Predicting solutions of large-scale optimization problems via machine learning: A case study in blood supply chain management

•A new methodology is developed that uses machine learning to predict the solution of large-scale stochastics optimization models.•The proposed approach is discussed in the context of operational decision making and operations management.•The proposed approach is tested on the blood transhipment pro...

Full description

Saved in:
Bibliographic Details
Published in:Computers & operations research Vol. 119; pp. 104941 - 20
Main Authors: Abbasi, Babak, Babaei, Toktam, Hosseinifard, Zahra, Smith-Miles, Kate, Dehghani, Maryam
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01-07-2020
Pergamon Press Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A new methodology is developed that uses machine learning to predict the solution of large-scale stochastics optimization models.•The proposed approach is discussed in the context of operational decision making and operations management.•The proposed approach is tested on the blood transhipment problem under demand uncertainty.•Various machine learning models including ANN, KNN, CART and RF are implemented and compared. Practical constrained optimization models are often large, and solving them in a reasonable time is a challenge in many applications. Further, many industries have limited access to professional commercial optimization solvers or computational power for use in their day-to-day operational decisions. In this paper, we propose a novel approach to deal with the issue of solving large operational stochastic optimization problems (SOPs) by using machine learning models. We assume that decision makers have access to facilities to optimally solve their large-scale optimization model for some initial and limited period and for some test instances. This might be through a collaborative project with research institutes or through short-term use of high-performance computing facilities. We propose that longer term support can be provided by utilizing the solutions (i.e., the optimal value of the actionable decision variables) of the stochastic optimization model from this initial period to train a machine learning model to learn optimal operational decisions in the future. In this study, the proposed approach is employed to make decisions on transshipment of blood units in a network of hospitals. We compare the decisions learned by several machine learning models with the optimal results obtained if the hospitals had access to commercial optimization solvers and computational power, and with the hospital network’s current empirical heuristic policy. The results show that using a trained neural network model reduces the average daily cost by about 29% compared with current policy, while the exact optimal policy reduces the average daily cost by 37%. Although optimization models cannot be fully replaced by machine learning, our proposed approach while not guaranteed to be optimal can improve operational decisions when optimization models are computationally expensive and infeasible for daily operational decisions in organizations such as not-for-profit and small and medium-sized enterprises.
AbstractList •A new methodology is developed that uses machine learning to predict the solution of large-scale stochastics optimization models.•The proposed approach is discussed in the context of operational decision making and operations management.•The proposed approach is tested on the blood transhipment problem under demand uncertainty.•Various machine learning models including ANN, KNN, CART and RF are implemented and compared. Practical constrained optimization models are often large, and solving them in a reasonable time is a challenge in many applications. Further, many industries have limited access to professional commercial optimization solvers or computational power for use in their day-to-day operational decisions. In this paper, we propose a novel approach to deal with the issue of solving large operational stochastic optimization problems (SOPs) by using machine learning models. We assume that decision makers have access to facilities to optimally solve their large-scale optimization model for some initial and limited period and for some test instances. This might be through a collaborative project with research institutes or through short-term use of high-performance computing facilities. We propose that longer term support can be provided by utilizing the solutions (i.e., the optimal value of the actionable decision variables) of the stochastic optimization model from this initial period to train a machine learning model to learn optimal operational decisions in the future. In this study, the proposed approach is employed to make decisions on transshipment of blood units in a network of hospitals. We compare the decisions learned by several machine learning models with the optimal results obtained if the hospitals had access to commercial optimization solvers and computational power, and with the hospital network’s current empirical heuristic policy. The results show that using a trained neural network model reduces the average daily cost by about 29% compared with current policy, while the exact optimal policy reduces the average daily cost by 37%. Although optimization models cannot be fully replaced by machine learning, our proposed approach while not guaranteed to be optimal can improve operational decisions when optimization models are computationally expensive and infeasible for daily operational decisions in organizations such as not-for-profit and small and medium-sized enterprises.
Practical constrained optimization models are often large, and solving them in a reasonable time is a challenge in many applications. Further, many industries have limited access to professional commercial optimization solvers or computational power for use in their day-to-day operational decisions. In this paper, we propose a novel approach to deal with the issue of solving large operational stochastic optimization problems (SOPs) by using machine learning models. We assume that decision makers have access to facilities to optimally solve their large-scale optimization model for some initial and limited period and for some test instances. This might be through a collaborative project with research institutes or through short-term use of high-performance computing facilities. We propose that longer term support can be provided by utilizing the solutions (i.e., the optimal value of the actionable decision variables) of the stochastic optimization model from this initial period to train a machine learning model to learn optimal operational decisions in the future. In this study, the proposed approach is employed to make decisions on transshipment of blood units in a network of hospitals. We compare the decisions learned by several machine learning models with the optimal results obtained if the hospitals had access to commercial optimization solvers and computational power, and with the hospital network’s current empirical heuristic policy. The results show that using a trained neural network model reduces the average daily cost by about 29% compared with current policy, while the exact optimal policy reduces the average daily cost by 37%. Although optimization models cannot be fully replaced by machine learning, our proposed approach while not guaranteed to be optimal can improve operational decisions when optimization models are computationally expensive and infeasible for daily operational decisions in organizations such as not-for-profit and small and medium-sized enterprises.
ArticleNumber 104941
Author Hosseinifard, Zahra
Babaei, Toktam
Dehghani, Maryam
Smith-Miles, Kate
Abbasi, Babak
Author_xml – sequence: 1
  givenname: Babak
  orcidid: 0000-0002-4332-2662
  surname: Abbasi
  fullname: Abbasi, Babak
  email: babak.Abbasi@rmit.edu.au
  organization: College of Business and Law, RMIT University, Melbourne, VIC 3000, Australia
– sequence: 2
  givenname: Toktam
  surname: Babaei
  fullname: Babaei, Toktam
  email: Toki.babaei@qut.edu.au
  organization: School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
– sequence: 3
  givenname: Zahra
  surname: Hosseinifard
  fullname: Hosseinifard, Zahra
  email: zahra.h@unimelb.edu.au
  organization: Faculty of Business and Economics, The University of Melbourne, Parkville, VIC 3010, Australia
– sequence: 4
  givenname: Kate
  surname: Smith-Miles
  fullname: Smith-Miles, Kate
  email: smith-miles@unimelb.edu.au
  organization: School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
– sequence: 5
  givenname: Maryam
  surname: Dehghani
  fullname: Dehghani, Maryam
  email: maryam.dehghani@rmit.edu.au
  organization: College of Business and Law, RMIT University, Melbourne, VIC 3000, Australia
BookMark eNp9kE1LxDAQhoOs4O7qD_AW8Nw1adMvPS2LX7CgBwVvIU2nu1napCbpwgr-d1Pq2bkM8_G-MzwLNNNGA0LXlKwoodntYSWNXcUkHmtWMnqG5rTIkyjP0s8ZmpOEpBFJWXGBFs4dSIg8pnP082ahVtIrvcPOtINXRjtsGtwKu4PISdECNr1XnfoW4xD31lQtdA4flcCdkHulAbcgrA4ed3iNpXCAnR_qE1YaV60xNXZD37cnLPcitDqhxQ460P4SnTeidXD1l5fo4_HhffMcbV-fXjbrbSSTNPeRrGpgIpF1CrQqYxkzlhKR1UI2UDQZqxghZU5LUjV1AxREysoslRWrkjwhpEmW6GbyDc9_DeA8P5jB6nCSxyzLCxqIkbBFpy1pjXMWGt5b1Ql74pTwkTI_8ECZj5T5RDlo7icNhPePCix3UoGWAaoF6Xlt1D_qX5g3iYs
CitedBy_id crossref_primary_10_1016_j_jprocont_2023_103049
crossref_primary_10_1007_s13369_020_05261_4
crossref_primary_10_1016_j_cor_2022_105769
crossref_primary_10_1007_s12063_021_00201_3
crossref_primary_10_3390_su13168997
crossref_primary_10_1016_j_cor_2021_105287
crossref_primary_10_1080_00207543_2022_2113928
crossref_primary_10_1016_j_engappai_2024_108472
crossref_primary_10_1016_j_asoc_2023_110357
crossref_primary_10_1108_JM2_12_2020_0322
crossref_primary_10_3390_systems11030124
crossref_primary_10_1080_16258312_2022_2161287
crossref_primary_10_1016_j_seps_2021_101121
crossref_primary_10_1016_j_cie_2021_107693
crossref_primary_10_1108_JM2_05_2022_0132
crossref_primary_10_1080_00207543_2023_2263088
crossref_primary_10_3390_ijerph19042139
crossref_primary_10_1007_s11831_022_09879_5
crossref_primary_10_1016_j_seps_2022_101439
crossref_primary_10_1080_01605682_2020_1821586
crossref_primary_10_1016_j_ijforecast_2023_05_004
crossref_primary_10_56203_iyd_1375921
crossref_primary_10_1007_s11590_023_02009_5
crossref_primary_10_1016_j_eswa_2023_120629
crossref_primary_10_1016_j_ijpe_2022_108743
crossref_primary_10_1016_j_matpr_2020_11_558
crossref_primary_10_1109_ACCESS_2021_3052835
crossref_primary_10_1007_s10479_024_06100_7
crossref_primary_10_1007_s12063_022_00302_7
crossref_primary_10_1016_j_eswa_2023_122976
crossref_primary_10_1016_j_ijpe_2021_108250
crossref_primary_10_3390_sym13101934
crossref_primary_10_1007_s00500_021_05618_3
crossref_primary_10_1109_TEVC_2022_3201691
crossref_primary_10_1007_s10479_023_05390_7
crossref_primary_10_1016_j_ejor_2023_04_037
crossref_primary_10_1093_cercor_bhae012
crossref_primary_10_1016_j_ijforecast_2022_07_004
crossref_primary_10_1007_s10479_024_05879_9
crossref_primary_10_1016_j_sca_2023_100024
crossref_primary_10_1080_09537287_2023_2286523
crossref_primary_10_1016_j_cor_2024_106751
crossref_primary_10_1016_j_resconrec_2024_107671
crossref_primary_10_1016_j_cie_2024_110149
crossref_primary_10_1007_s43926_023_00040_7
crossref_primary_10_1016_j_ijpe_2022_108440
crossref_primary_10_1111_itor_12981
crossref_primary_10_1080_00207543_2021_1946614
crossref_primary_10_1016_j_eswa_2024_123947
crossref_primary_10_1016_j_ejor_2023_04_041
crossref_primary_10_1016_j_engappai_2020_103789
crossref_primary_10_1016_j_engappai_2024_108837
crossref_primary_10_1287_ijoc_2021_1091
crossref_primary_10_1016_j_compchemeng_2024_108725
crossref_primary_10_1007_s00779_022_01679_9
crossref_primary_10_1016_j_ejor_2023_01_054
Cites_doi 10.1287/inte.2017.0899
10.1016/j.cor.2018.04.006
10.1287/msom.2015.0557
10.1016/j.ejor.2018.05.046
10.1016/j.ijpe.2018.01.028
10.1016/j.eswa.2007.10.005
10.1016/j.ejor.2012.03.004
10.1016/0305-0548(92)90043-5
10.1039/a703565i
10.1016/j.ijpe.2017.02.006
10.1007/s11750-017-0451-6
10.1504/EJIE.2008.018438
10.1016/j.cor.2016.08.014
10.1016/S0305-0548(99)00141-0
10.1016/S1364-8152(99)00007-9
10.1287/opre.2016.1504
10.1145/1456650.1456656
10.1111/deci.12092
10.1111/j.2517-6161.1974.tb00994.x
10.1080/02626667.2010.512867
10.1287/ijoc.11.1.15
10.1057/jors.1994.62
10.1016/j.ress.2010.02.001
10.1007/s00521-015-1852-9
10.1038/35016072
10.1016/j.asoc.2007.02.001
10.1109/TSMC.1976.5408784
10.1016/S0377-2217(00)00248-4
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Pergamon Press Inc. Jul 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Jul 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2020.104941
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1873-765X
0305-0548
EndPage 20
ExternalDocumentID 10_1016_j_cor_2020_104941
S0305054820300587
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
AAXKI
AAYXX
ABDPE
AFJKZ
AKRWK
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-cbde4a3cd5e1b92c24450a6dacfe8f64b40097190bfdfe1ea54965cb4b37300f3
ISSN 0305-0548
IngestDate Mon Nov 18 21:26:37 EST 2024
Thu Nov 21 21:38:29 EST 2024
Fri Feb 23 02:50:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords k-NN
Neural networks
Large-Scale optimization
Blood supply chain
Machine learning
Data mining
Perishable inventory management
CART
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-cbde4a3cd5e1b92c24450a6dacfe8f64b40097190bfdfe1ea54965cb4b37300f3
ORCID 0000-0002-4332-2662
PQID 2467814940
PQPubID 45870
PageCount 20
ParticipantIDs proquest_journals_2467814940
crossref_primary_10_1016_j_cor_2020_104941
elsevier_sciencedirect_doi_10_1016_j_cor_2020_104941
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & operations research
PublicationYear 2020
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Abbasi, Hosseinifard (bib0001) 2014; 45
Vinyals, Fortunato, Jaitly (bib0045) 2015
Dehghani, Abbasi, Oliveira (bib0014) 2019; Online-published
Hahnloser, Sarpeshkar, Mahowald, Douglas, Seung (bib0022) 2000; 405
Mossina, Rachelson, Delahaye (bib0034) 2019
Vaclavik, Novak, Scha, Hanzlek (bib0044) 2018
Dillon, Oliveira, Abbasi (bib0016) 2017; 187
Kosorok (bib0027) 2008
Xu, Caramanis, Mannor (bib0046) 2016; 64
Stone (bib0043) 1974
Burke, Ignizio (bib0011) 1992; 19
Bello, Pham, Le, Norouzi, Bengio (bib0006) 2016
Freeman, Melouk, Mittenthal (bib0019) 2015; 18
Larsen, Lachapelle, Bengio, Frejinger, Lacoste-Julien, Lodi (bib0029) 2018
Goyal, Giri (bib0020) 2001; 134
Bakker, Riezebos, Teunter (bib0005) 2012; 221
Dudani (bib0017) 1976; 4
Powell (bib0037) 2016
Kruber, Lübbecke, Parmentier (bib0028) 2017
Kingma, Ba (bib0026) 2014
Maier, Dandy (bib0033) 2000; 15
Deist, Patti, Wang, Krane, Sorenson, Craft (bib0015) 2018
Smith-Miles (bib0042) 2009; 41
Abbasi, Vakili, Chesneau (bib0004) 2017; 47
Zhu, Fan, Yang, Pei, Pardalos (bib0048) 2018
Lodi, Mossina, Rachelson (bib0030) 2019
Burden, Brereton, Walsh (bib0010) 1997; 122
Bengio, Grandvalet (bib0007) 2004; 5
Abbasi, Hosseinifard, Coit (bib0002) 2010; 95
Graves, Mohamed, Hinton (bib0021) 2013
Dehghani, Abbasi (bib0013) 2018; 198
Pasiouras, Tanna, Zopounidis (bib0036) 2005; 5
Curram, Mingers (bib0012) 1994; 45
Smith, Gupta (bib0041) 2000; 27
Hsu, Chang, Lin (bib0025) 2003
Londhe, Charhate (bib0032) 2010; 55
Lodi, Zarpellon (bib0031) 2017; 25
Hosseinifard, Abbasi (bib0024) 2018; 89
Zhang (bib0047) 2018
Bengio, Lodi, Prouvost (bib0008) 2018
Seera, Lim, Tan, Loo (bib0039) 2015; 26
Smith (bib0040) 1999; 11
Bishop (bib0009) 1995
Abbasi, Rabelo, Hosseinkouchack (bib0003) 2008; 2
Fischetti, Fraccaro (bib0018) 2019; 106
Ravi, Kurniawan, Thai, Kumar (bib0038) 2008; 8
Han, Pei, Kamber (bib0023) 2011
Paliwal, Kumar (bib0035) 2009; 36
Bello (10.1016/j.cor.2020.104941_bib0006) 2016
Curram (10.1016/j.cor.2020.104941_bib0012) 1994; 45
Kosorok (10.1016/j.cor.2020.104941_bib0027) 2008
Abbasi (10.1016/j.cor.2020.104941_bib0003) 2008; 2
Deist (10.1016/j.cor.2020.104941_bib0015) 2018
Kingma (10.1016/j.cor.2020.104941_bib0026) 2014
Vinyals (10.1016/j.cor.2020.104941_bib0045) 2015
Ravi (10.1016/j.cor.2020.104941_bib0038) 2008; 8
Bengio (10.1016/j.cor.2020.104941_bib0007) 2004; 5
Han (10.1016/j.cor.2020.104941_bib0023) 2011
Pasiouras (10.1016/j.cor.2020.104941_bib0036) 2005; 5
Kruber (10.1016/j.cor.2020.104941_bib0028) 2017
Abbasi (10.1016/j.cor.2020.104941_bib0004) 2017; 47
Mossina (10.1016/j.cor.2020.104941_bib0034) 2019
Bishop (10.1016/j.cor.2020.104941_bib0009) 1995
Vaclavik (10.1016/j.cor.2020.104941_bib0044) 2018
Lodi (10.1016/j.cor.2020.104941_bib0030) 2019
Lodi (10.1016/j.cor.2020.104941_bib0031) 2017; 25
Zhu (10.1016/j.cor.2020.104941_bib0048) 2018
Larsen (10.1016/j.cor.2020.104941_bib0029) 2018
Freeman (10.1016/j.cor.2020.104941_bib0019) 2015; 18
Fischetti (10.1016/j.cor.2020.104941_bib0018) 2019; 106
Graves (10.1016/j.cor.2020.104941_bib0021) 2013
Hosseinifard (10.1016/j.cor.2020.104941_bib0024) 2018; 89
Stone (10.1016/j.cor.2020.104941_bib0043) 1974
Abbasi (10.1016/j.cor.2020.104941_bib0001) 2014; 45
Paliwal (10.1016/j.cor.2020.104941_bib0035) 2009; 36
Dehghani (10.1016/j.cor.2020.104941_bib0014) 2019; Online-published
Powell (10.1016/j.cor.2020.104941_bib0037) 2016
Xu (10.1016/j.cor.2020.104941_bib0046) 2016; 64
Seera (10.1016/j.cor.2020.104941_bib0039) 2015; 26
Maier (10.1016/j.cor.2020.104941_bib0033) 2000; 15
Dillon (10.1016/j.cor.2020.104941_bib0016) 2017; 187
Hsu (10.1016/j.cor.2020.104941_bib0025) 2003
Smith (10.1016/j.cor.2020.104941_bib0040) 1999; 11
Dudani (10.1016/j.cor.2020.104941_bib0017) 1976; 4
Smith-Miles (10.1016/j.cor.2020.104941_bib0042) 2009; 41
Dehghani (10.1016/j.cor.2020.104941_bib0013) 2018; 198
Goyal (10.1016/j.cor.2020.104941_bib0020) 2001; 134
Abbasi (10.1016/j.cor.2020.104941_bib0002) 2010; 95
Zhang (10.1016/j.cor.2020.104941_bib0047) 2018
Hahnloser (10.1016/j.cor.2020.104941_bib0022) 2000; 405
Londhe (10.1016/j.cor.2020.104941_bib0032) 2010; 55
Smith (10.1016/j.cor.2020.104941_bib0041) 2000; 27
Bengio (10.1016/j.cor.2020.104941_bib0008) 2018
Bakker (10.1016/j.cor.2020.104941_bib0005) 2012; 221
Burden (10.1016/j.cor.2020.104941_bib0010) 1997; 122
Burke (10.1016/j.cor.2020.104941_bib0011) 1992; 19
References_xml – volume: 26
  start-page: 1799
  year: 2015
  end-page: 1811
  ident: bib0039
  article-title: A hybrid fam–cart model and its application to medical data classification
  publication-title: Neural Comput. Appl.
  contributor:
    fullname: Loo
– start-page: 1
  year: 2018
  end-page: 35
  ident: bib0047
  article-title: Artificial neural network
  publication-title: Multivariate Time Series Analysis in Climate and Environmental Research
  contributor:
    fullname: Zhang
– year: 2018
  ident: bib0008
  article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon
  publication-title: arXiv preprint arXiv:1811.06128
  contributor:
    fullname: Prouvost
– volume: 89
  start-page: 206
  year: 2018
  end-page: 212
  ident: bib0024
  article-title: The inventory centralization impacts on sustainability of the blood supply chain
  publication-title: Comput. Oper. Res.
  contributor:
    fullname: Abbasi
– volume: 187
  start-page: 27
  year: 2017
  end-page: 41
  ident: bib0016
  article-title: A two-stage stochastic programming model for inventory management in the blood supply chain
  publication-title: Int. J. Prod. Econ.
  contributor:
    fullname: Abbasi
– volume: 5
  year: 2005
  ident: bib0036
  article-title: Application of quantitative techniques for the prediction of bank acquisition targets
  contributor:
    fullname: Zopounidis
– start-page: 1
  year: 2018
  end-page: 15
  ident: bib0015
  article-title: Simulation assisted machine learning
  publication-title: Working paper
  contributor:
    fullname: Craft
– year: 2018
  ident: bib0029
  article-title: Predicting solution summaries to integer linear programs under imperfect information with machine learning
  publication-title: arXiv preprint arXiv:1807.11876
  contributor:
    fullname: Lodi
– volume: 45
  start-page: 995
  year: 2014
  end-page: 1020
  ident: bib0001
  article-title: On the issuing policies for perishable items such as red blood cells and platelets in blood service
  publication-title: Decis. Sci.
  contributor:
    fullname: Hosseinifard
– volume: 18
  start-page: 245
  year: 2015
  end-page: 261
  ident: bib0019
  article-title: A scenario-based approach for operating theater scheduling under uncertainty
  publication-title: Manuf. Serv. Oper. Manage.
  contributor:
    fullname: Mittenthal
– volume: 25
  start-page: 207
  year: 2017
  end-page: 236
  ident: bib0031
  article-title: On learning and branching: a survey
  publication-title: TOP
  contributor:
    fullname: Zarpellon
– year: 1995
  ident: bib0009
  article-title: Neural Networks for Pattern Recognition
  contributor:
    fullname: Bishop
– start-page: 1
  year: 2018
  end-page: 49
  ident: bib0048
  article-title: Operating room planning and surgical case scheduling: a review of literature
  publication-title: J. Combin. Optim.
  contributor:
    fullname: Pardalos
– volume: 11
  start-page: 15
  year: 1999
  end-page: 34
  ident: bib0040
  article-title: Neural networks for combinatorial optimization: a review of more than a decade of research
  publication-title: INFORMS J. Comput.
  contributor:
    fullname: Smith
– year: 2019
  ident: bib0034
  article-title: Multi-label classification for the generation of sub-problems in time-constrained combinatorial optimization
  publication-title: https://hal-enac.archives-ouvertes.fr/hal-02120128/document
  contributor:
    fullname: Delahaye
– year: 2014
  ident: bib0026
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
  contributor:
    fullname: Ba
– volume: 8
  start-page: 305
  year: 2008
  end-page: 315
  ident: bib0038
  article-title: Soft computing system for bank performance prediction
  publication-title: Appl. Soft Comput.
  contributor:
    fullname: Kumar
– start-page: 2692
  year: 2015
  end-page: 2700
  ident: bib0045
  article-title: Pointer networks
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Jaitly
– volume: Online-published
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib0014
  article-title: Proactive transshipment in the blood supply chain: a stochastic programming approach
  publication-title: Omega
  contributor:
    fullname: Oliveira
– volume: 106
  start-page: 289
  year: 2019
  end-page: 297
  ident: bib0018
  article-title: Machine learning meets mathematical optimization to predict the optimal production of offshore wind parks
  publication-title: Comput. Oper. Res.
  contributor:
    fullname: Fraccaro
– volume: 134
  start-page: 1
  year: 2001
  end-page: 16
  ident: bib0020
  article-title: Recent trends in modeling of deteriorating inventory
  publication-title: Eur. J. Oper. Res.
  contributor:
    fullname: Giri
– year: 2003
  ident: bib0025
  article-title: A practical guide to support vector classification
  publication-title: Working paper
  contributor:
    fullname: Lin
– volume: 2
  start-page: 428
  year: 2008
  end-page: 445
  ident: bib0003
  article-title: Estimating parameters of the three-parameter Weibull distribution using a neural network
  publication-title: Eur. J. Ind. Eng.
  contributor:
    fullname: Hosseinkouchack
– volume: 198
  start-page: 93
  year: 2018
  end-page: 103
  ident: bib0013
  article-title: An age-based lateral-transshipment policy for perishable items
  publication-title: Int. J. Prod. Econ.
  contributor:
    fullname: Abbasi
– volume: 4
  start-page: 325
  year: 1976
  end-page: 327
  ident: bib0017
  article-title: The distance-weighted k-nearest-neighbor rule
  publication-title: IEEE Trans. Syst. Man Cybern.
  contributor:
    fullname: Dudani
– volume: 19
  start-page: 179
  year: 1992
  end-page: 189
  ident: bib0011
  article-title: Neural networks and operations research: an overview
  publication-title: Comput. Oper. Res.
  contributor:
    fullname: Ignizio
– volume: 5
  start-page: 1089
  year: 2004
  end-page: 1105
  ident: bib0007
  article-title: No unbiased estimator of the variance of k-fold cross-validation
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Grandvalet
– volume: 95
  start-page: 647
  year: 2010
  end-page: 654
  ident: bib0002
  article-title: A neural network applied to estimate burr xii distribution parameters
  publication-title: Reliab. Eng. Syst. Saf.
  contributor:
    fullname: Coit
– volume: 64
  start-page: 958
  year: 2016
  end-page: 979
  ident: bib0046
  article-title: Statistical optimization in high dimensions
  publication-title: Oper. Res.
  contributor:
    fullname: Mannor
– volume: 27
  start-page: 1023
  year: 2000
  end-page: 1044
  ident: bib0041
  article-title: Neural networks in business: techniques and applications for the operations researcher
  publication-title: Comput. Oper. Res.
  contributor:
    fullname: Gupta
– start-page: 6645
  year: 2013
  end-page: 6649
  ident: bib0021
  article-title: Speech recognition with deep recurrent neural networks
  publication-title: Acoustics, speech and signal processing (icassp), 2013 ieee international conference on
  contributor:
    fullname: Hinton
– volume: 122
  start-page: 1015
  year: 1997
  end-page: 1022
  ident: bib0010
  article-title: Cross-validatory selection of test and validation sets in multivariate calibration and neural networks as applied to spectroscopy
  publication-title: Analyst
  contributor:
    fullname: Walsh
– volume: 47
  start-page: 336
  year: 2017
  end-page: 351
  ident: bib0004
  article-title: Impacts of reducing the shelf life of red blood cells: a view from down under
  publication-title: Interfaces
  contributor:
    fullname: Chesneau
– year: 2016
  ident: bib0006
  article-title: Neural combinatorial optimization with reinforcement learning
  publication-title: arXiv preprint arXiv:1611.09940
  contributor:
    fullname: Bengio
– volume: 15
  start-page: 101
  year: 2000
  end-page: 124
  ident: bib0033
  article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
  publication-title: Environ. Model. & Softw.
  contributor:
    fullname: Dandy
– volume: 221
  start-page: 275
  year: 2012
  end-page: 284
  ident: bib0005
  article-title: Review of inventory systems with deterioration since 2001
  publication-title: Eur. J. Oper. Res.
  contributor:
    fullname: Teunter
– start-page: 45
  year: 2016
  end-page: 83
  ident: bib0037
  article-title: A unified framework for optimization under uncertainty tutorials in operations research
  publication-title: Tutor. Oper. Res.
  contributor:
    fullname: Powell
– year: 2011
  ident: bib0023
  article-title: Data Mining: Concepts and Techniques
  contributor:
    fullname: Kamber
– start-page: 111
  year: 1974
  end-page: 147
  ident: bib0043
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J. R. Stat. Soc. Series B (Methodological)
  contributor:
    fullname: Stone
– volume: 36
  start-page: 2
  year: 2009
  end-page: 17
  ident: bib0035
  article-title: Neural networks and statistical techniques: a review of applications
  publication-title: Expert Syst. Appl.
  contributor:
    fullname: Kumar
– volume: 45
  start-page: 440
  year: 1994
  end-page: 450
  ident: bib0012
  article-title: Neural networks, decision tree induction and discriminant analysis: an empirical comparison
  publication-title: J. Oper. Res. Soc.
  contributor:
    fullname: Mingers
– year: 2008
  ident: bib0027
  article-title: Introduction to Empirical Processes and Semiparametric Inference.
  contributor:
    fullname: Kosorok
– year: 2018
  ident: bib0044
  article-title: Accelerating the branch-and-price algorithm using machine learning
  publication-title: Eur. J. Oper. Res.
  contributor:
    fullname: Hanzlek
– year: 2019
  ident: bib0030
  article-title: Learning to handle parameter perturbations in combinatorial optimization: an application to facility location
  publication-title: arXiv preprint arXiv:1907.05765
  contributor:
    fullname: Rachelson
– volume: 55
  start-page: 1163
  year: 2010
  end-page: 1174
  ident: bib0032
  article-title: Comparison of data-driven modelling techniques for river flow forecasting
  publication-title: Hydrol. Sci. J.–Journal des Sciences Hydrologiques
  contributor:
    fullname: Charhate
– volume: 41
  start-page: 6
  year: 2009
  ident: bib0042
  article-title: Cross-disciplinary perspectives on meta-learning for algorithm selection
  publication-title: ACM Comput. Surv. (CSUR)
  contributor:
    fullname: Smith-Miles
– start-page: 202
  year: 2017
  end-page: 210
  ident: bib0028
  article-title: Learning when to use a decomposition
  publication-title: International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
  contributor:
    fullname: Parmentier
– volume: 405
  start-page: 947
  year: 2000
  ident: bib0022
  article-title: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit
  publication-title: Nature
  contributor:
    fullname: Seung
– year: 2014
  ident: 10.1016/j.cor.2020.104941_bib0026
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
  contributor:
    fullname: Kingma
– year: 2016
  ident: 10.1016/j.cor.2020.104941_bib0006
  article-title: Neural combinatorial optimization with reinforcement learning
  publication-title: arXiv preprint arXiv:1611.09940
  contributor:
    fullname: Bello
– year: 2019
  ident: 10.1016/j.cor.2020.104941_bib0030
  article-title: Learning to handle parameter perturbations in combinatorial optimization: an application to facility location
  publication-title: arXiv preprint arXiv:1907.05765
  contributor:
    fullname: Lodi
– year: 1995
  ident: 10.1016/j.cor.2020.104941_bib0009
  contributor:
    fullname: Bishop
– start-page: 1
  year: 2018
  ident: 10.1016/j.cor.2020.104941_bib0048
  article-title: Operating room planning and surgical case scheduling: a review of literature
  publication-title: J. Combin. Optim.
  contributor:
    fullname: Zhu
– year: 2008
  ident: 10.1016/j.cor.2020.104941_bib0027
  contributor:
    fullname: Kosorok
– volume: 5
  year: 2005
  ident: 10.1016/j.cor.2020.104941_bib0036
  contributor:
    fullname: Pasiouras
– volume: 5
  start-page: 1089
  issue: Sep
  year: 2004
  ident: 10.1016/j.cor.2020.104941_bib0007
  article-title: No unbiased estimator of the variance of k-fold cross-validation
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Bengio
– volume: 47
  start-page: 336
  issue: 4
  year: 2017
  ident: 10.1016/j.cor.2020.104941_bib0004
  article-title: Impacts of reducing the shelf life of red blood cells: a view from down under
  publication-title: Interfaces
  doi: 10.1287/inte.2017.0899
  contributor:
    fullname: Abbasi
– volume: 106
  start-page: 289
  year: 2019
  ident: 10.1016/j.cor.2020.104941_bib0018
  article-title: Machine learning meets mathematical optimization to predict the optimal production of offshore wind parks
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2018.04.006
  contributor:
    fullname: Fischetti
– volume: 18
  start-page: 245
  issue: 2
  year: 2015
  ident: 10.1016/j.cor.2020.104941_bib0019
  article-title: A scenario-based approach for operating theater scheduling under uncertainty
  publication-title: Manuf. Serv. Oper. Manage.
  doi: 10.1287/msom.2015.0557
  contributor:
    fullname: Freeman
– year: 2018
  ident: 10.1016/j.cor.2020.104941_bib0044
  article-title: Accelerating the branch-and-price algorithm using machine learning
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.05.046
  contributor:
    fullname: Vaclavik
– start-page: 45
  year: 2016
  ident: 10.1016/j.cor.2020.104941_bib0037
  article-title: A unified framework for optimization under uncertainty tutorials in operations research
  publication-title: Tutor. Oper. Res.
  contributor:
    fullname: Powell
– volume: 198
  start-page: 93
  year: 2018
  ident: 10.1016/j.cor.2020.104941_bib0013
  article-title: An age-based lateral-transshipment policy for perishable items
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2018.01.028
  contributor:
    fullname: Dehghani
– volume: 36
  start-page: 2
  issue: 1
  year: 2009
  ident: 10.1016/j.cor.2020.104941_bib0035
  article-title: Neural networks and statistical techniques: a review of applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.10.005
  contributor:
    fullname: Paliwal
– volume: 221
  start-page: 275
  issue: 2
  year: 2012
  ident: 10.1016/j.cor.2020.104941_bib0005
  article-title: Review of inventory systems with deterioration since 2001
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2012.03.004
  contributor:
    fullname: Bakker
– start-page: 1
  year: 2018
  ident: 10.1016/j.cor.2020.104941_bib0015
  article-title: Simulation assisted machine learning
  publication-title: Working paper
  contributor:
    fullname: Deist
– start-page: 6645
  year: 2013
  ident: 10.1016/j.cor.2020.104941_bib0021
  article-title: Speech recognition with deep recurrent neural networks
  contributor:
    fullname: Graves
– volume: 19
  start-page: 179
  issue: 3–4
  year: 1992
  ident: 10.1016/j.cor.2020.104941_bib0011
  article-title: Neural networks and operations research: an overview
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(92)90043-5
  contributor:
    fullname: Burke
– volume: 122
  start-page: 1015
  issue: 10
  year: 1997
  ident: 10.1016/j.cor.2020.104941_bib0010
  article-title: Cross-validatory selection of test and validation sets in multivariate calibration and neural networks as applied to spectroscopy
  publication-title: Analyst
  doi: 10.1039/a703565i
  contributor:
    fullname: Burden
– year: 2011
  ident: 10.1016/j.cor.2020.104941_bib0023
  contributor:
    fullname: Han
– volume: 187
  start-page: 27
  year: 2017
  ident: 10.1016/j.cor.2020.104941_bib0016
  article-title: A two-stage stochastic programming model for inventory management in the blood supply chain
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2017.02.006
  contributor:
    fullname: Dillon
– volume: 25
  start-page: 207
  issue: 2
  year: 2017
  ident: 10.1016/j.cor.2020.104941_bib0031
  article-title: On learning and branching: a survey
  publication-title: TOP
  doi: 10.1007/s11750-017-0451-6
  contributor:
    fullname: Lodi
– volume: 2
  start-page: 428
  issue: 4
  year: 2008
  ident: 10.1016/j.cor.2020.104941_bib0003
  article-title: Estimating parameters of the three-parameter Weibull distribution using a neural network
  publication-title: Eur. J. Ind. Eng.
  doi: 10.1504/EJIE.2008.018438
  contributor:
    fullname: Abbasi
– volume: 89
  start-page: 206
  year: 2018
  ident: 10.1016/j.cor.2020.104941_bib0024
  article-title: The inventory centralization impacts on sustainability of the blood supply chain
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.08.014
  contributor:
    fullname: Hosseinifard
– start-page: 202
  year: 2017
  ident: 10.1016/j.cor.2020.104941_bib0028
  article-title: Learning when to use a decomposition
  contributor:
    fullname: Kruber
– start-page: 1
  year: 2018
  ident: 10.1016/j.cor.2020.104941_bib0047
  article-title: Artificial neural network
  contributor:
    fullname: Zhang
– volume: 27
  start-page: 1023
  issue: 11–12
  year: 2000
  ident: 10.1016/j.cor.2020.104941_bib0041
  article-title: Neural networks in business: techniques and applications for the operations researcher
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(99)00141-0
  contributor:
    fullname: Smith
– volume: Online-published
  start-page: 1
  year: 2019
  ident: 10.1016/j.cor.2020.104941_bib0014
  article-title: Proactive transshipment in the blood supply chain: a stochastic programming approach
  publication-title: Omega
  contributor:
    fullname: Dehghani
– volume: 15
  start-page: 101
  issue: 1
  year: 2000
  ident: 10.1016/j.cor.2020.104941_bib0033
  article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
  publication-title: Environ. Model. & Softw.
  doi: 10.1016/S1364-8152(99)00007-9
  contributor:
    fullname: Maier
– year: 2018
  ident: 10.1016/j.cor.2020.104941_bib0008
  article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon
  publication-title: arXiv preprint arXiv:1811.06128
  contributor:
    fullname: Bengio
– year: 2018
  ident: 10.1016/j.cor.2020.104941_bib0029
  article-title: Predicting solution summaries to integer linear programs under imperfect information with machine learning
  publication-title: arXiv preprint arXiv:1807.11876
  contributor:
    fullname: Larsen
– volume: 64
  start-page: 958
  issue: 4
  year: 2016
  ident: 10.1016/j.cor.2020.104941_bib0046
  article-title: Statistical optimization in high dimensions
  publication-title: Oper. Res.
  doi: 10.1287/opre.2016.1504
  contributor:
    fullname: Xu
– volume: 41
  start-page: 6
  issue: 1
  year: 2009
  ident: 10.1016/j.cor.2020.104941_bib0042
  article-title: Cross-disciplinary perspectives on meta-learning for algorithm selection
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/1456650.1456656
  contributor:
    fullname: Smith-Miles
– volume: 45
  start-page: 995
  issue: 5
  year: 2014
  ident: 10.1016/j.cor.2020.104941_bib0001
  article-title: On the issuing policies for perishable items such as red blood cells and platelets in blood service
  publication-title: Decis. Sci.
  doi: 10.1111/deci.12092
  contributor:
    fullname: Abbasi
– start-page: 111
  year: 1974
  ident: 10.1016/j.cor.2020.104941_bib0043
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J. R. Stat. Soc. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1974.tb00994.x
  contributor:
    fullname: Stone
– start-page: 2692
  year: 2015
  ident: 10.1016/j.cor.2020.104941_bib0045
  article-title: Pointer networks
  contributor:
    fullname: Vinyals
– volume: 55
  start-page: 1163
  issue: 7
  year: 2010
  ident: 10.1016/j.cor.2020.104941_bib0032
  article-title: Comparison of data-driven modelling techniques for river flow forecasting
  publication-title: Hydrol. Sci. J.–Journal des Sciences Hydrologiques
  doi: 10.1080/02626667.2010.512867
  contributor:
    fullname: Londhe
– year: 2019
  ident: 10.1016/j.cor.2020.104941_bib0034
  article-title: Multi-label classification for the generation of sub-problems in time-constrained combinatorial optimization
  publication-title: https://hal-enac.archives-ouvertes.fr/hal-02120128/document
  contributor:
    fullname: Mossina
– volume: 11
  start-page: 15
  issue: 1
  year: 1999
  ident: 10.1016/j.cor.2020.104941_bib0040
  article-title: Neural networks for combinatorial optimization: a review of more than a decade of research
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.11.1.15
  contributor:
    fullname: Smith
– volume: 45
  start-page: 440
  issue: 4
  year: 1994
  ident: 10.1016/j.cor.2020.104941_bib0012
  article-title: Neural networks, decision tree induction and discriminant analysis: an empirical comparison
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1994.62
  contributor:
    fullname: Curram
– volume: 95
  start-page: 647
  issue: 6
  year: 2010
  ident: 10.1016/j.cor.2020.104941_bib0002
  article-title: A neural network applied to estimate burr xii distribution parameters
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2010.02.001
  contributor:
    fullname: Abbasi
– year: 2003
  ident: 10.1016/j.cor.2020.104941_bib0025
  article-title: A practical guide to support vector classification
  publication-title: Working paper
  contributor:
    fullname: Hsu
– volume: 26
  start-page: 1799
  issue: 8
  year: 2015
  ident: 10.1016/j.cor.2020.104941_bib0039
  article-title: A hybrid fam–cart model and its application to medical data classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1852-9
  contributor:
    fullname: Seera
– volume: 405
  start-page: 947
  issue: 6789
  year: 2000
  ident: 10.1016/j.cor.2020.104941_bib0022
  article-title: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit
  publication-title: Nature
  doi: 10.1038/35016072
  contributor:
    fullname: Hahnloser
– volume: 8
  start-page: 305
  issue: 1
  year: 2008
  ident: 10.1016/j.cor.2020.104941_bib0038
  article-title: Soft computing system for bank performance prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.02.001
  contributor:
    fullname: Ravi
– volume: 4
  start-page: 325
  year: 1976
  ident: 10.1016/j.cor.2020.104941_bib0017
  article-title: The distance-weighted k-nearest-neighbor rule
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1976.5408784
  contributor:
    fullname: Dudani
– volume: 134
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.cor.2020.104941_bib0020
  article-title: Recent trends in modeling of deteriorating inventory
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(00)00248-4
  contributor:
    fullname: Goyal
SSID ssj0000721
Score 2.580468
Snippet •A new methodology is developed that uses machine learning to predict the solution of large-scale stochastics optimization models.•The proposed approach is...
Practical constrained optimization models are often large, and solving them in a reasonable time is a challenge in many applications. Further, many industries...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 104941
SubjectTerms Blood
Blood supply chain
CART
Data mining
Decisions
Hospitals
k-NN
Large-Scale optimization
Machine learning
Neural networks
Operations research
Optimization
Perishable inventory management
Research facilities
Solvers
Supply chain management
Supply chains
Title Predicting solutions of large-scale optimization problems via machine learning: A case study in blood supply chain management
URI https://dx.doi.org/10.1016/j.cor.2020.104941
https://www.proquest.com/docview/2467814940
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6uxKCA48CYmFBPnAiMmriPFxuFRQtIBDSFqniEtmOvWShyarpInHgvzN-Jd0iECBxiVpXrat-X2cm429mEHrMwK1XyVQSCK0pSYWKCbgFQRiVKpeSglMw-Y7jk-Ldkr2Yp_PRKEyoGtb-K9KwBlibytm_QLv_UFiAx4A5XAF1uP4R7u_X5ujFipn7jUxE-MVIvkkHkKioBTux8gWYkR8p00Vfax6trLZShWESp65wXYKrc41oTXrEat2jzowD_WYKh2FpdVlEEzof-IkRneVXe67WXnfnOwz1meiZAGdau-MPwYfaIXii7PKi_bzhq56C4NhV3dSaO13-R_5p3XsXmyoib2s_y_sN90omn9mA29iggvXptlByM-ibbJmXURtmrj3nU-WsNisoKfJsecmsO1P8k4tw2YozgNi0g03sKffUNd_a6bx9YvYyWyUT09SfFXvoIAF7Bub0YPZqvnw9uPzCFvj13y0cn1sh4c5GvwqAdkIBG98sbqLr_sYEzxyjbqGRasboSqiLGKMbAU3s3cEYXdtqZnkbfR-Yh3vm4VbjLebhbebhwDwMzMOeeTgw7xmeYcM7bHmH6wZb3mHHO2x5hwfe3UEfXs4Xz4-JH-5BJM2KDZGiUimnsspULKaJhDAzm_C84lIrpvNUpLa92XQidKVVrHhmJhtIkQpqRixoehftN22j7iGsKwZxaA737hD955SzoshVrjmNOZNFmhyiJ-EXL89dD5cyiBvPSoCnNPCUDp5DlAZMSh-EuuCyBAL97m1HAb_SW4OuTCAKYTG8PLn_b5_6AF0d_hhHaH-zvlAP0V5XXTzyFPwB4SW2mw
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+solutions+of+large-scale+optimization+problems+via+machine+learning%3A+A+case+study+in+blood+supply+chain+management&rft.jtitle=Computers+%26+operations+research&rft.au=Abbasi%2C+Babak&rft.au=Babaei%2C+Toktam&rft.au=Hosseinifard%2C+Zahra&rft.au=Smith-Miles%2C+Kate&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0305-0548&rft.eissn=1873-765X&rft.volume=119&rft_id=info:doi/10.1016%2Fj.cor.2020.104941&rft.externalDocID=S0305054820300587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon