhbebhwDwMzMOeeTgw7xmeYcM7bHmH6wZb3mHHO2x5hwfe3UEfXs4Xz4-JH-5BJM2KDZGiUimnsspULKaJhDAzm_C84lIrpvNUpLa92XQidKVVrHhmJhtIkQpqRixoehftN22j7iGsKwZxaA737hD955SzoshVrjmNOZNFmhyiJ-EXL89dD5cyiBvPSoCnNPCUDp5DlAZMSh-EuuCyBAL97m1HAb_SW4OuTCAKYTG8PLn_b5_6AF0d_hhHaH-zvlAP0V5XXTzyFPwB4SW2mw |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+solutions+of+large-scale+optimization+problems+via+machine+learning%3A+A+case+study+in+blood+supply+chain+management&rft.jtitle=Computers+%26+operations+research&rft.au=Abbasi%2C+Babak&rft.au=Babaei%2C+Toktam&rft.au=Hosseinifard%2C+Zahra&rft.au=Smith-Miles%2C+Kate&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0305-0548&rft.eissn=1873-765X&rft.volume=119&rft_id=info:doi/10.1016%2Fj.cor.2020.104941&rft.externalDocID=S0305054820300587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |