Signaling Downstream of Focal Adhesions Regulates Stiffness-Dependent Differences in the TGF-β1-Mediated Myofibroblast Differentiation of Corneal Keratocytes

Following injury and refractive surgery, corneal wound healing can initiate a protracted fibrotic response that interferes with ocular function. This fibrosis is related, in part, to the myofibroblast differentiation of corneal keratocytes in response to transforming growth factor beta 1 (TGF- β 1)....

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in cell and developmental biology Vol. 10; p. 886759
Main Authors: Maruri, Daniel P., Iyer, Krithika S., Schmidtke, David W., Petroll, W. Matthew, Varner, Victor D.
Format: Journal Article
Language:English
Published: Frontiers Media S.A 25-05-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Following injury and refractive surgery, corneal wound healing can initiate a protracted fibrotic response that interferes with ocular function. This fibrosis is related, in part, to the myofibroblast differentiation of corneal keratocytes in response to transforming growth factor beta 1 (TGF- β 1). Previous studies have shown that changes in the mechanical properties of the extracellular matrix (ECM) can regulate this process, but the mechanotransductive pathways that govern stiffness-dependent changes in keratocyte differentiation remain unclear. Here, we used a polyacrylamide (PA) gel system to investigate how mechanosensing via focal adhesions (FAs) regulates the stiffness-dependent myofibroblast differentiation of primary corneal keratocytes treated with TGF- β 1. Soft (1 kPa) and stiff (10 kPa) PA substrata were fabricated on glass coverslips, plated with corneal keratocytes, and cultured in defined serum free media with or without exogenous TGF- β 1. In some experiments, an inhibitor of focal adhesion kinase (FAK) activation was also added to the media. Cells were fixed and stained for F-actin, as well as markers for myofibroblast differentiation ( α -SMA), actomyosin contractility phosphorylated myosin light chain (pMLC), focal adhesions (vinculin), or Smad activity (pSmad3). We also used traction force microscopy (TFM) to quantify cellular traction stresses. Treatment with TGF- β 1 elicited stiffness-dependent differences in the number, size, and subcellular distribution of FAs, but not in the nuclear localization of pSmad3. On stiff substrata, cells exhibited large FAs distributed throughout the entire cell body, while on soft gels, the FAs were smaller, fewer in number, and localized primarily to the distal tips of thin cellular extensions. Larger and increased numbers of FAs correlated with elevated traction stresses, increased levels of α -SMA immunofluorescence, and more prominent and broadly distributed pMLC staining. Inhibition of FAK disrupted stiffness-dependent differences in keratocyte contractility, FA patterning, and myofibroblast differentiation in the presence of TGF- β 1. Taken together, these data suggest that signaling downstream of FAs has important implications for the stiffness-dependent myofibroblast differentiation of corneal keratocytes.
AbstractList Following injury and refractive surgery, corneal wound healing can initiate a protracted fibrotic response that interferes with ocular function. This fibrosis is related, in part, to the myofibroblast differentiation of corneal keratocytes in response to transforming growth factor beta 1 (TGF- β 1). Previous studies have shown that changes in the mechanical properties of the extracellular matrix (ECM) can regulate this process, but the mechanotransductive pathways that govern stiffness-dependent changes in keratocyte differentiation remain unclear. Here, we used a polyacrylamide (PA) gel system to investigate how mechanosensing via focal adhesions (FAs) regulates the stiffness-dependent myofibroblast differentiation of primary corneal keratocytes treated with TGF- β 1. Soft (1 kPa) and stiff (10 kPa) PA substrata were fabricated on glass coverslips, plated with corneal keratocytes, and cultured in defined serum free media with or without exogenous TGF- β 1. In some experiments, an inhibitor of focal adhesion kinase (FAK) activation was also added to the media. Cells were fixed and stained for F-actin, as well as markers for myofibroblast differentiation ( α -SMA), actomyosin contractility phosphorylated myosin light chain (pMLC), focal adhesions (vinculin), or Smad activity (pSmad3). We also used traction force microscopy (TFM) to quantify cellular traction stresses. Treatment with TGF- β 1 elicited stiffness-dependent differences in the number, size, and subcellular distribution of FAs, but not in the nuclear localization of pSmad3. On stiff substrata, cells exhibited large FAs distributed throughout the entire cell body, while on soft gels, the FAs were smaller, fewer in number, and localized primarily to the distal tips of thin cellular extensions. Larger and increased numbers of FAs correlated with elevated traction stresses, increased levels of α -SMA immunofluorescence, and more prominent and broadly distributed pMLC staining. Inhibition of FAK disrupted stiffness-dependent differences in keratocyte contractility, FA patterning, and myofibroblast differentiation in the presence of TGF- β 1. Taken together, these data suggest that signaling downstream of FAs has important implications for the stiffness-dependent myofibroblast differentiation of corneal keratocytes.
Following injury and refractive surgery, corneal wound healing can initiate a protracted fibrotic response that interferes with ocular function. This fibrosis is related, in part, to the myofibroblast differentiation of corneal keratocytes in response to transforming growth factor beta 1 (TGF-β1). Previous studies have shown that changes in the mechanical properties of the extracellular matrix (ECM) can regulate this process, but the mechanotransductive pathways that govern stiffness-dependent changes in keratocyte differentiation remain unclear. Here, we used a polyacrylamide (PA) gel system to investigate how mechanosensing via focal adhesions (FAs) regulates the stiffness-dependent myofibroblast differentiation of primary corneal keratocytes treated with TGF-β1. Soft (1 kPa) and stiff (10 kPa) PA substrata were fabricated on glass coverslips, plated with corneal keratocytes, and cultured in defined serum free media with or without exogenous TGF-β1. In some experiments, an inhibitor of focal adhesion kinase (FAK) activation was also added to the media. Cells were fixed and stained for F-actin, as well as markers for myofibroblast differentiation (α-SMA), actomyosin contractility phosphorylated myosin light chain (pMLC), focal adhesions (vinculin), or Smad activity (pSmad3). We also used traction force microscopy (TFM) to quantify cellular traction stresses. Treatment with TGF-β1 elicited stiffness-dependent differences in the number, size, and subcellular distribution of FAs, but not in the nuclear localization of pSmad3. On stiff substrata, cells exhibited large FAs distributed throughout the entire cell body, while on soft gels, the FAs were smaller, fewer in number, and localized primarily to the distal tips of thin cellular extensions. Larger and increased numbers of FAs correlated with elevated traction stresses, increased levels of α-SMA immunofluorescence, and more prominent and broadly distributed pMLC staining. Inhibition of FAK disrupted stiffness-dependent differences in keratocyte contractility, FA patterning, and myofibroblast differentiation in the presence of TGF-β1. Taken together, these data suggest that signaling downstream of FAs has important implications for the stiffness-dependent myofibroblast differentiation of corneal keratocytes.
Author Maruri, Daniel P.
Petroll, W. Matthew
Iyer, Krithika S.
Schmidtke, David W.
Varner, Victor D.
AuthorAffiliation 1 Department of Bioengineering , University of Texas at Dallas , Richardson , TX , United States
2 Department of Surgery , UT Southwestern Medical Center , Dallas , TX , United States
3 Department of Ophthalmology, UT Southwestern Medical Center , Dallas , TX , United States
AuthorAffiliation_xml – name: 3 Department of Ophthalmology, UT Southwestern Medical Center , Dallas , TX , United States
– name: 2 Department of Surgery , UT Southwestern Medical Center , Dallas , TX , United States
– name: 1 Department of Bioengineering , University of Texas at Dallas , Richardson , TX , United States
Author_xml – sequence: 1
  givenname: Daniel P.
  surname: Maruri
  fullname: Maruri, Daniel P.
– sequence: 2
  givenname: Krithika S.
  surname: Iyer
  fullname: Iyer, Krithika S.
– sequence: 3
  givenname: David W.
  surname: Schmidtke
  fullname: Schmidtke, David W.
– sequence: 4
  givenname: W. Matthew
  surname: Petroll
  fullname: Petroll, W. Matthew
– sequence: 5
  givenname: Victor D.
  surname: Varner
  fullname: Varner, Victor D.
BookMark eNpVkstuEzEUhkeoiJa2D8Bulmwm2OPxbYNUJaRUtEJqi8TO8tjHiauJHewJKC_DQ_AgPBOepgK6snUu369zzv-6OgoxQFW9wWhGiJDvnIFhmLWobWdCME7li-qkbSVrGOm-Hv33P67Oc35ACOGWcirIq-qYUCaJbPlJ9fPOr4IefFjVi_gj5DGB3tTR1cto9FBf2DVkH0Oub2G1G_QIub4bvXMBcm4WsIVgIYz1ooQgQTAl70M9rqG-v1w2v3_h5gasL322vtlH5_sU-0Hnfx1jSRaBSXIeU4Ai-gmSHqPZF7Gz6qXTQ4bzp_e0-rL8cD__2Fx_vryaX1w3hlAuy5iIO4qJERisxkz3TNCyGu1EK3pqEOsF6Z3hliFtBe4k18CNFIQxaQQnp9XVgWujflDb5Dc67VXUXj0GYlopnUZvBlA97TinjAvraGeI1RJxjrlBoqh2QhfW-wNru-s3YE2ZMenhGfR5Jvi1WsXvSuICIqIA3j4BUvy2gzyqjc_TtXWAuMuqna4tyuBtKcWHUpNizgncXxmM1GQT9WgTNdlEHWxC_gB5H7WQ
CitedBy_id crossref_primary_10_1016_j_yexcr_2024_114014
crossref_primary_10_1155_2023_7626920
crossref_primary_10_3390_cells13040360
crossref_primary_10_1021_acsbiomaterials_2c01302
crossref_primary_10_1016_j_bioadv_2023_213674
crossref_primary_10_1021_acsami_2c20848
crossref_primary_10_1016_j_exer_2023_109523
crossref_primary_10_3390_ijms232315325
crossref_primary_10_1016_j_preteyeres_2023_101234
Cites_doi 10.1016/j.matbio.2018.03.005
10.1681/ASN.2015050499
10.1167/iovs.02-0973
10.1016/s0006-3495(01)76145-0
10.1167/iovs.11-8070
10.1016/j.exer.2010.06.021
10.1016/j.jbiomech.2009.09.020
10.1167/iovs.13-12547
10.1074/jbc.M208544200
10.3390/jfb9040054
10.3390/jfb6020222
10.1016/j.exer.2020.108228
10.1242/jcs.00845
10.3390/biom11111682
10.1146/annurev.cellbio.12.1.463
10.1038/ncb0807-858
10.7717/peerj.4063
10.1016/j.exer.2014.09.003
10.1074/jbc.M606695200
10.2353/ajpath.2007.070112
10.1016/s1350-9462(98)00033-0
10.1167/iovs.11-9305
10.1016/j.yexcr.2006.08.009
10.1038/nrm3896
10.1038/sj.jid.5700613
10.1167/iovs.12-11575
10.1146/annurev.cellbio.042308.113318
10.1167/iovs.11-8609
10.1016/j.bpj.2020.08.040
10.1016/j.exer.2009.11.016
10.1073/pnas.0904565106
10.1167/iovs.03-0513
10.1083/jcb.200506179
10.3389/fphys.2018.00824
10.1038/nrneph.2014.246
10.1096/fj.03-1273rev
10.1016/S0006-3495(99)77386-8
10.1002/path.4104
10.1096/fj.12-220160
10.1152/ajplung.00108.2012
10.1097/ICL.0b013e3181ee8992
10.1016/j.actbio.2013.09.025
10.1016/s1350-9462(98)00021-4
10.1038/35074532
10.1016/bs.mcb.2014.10.008
10.1098/rsif.2010.0419
10.1016/s0014-4835(03)00188-x
10.1016/0955-0674(94)90097-3
10.1038/nmat5023
10.1165/rcmb.2012-0050OC
10.1016/j.actbio.2017.05.051
10.1016/j.bbadis.2013.02.007
10.1242/jcs.00357
10.1167/iovs.08-3276
10.1073/pnas.201201198
10.1016/s0079-6107(98)00052-2
10.1097/00003226-199609000-00011
10.1167/iovs.15-16388
10.1146/annurev.bioeng.6.040803.140040
10.1016/S0248-4900(00)01101-1
ContentType Journal Article
Copyright Copyright © 2022 Maruri, Iyer, Schmidtke, Petroll and Varner. 2022 Maruri, Iyer, Schmidtke, Petroll and Varner
Copyright_xml – notice: Copyright © 2022 Maruri, Iyer, Schmidtke, Petroll and Varner. 2022 Maruri, Iyer, Schmidtke, Petroll and Varner
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fcell.2022.886759
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Maruri et al
EISSN 2296-634X
EndPage 886759
ExternalDocumentID oai_doaj_org_article_b54775678df54c3da907717c08ab648a
10_3389_fcell_2022_886759
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: R01 EY030190 P30 EY030413
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
IHW
ISR
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c3579-6307f513c81eda16ab685202af828b5c06b83bfc7d60ad81497ae7c983669c873
IEDL.DBID RPM
ISSN 2296-634X
IngestDate Tue Oct 22 15:13:40 EDT 2024
Tue Sep 17 21:07:01 EDT 2024
Sat Oct 05 05:50:35 EDT 2024
Thu Nov 21 20:58:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3579-6307f513c81eda16ab685202af828b5c06b83bfc7d60ad81497ae7c983669c873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Cell Adhesion and Migration, a section of the journal Frontiers in Cell and Developmental Biology
Edited by: Mary Ann Stepp, George Washington University, United States
Vickery Trinkaus-Randall, Boston University, United States
Reviewed by: Pulin Che, University of Alabama at Birmingham, United States
Chiara Sassoli, University of Florence, Italy
Judith West-Mays, McMaster University, Canada
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177138/
PMID 35693927
PQID 2675983572
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_b54775678df54c3da907717c08ab648a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9177138
proquest_miscellaneous_2675983572
crossref_primary_10_3389_fcell_2022_886759
PublicationCentury 2000
PublicationDate 2022-05-25
PublicationDateYYYYMMDD 2022-05-25
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-25
  day: 25
PublicationDecade 2020
PublicationTitle Frontiers in cell and developmental biology
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Slack-Davis (B52) 2007; 282
Lakshman (B33) 2012; 53
Martino (B37) 2018; 9
Hassell (B12) 2010; 91
Maruri (B38) 2020; 119
Kim (B29) 2013; 27
Strohmeyer (B53) 2017; 16
Kivanany (B30) 2018; 9
Falke (B8) 2015; 11
Miron-Mendoza (B41) 2015; 56
Petroll (B45) 2015; 6
Raghunathan (B49) 2017; 58
Schlaepfer (B51) 1999; 71
Chen (B5) 2009; 50
Chen (B4) 2004; 6
Humphrey (B18) 2014; 15
Maskarinec (B39) 2009; 106
Hinz (B14) 2007; 170
Hinz (B13) 2007; 127
Zhou (B64) 2018; 73
Dreier (B7) 2013; 54
Wells (B60) 2013; 1832
Petit (B44) 2000; 92
Katoh (B26) 2017; 5
Szeto (B54) 2016; 27
Ilić (B19) 2004; 117
Jester (B25) 2010; 36
Boote (B2) 2012; 53
Fini (B9) 1999; 18
Yeung (B62) 2021; 11
Hinz (B15) 2010; 43
Nishida (B43) 1988; 29
Schaller (B50) 1994; 6
Martiel (B36) 2015; 125
Wang (B59) 2001; 98
Thannickal (B55) 2003; 278
Balaban (B1) 2001; 3
Vishwanath (B58) 2003; 44
Goffin (B10) 2006; 172
Grinnell (B11) 2010; 26
Jester (B23) 2003; 44
Petroll (B47) 2015; 133
Kim (B28) 2006; 312
Marinković (B35) 2012; 303
Jester (B22) 2003; 77
Jester (B24) 1999; 18
Petroll (B48) 2020; 200
Klingberg (B31) 2013; 229
Winkler (B61) 2011; 52
Dembo (B6) 1999; 76
Thomasy (B56) 2014; 10
Katoh (B27) 2011; 8
Masur (B40) 1995; 36
Huang (B17) 2012; 47
Jester (B20) 1994; 35
Jester (B21) 1996; 15
Torricelli (B57) 2013; 54
Leask (B34) 2004; 18
Munevar (B42) 2001; 80
Zaidel-Bar (B63) 2007; 9
Burridge (B3) 1996; 12
Petroll (B46) 2003; 116
Lakshman (B32) 2010; 90
References_xml – volume: 73
  start-page: 77
  year: 2018
  ident: B64
  article-title: Extracellular Matrix in Lung Development, Homeostasis and Disease
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2018.03.005
  contributor:
    fullname: Zhou
– volume: 27
  start-page: 3117
  year: 2016
  ident: B54
  article-title: YAP/TAZ Are Mechanoregulators of TGF-β-Smad Signaling and Renal Fibrogenesis
  publication-title: Jasn
  doi: 10.1681/ASN.2015050499
  contributor:
    fullname: Szeto
– volume: 44
  start-page: 1850
  year: 2003
  ident: B23
  article-title: Myofibroblast Differentiation of normal Human Keratocytes and hTERT, Extended-Life Human Corneal Fibroblasts
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.02-0973
  contributor:
    fullname: Jester
– volume: 80
  start-page: 1744
  year: 2001
  ident: B42
  article-title: Traction Force Microscopy of Migrating normal and H-Ras Transformed 3T3 Fibroblasts
  publication-title: Biophysical J.
  doi: 10.1016/s0006-3495(01)76145-0
  contributor:
    fullname: Munevar
– volume: 52
  start-page: 8818
  year: 2011
  ident: B61
  article-title: Nonlinear Optical Macroscopic Assessment of 3-D Corneal Collagen Organization and Axial Biomechanics
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-8070
  contributor:
    fullname: Winkler
– volume: 91
  start-page: 326
  year: 2010
  ident: B12
  article-title: The Molecular Basis of Corneal Transparency
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2010.06.021
  contributor:
    fullname: Hassell
– volume: 43
  start-page: 146
  year: 2010
  ident: B15
  article-title: The Myofibroblast: Paradigm for a Mechanically Active Cell
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.09.020
  contributor:
    fullname: Hinz
– volume: 54
  start-page: 6390
  year: 2013
  ident: B57
  article-title: The Corneal Epithelial Basement Membrane: Structure, Function, and Disease
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.13-12547
  contributor:
    fullname: Torricelli
– volume: 278
  start-page: 12384
  year: 2003
  ident: B55
  article-title: Myofibroblast Differentiation by Transforming Growth Factor-ॆ1 Is Dependent on Cell Adhesion and Integrin Signaling via Focal Adhesion Kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M208544200
  contributor:
    fullname: Thannickal
– volume: 9
  start-page: 54
  year: 2018
  ident: B30
  article-title: An In Vitro Model for Assessing Corneal Keratocyte Spreading and Migration on Aligned Fibrillar Collagen
  publication-title: Jfb
  doi: 10.3390/jfb9040054
  contributor:
    fullname: Kivanany
– volume: 6
  start-page: 222
  year: 2015
  ident: B45
  article-title: Fibroblastic Transformation of Corneal Keratocytes by Rac Inhibition Is Modulated by Extracellular Matrix Structure and Stiffness
  publication-title: Jfb
  doi: 10.3390/jfb6020222
  contributor:
    fullname: Petroll
– volume: 29
  start-page: 1887
  year: 1988
  ident: B43
  article-title: The Network Structure of Corneal Fibroblasts in the Rat as Revealed by Scanning Electron Microscopy
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Nishida
– volume: 200
  start-page: 108228
  year: 2020
  ident: B48
  article-title: Keratocyte Mechanobiology
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2020.108228
  contributor:
    fullname: Petroll
– volume: 117
  start-page: 177
  year: 2004
  ident: B19
  article-title: FAK Promotes Organization of Fibronectin Matrix and Fibrillar Adhesions
  publication-title: J. Cel Sci.
  doi: 10.1242/jcs.00845
  contributor:
    fullname: Ilić
– volume: 11
  start-page: 1682
  year: 2021
  ident: B62
  article-title: FAK Inhibition Attenuates Corneal Fibroblast Differentiation In Vitro
  publication-title: Biomolecules
  doi: 10.3390/biom11111682
  contributor:
    fullname: Yeung
– volume: 12
  start-page: 463
  year: 1996
  ident: B3
  article-title: Focal Adhesions, Contractility, and Signaling
  publication-title: Annu. Rev. Cel Dev. Biol.
  doi: 10.1146/annurev.cellbio.12.1.463
  contributor:
    fullname: Burridge
– volume: 9
  start-page: 858
  year: 2007
  ident: B63
  article-title: Functional Atlas of the Integrin Adhesome
  publication-title: Nat. Cel Biol.
  doi: 10.1038/ncb0807-858
  contributor:
    fullname: Zaidel-Bar
– volume: 5
  start-page: e4063
  year: 2017
  ident: B26
  article-title: Activation of Rho-Kinase and Focal Adhesion Kinase Regulates the Organization of Stress Fibers and Focal Adhesions in the central Part of Fibroblasts
  publication-title: PeerJ
  doi: 10.7717/peerj.4063
  contributor:
    fullname: Katoh
– volume: 133
  start-page: 49
  year: 2015
  ident: B47
  article-title: Mechanical Interactions and Crosstalk between Corneal Keratocytes and the Extracellular Matrix
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2014.09.003
  contributor:
    fullname: Petroll
– volume: 282
  start-page: 14845
  year: 2007
  ident: B52
  article-title: Cellular Characterization of a Novel Focal Adhesion Kinase Inhibitor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606695200
  contributor:
    fullname: Slack-Davis
– volume: 170
  start-page: 1807
  year: 2007
  ident: B14
  article-title: The Myofibroblast
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2007.070112
  contributor:
    fullname: Hinz
– volume: 18
  start-page: 529
  year: 1999
  ident: B9
  article-title: Keratocyte and Fibroblast Phenotypes in the Repairing Cornea
  publication-title: Prog. Ret. Eye Res.
  doi: 10.1016/s1350-9462(98)00033-0
  contributor:
    fullname: Fini
– volume: 53
  start-page: 2786
  year: 2012
  ident: B2
  article-title: Quantitative Assessment of Ultrastructure and Light Scatter in Mouse Corneal Debridement Wounds
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-9305
  contributor:
    fullname: Boote
– volume: 312
  start-page: 3683
  year: 2006
  ident: B28
  article-title: Quantitative Assessment of Local Collagen Matrix Remodeling in 3-D Culture: The Role of Rho Kinase
  publication-title: Exp. Cel Res.
  doi: 10.1016/j.yexcr.2006.08.009
  contributor:
    fullname: Kim
– volume: 15
  start-page: 802
  year: 2014
  ident: B18
  article-title: Mechanotransduction and Extracellular Matrix Homeostasis
  publication-title: Nat. Rev. Mol. Cel Biol.
  doi: 10.1038/nrm3896
  contributor:
    fullname: Humphrey
– volume: 127
  start-page: 526
  year: 2007
  ident: B13
  article-title: Formation and Function of the Myofibroblast during Tissue Repair
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/sj.jid.5700613
  contributor:
    fullname: Hinz
– volume: 54
  start-page: 5901
  year: 2013
  ident: B7
  article-title: Substratum Compliance Modulates Corneal Fibroblast to Myofibroblast Transformation
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.12-11575
  contributor:
    fullname: Dreier
– volume: 26
  start-page: 335
  year: 2010
  ident: B11
  article-title: Cell Motility and Mechanics in Three-Dimensional Collagen Matrices
  publication-title: Annu. Rev. Cel Dev. Biol.
  doi: 10.1146/annurev.cellbio.042308.113318
  contributor:
    fullname: Grinnell
– volume: 53
  start-page: 1077
  year: 2012
  ident: B33
  article-title: Growth Factor Regulation of Corneal Keratocyte Mechanical Phenotypes in 3-D Collagen Matrices
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-8609
  contributor:
    fullname: Lakshman
– volume: 119
  start-page: 1865
  year: 2020
  ident: B38
  article-title: ECM Stiffness Controls the Activation and Contractility of Corneal Keratocytes in Response to TGF-Β1
  publication-title: Biophysical J.
  doi: 10.1016/j.bpj.2020.08.040
  contributor:
    fullname: Maruri
– volume: 90
  start-page: 350
  year: 2010
  ident: B32
  article-title: Characterization of Corneal Keratocyte Morphology and Mechanical Activity within 3-D Collagen Matrices
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2009.11.016
  contributor:
    fullname: Lakshman
– volume: 106
  start-page: 22108
  year: 2009
  ident: B39
  article-title: Quantifying Cellular Traction Forces in Three Dimensions
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0904565106
  contributor:
    fullname: Maskarinec
– volume: 44
  start-page: 4724
  year: 2003
  ident: B58
  article-title: Modulation of Corneal Fibroblast Contractility within Fibrillar Collagen Matrices
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.03-0513
  contributor:
    fullname: Vishwanath
– volume: 172
  start-page: 259
  year: 2006
  ident: B10
  article-title: Focal Adhesion Size Controls Tension-dependent Recruitment of α-smooth Muscle Actin to Stress Fibers
  publication-title: JCB
  doi: 10.1083/jcb.200506179
  contributor:
    fullname: Goffin
– volume: 9
  start-page: 824
  year: 2018
  ident: B37
  article-title: Cellular Mechanotransduction: From Tension to Function
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00824
  contributor:
    fullname: Martino
– volume: 11
  start-page: 233
  year: 2015
  ident: B8
  article-title: Diverse Origins of the Myofibroblast-Implications for Kidney Fibrosis
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2014.246
  contributor:
    fullname: Falke
– volume: 18
  start-page: 816
  year: 2004
  ident: B34
  article-title: TGF‐β Signaling and the Fibrotic Response
  publication-title: FASEB j.
  doi: 10.1096/fj.03-1273rev
  contributor:
    fullname: Leask
– volume: 76
  start-page: 2307
  year: 1999
  ident: B6
  article-title: Stresses at the Cell-To-Substrate Interface during Locomotion of Fibroblasts
  publication-title: Biophysical J.
  doi: 10.1016/S0006-3495(99)77386-8
  contributor:
    fullname: Dembo
– volume: 229
  start-page: 298
  year: 2013
  ident: B31
  article-title: The Myofibroblast Matrix: Implications for Tissue Repair and Fibrosis
  publication-title: J. Pathol.
  doi: 10.1002/path.4104
  contributor:
    fullname: Klingberg
– volume: 27
  start-page: 1351
  year: 2013
  ident: B29
  article-title: Focal Adhesion Size Uniquely Predicts Cell Migration
  publication-title: FASEB j.
  doi: 10.1096/fj.12-220160
  contributor:
    fullname: Kim
– volume: 303
  start-page: L169
  year: 2012
  ident: B35
  article-title: Improved Throughput Traction Microscopy Reveals Pivotal Role for Matrix Stiffness in Fibroblast Contractility and TGF-β Responsiveness
  publication-title: Am. J. Physiology-Lung Cell Mol. Physiol.
  doi: 10.1152/ajplung.00108.2012
  contributor:
    fullname: Marinković
– volume: 36
  start-page: 260
  year: 2010
  ident: B25
  article-title: Evaluating Corneal Collagen Organization Using High-Resolution Nonlinear Optical Macroscopy
  publication-title: Eye and Contact Lens
  doi: 10.1097/ICL.0b013e3181ee8992
  contributor:
    fullname: Jester
– volume: 10
  start-page: 785
  year: 2014
  ident: B56
  article-title: Elastic Modulus and Collagen Organization of the Rabbit Cornea: Epithelium to Endothelium
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.09.025
  contributor:
    fullname: Thomasy
– volume: 18
  start-page: 311
  year: 1999
  ident: B24
  article-title: Corneal Stromal Wound Healing in Refractive Surgery: The Role of Myofibroblasts
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/s1350-9462(98)00021-4
  contributor:
    fullname: Jester
– volume: 3
  start-page: 466
  year: 2001
  ident: B1
  article-title: Force and Focal Adhesion Assembly: A Close Relationship Studied Using Elastic Micropatterned Substrates
  publication-title: Nat. Cel Biol.
  doi: 10.1038/35074532
  contributor:
    fullname: Balaban
– volume: 125
  start-page: 269
  year: 2015
  ident: B36
  article-title: Measurement of Cell Traction Forces with ImageJ
  publication-title: Methods Cel Biol
  doi: 10.1016/bs.mcb.2014.10.008
  contributor:
    fullname: Martiel
– volume: 8
  start-page: 305
  year: 2011
  ident: B27
  article-title: Rho-associated Kinase-dependent Contraction of Stress Fibres and the Organization of Focal Adhesions
  publication-title: J. R. Soc. Interf.
  doi: 10.1098/rsif.2010.0419
  contributor:
    fullname: Katoh
– volume: 77
  start-page: 581
  year: 2003
  ident: B22
  article-title: Modulation of Cultured Corneal Keratocyte Phenotype by Growth Factors/cytokines Control In Vitro Contractility and Extracellular Matrix Contraction
  publication-title: Exp. Eye Res.
  doi: 10.1016/s0014-4835(03)00188-x
  contributor:
    fullname: Jester
– volume: 6
  start-page: 705
  year: 1994
  ident: B50
  article-title: Focal Adhesion Kinase and Associated Proteins
  publication-title: Curr. Opin. Cel Biol.
  doi: 10.1016/0955-0674(94)90097-3
  contributor:
    fullname: Schaller
– volume: 16
  start-page: 1262
  year: 2017
  ident: B53
  article-title: Fibronectin-bound α5β1 Integrins Sense Load and Signal to Reinforce Adhesion in Less Than a Second
  publication-title: Nat. Mater
  doi: 10.1038/nmat5023
  contributor:
    fullname: Strohmeyer
– volume: 47
  start-page: 340
  year: 2012
  ident: B17
  article-title: Matrix Stiffness-Induced Myofibroblast Differentiation Is Mediated by Intrinsic Mechanotransduction
  publication-title: Am. J. Respir. Cel Mol. Biol.
  doi: 10.1165/rcmb.2012-0050OC
  contributor:
    fullname: Huang
– volume: 58
  start-page: 291
  year: 2017
  ident: B49
  article-title: Tissue and Cellular Biomechanics during Corneal Wound Injury and Repair
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.05.051
  contributor:
    fullname: Raghunathan
– volume: 1832
  start-page: 884
  year: 2013
  ident: B60
  article-title: Tissue Mechanics and Fibrosis
  publication-title: Biochim. Biophys. Acta (Bba) - Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2013.02.007
  contributor:
    fullname: Wells
– volume: 116
  start-page: 1481
  year: 2003
  ident: B46
  article-title: Direct Correlation of Collagen Matrix Deformation with Focal Adhesion Dynamics in Living Corneal Fibroblasts
  publication-title: J. Cel Sci.
  doi: 10.1242/jcs.00357
  contributor:
    fullname: Petroll
– volume: 50
  start-page: 3662
  year: 2009
  ident: B5
  article-title: Rho-Mediated Regulation of TGF-Β1- and FGF-2-Induced Activation of Corneal Stromal Keratocytes
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.08-3276
  contributor:
    fullname: Chen
– volume: 36
  start-page: 1837
  year: 1995
  ident: B40
  article-title: Integrin-dependent Tyrosine Phosphorylation in Corneal Fibroblasts
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Masur
– volume: 98
  start-page: 11295
  year: 2001
  ident: B59
  article-title: Focal Adhesion Kinase Is Involved in Mechanosensing during Fibroblast Migration
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.201201198
  contributor:
    fullname: Wang
– volume: 71
  start-page: 435
  year: 1999
  ident: B51
  article-title: Signaling through Focal Adhesion Kinase
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/s0079-6107(98)00052-2
  contributor:
    fullname: Schlaepfer
– volume: 15
  start-page: 505
  year: 1996
  ident: B21
  article-title: Induction of ??-Smooth Muscle Actin Expression and Myofibroblast Transformation in Cultured Corneal Keratocytes
  publication-title: Cornea
  doi: 10.1097/00003226-199609000-00011
  contributor:
    fullname: Jester
– volume: 35
  start-page: 730
  year: 1994
  ident: B20
  article-title: Corneal Keratocytes: In Situ and In Vitro Organization of Cytoskeletal Contractile Proteins
  publication-title: Invest. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Jester
– volume: 56
  start-page: 2079
  year: 2015
  ident: B41
  article-title: The Role of Thrombin and Cell Contractility in Regulating Clustering and Collective Migration of Corneal Fibroblasts in Different ECM Environments
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.15-16388
  contributor:
    fullname: Miron-Mendoza
– volume: 6
  start-page: 275
  year: 2004
  ident: B4
  article-title: Mechanotransduction at Cell-Matrix and Cell-Cell Contacts
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.6.040803.140040
  contributor:
    fullname: Chen
– volume: 92
  start-page: 477
  year: 2000
  ident: B44
  article-title: Focal Adhesions: Structure and Dynamics
  publication-title: Biol. Cel
  doi: 10.1016/S0248-4900(00)01101-1
  contributor:
    fullname: Petit
SSID ssj0001257583
Score 2.2958086
Snippet Following injury and refractive surgery, corneal wound healing can initiate a protracted fibrotic response that interferes with ocular function. This fibrosis...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 886759
SubjectTerms Cell and Developmental Biology
extracellular matrix
FAK
mechanobiology
TGF-β1
traction force microscopy
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXxFMsLxmJE5LVxI4fOZZul0qoHNgicbP8bPdAgprdw_4ZfgQ_hN_ETJyW5sSFHPPQODNj-_smkxlC3mGVfOmdZJnHDAQleOZCbplIoUka9gfX4r_Dp2v9-ZtZnmCZnJtWX5gTVsoDF8UdetloLWFJjVk2QUQHbA4oSKiM86oxBRpV6haZKtEVgCFGlM-YwMLaw4yBcOCDnINvAEpuZxvRWK9_BjLnKZK39pzVQ_JgAov0qAzyEbmTusfkXmkfuX9Cfq43F4ijuwu6xCAxJo1_p32mK9yg6FG8TBgLG-iX0nA-DXS93eSMqxtbTt1vt3Q59UiBFYNuOgqIkJ5_XLHfv2p2NjbySJGe7cEJPTafccPfJ7bFrijyuL_qAHPST1ikuQ97EPaUfF2dnB-fsqnfAgtC6pYpmO9Z1iKYOkVXK1CwkaAxl4GWeRkq5Y3wOeioKhcNcCvtkg6tEUq1wWjxjBx0fZeeE-qFShGOxrvUOF17XuXIeeVcFaoQxIK8v1a-_VHKaligI2gpO1rKoqVssdSCfEDz3NyIFbHHE-AndvIT-y8_WZC318a1MINQhutSvxssRxkARDVfED2z-kzi_Eq3uRxrcQPbBZpvXvyPIb4k9_GtMTeBy1fkYHu1S6_J3SHu3oze_Qd7YgTS
  priority: 102
  providerName: Directory of Open Access Journals
Title Signaling Downstream of Focal Adhesions Regulates Stiffness-Dependent Differences in the TGF-β1-Mediated Myofibroblast Differentiation of Corneal Keratocytes
URI https://search.proquest.com/docview/2675983572
https://pubmed.ncbi.nlm.nih.gov/PMC9177138
https://doaj.org/article/b54775678df54c3da907717c08ab648a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELboSkhcEL-isFRG4oSUbRLHsXNc2i2LVkWILhI3y7_dSDRZNe2hL7MPwYPwTMwkKWyu5JjEmiQz9nzfZDxDyHusks-N5lFIXQCCYk2kbSgi5m3mBfgHXeDe4cuV-PJDzi-wTA4_7oVpk_atKc-qn5uzqrxpcytvN3Z6zBObfl3OgGIAt5LTERkBNrxH0bvACiAQybo_mEDAimnAGDhQwTQFswCAjJVCGc8LgAZi4I7aqv0DqDlMlLzneRZPyOMeMtLz7tGekge-ekYedk0kD8_J3apcI5qu1nSOoWJMHd_QOtAFuil67m48RsQa-q1rO-8butqVIeAaF837Hrg7Ou87pcC6QcuKAi6k158W0e9fSbRs23l4R5cHMEWDLWh082_ErtMuipzV2wqQJ73CUs21PYCwF-T74uJ6dhn1XRciy7goohxmfeAJszLxTie5Nrnk8PF0AHJmuI1zI5kJVrg81k4CwxLaC1tIlueFlYK9JCdVXflXhBqWewdHZrTPtEhMGgeXprHWsY2tZWPy4fjx1W1XXEMBKUGlqVZpCpWmOqWNyUdUz98bsS52e6LerlVvHcrwTAgODtgFnlnmNHB_IKw2lvAamdRj8u6oXAXzCGXoytf7RqUoA-CoSMdEDLQ-kDi8AgbaVuTuDfL1f498Qx7hq2JaQspPycluu_dvyahx-wng_M9XkzZWMGkt_Q_z5gfa
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF7RIgSX8lsRfheJE5Ib2-v1ro8laQhqUyESJG7W_qaWiF3FySEv04fgQXgmZmwH6mt99Ho1Xs_szvetZ2cI-YhZ8rlWPPCx9UBQjA6U8VnAnEmcAP-gMjw7PJ2Ly59yfIZpcvj-LEwTtG90cVL-Wp2UxVUTW3m9MsN9nNjw22wEFAO4lRwekPswX8PwFklvt1YAg0jW_sMECpYNPe6CAxmMYzAMgMiYK5TxNANwIHoOqcnb3wOb_VDJW75n8viOb_2EHHVgk562zU_JPVc-Iw_a8pO75-RmXiwRh5dLOsZNZgw6X9HK0wk6OHpqrxzupdX0e1uw3tV0vim8x9UxGHfVczd03NVYgRWHFiUFREkXXybBn99RMGsKgThLZzswYo3Fa1T9v8emtQsUOarWJWBWeo5JniuzA2EvyI_J2WI0Dbp6DYFhXGRBCuuF5xEzMnJWRanSqeTw0ZUHWqe5CVMtmfZG2DRUVgI3E8oJk0mWppmRgh2Tw7Iq3UtCNUudhSvRyiVKRDoOvY3jUKnQhMawAfm0V1p-3ablyIHOoLLzRtk5KjtvlT0gn1Gt_x7EjNrNjWq9zDsN5ZonQnBw3dbzxDCrshDUJUwoYRiJVAPyYW8UOcxAlKFKV23rPEYZAGRFPCCiZy09if0WMJIml3dnFK_u3PM9eThdzC7yi6-X56_JIxw2BjfE_A053Ky37i05qO32XTND_gK1iRt4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RIhAX3ojwXCROSG5sr9e7PpakoaikqkiRuK32mVoidpTHIX-GH8EP4TcxYzulvoKP9lrj9czufN94PEPIe6ySz43mUUhdAIJiTaRtKCLmbeYF-Add4L_DpzNx_l2OT7BMznWrryZp35ryqPqxOKrKqya3crmww32e2PBiOgKKAdxKDpcuDA_IbVizcXqDqLfhFcAhkrXfMYGGFcOAkXAghGkKxgEwGeuFMp4XABBEzyk1tft7gLOfLnnD_0we_MeTPyT3O9BJj9shj8gtXz0md9o2lLsn5OesnCMer-Z0jMFmTD5f0DrQCTo6euyuPMbU1vRr27jer-lsU4aAu2Q07rrobui467UCOw8tKwrIkl5-mkS_fyXRtGkI4h2d7sCYDTax0eu_d2xa-0CRo3pVAXalZ1jsubY7EPaUfJucXI5Oo65vQ2QZF0WUw74ReMKsTLzTSa5NLjm8eB2A3hlu49xIZoIVLo-1k8DRhPbCFpLleWGlYM_IYVVX_jmhhuXewZEZ7TMtEpPGwaVprHVsY2vZgHzYK04t2_IcCmgNKlw1CleocNUqfEA-omqvB2Jl7eZEvZqrTkvK8EwIDi7cBZ5Z5nQRg8qEjSVMI5N6QN7tDUPBSkQZuvL1dq1SlAGAVqQDInoW05PYvwKG0tT07gzjxT_f-ZbcvRhP1JfP52cvyT2cNeY4pPwVOdystv41OVi77ZtmkfwBbpwd-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signaling+Downstream+of+Focal+Adhesions+Regulates+Stiffness-Dependent+Differences+in+the+TGF-%CE%B21-Mediated+Myofibroblast+Differentiation+of+Corneal+Keratocytes&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Maruri%2C+Daniel+P&rft.au=Iyer%2C+Krithika+S&rft.au=Schmidtke%2C+David+W&rft.au=Petroll%2C+W+Matthew&rft.date=2022-05-25&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=10&rft.spage=886759&rft.epage=886759&rft_id=info:doi/10.3389%2Ffcell.2022.886759&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon