A Self‐Regulated Interface toward Highly Reversible Aqueous Zinc Batteries

Aqueous zinc batteries, that demonstrate high safety and low cost, are considered promising candidates for large‐scale energy storage. However, Zn anodes suffer from rapid performance deterioration due to the severe Zn dendrite growth and side reactions. Herein, with a low‐cost ammonium acetate (NH4...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials Vol. 12; no. 9
Main Authors: Han, Daliang, Wang, Zhenxing, Lu, Haotian, Li, Huan, Cui, Changjun, Zhang, Zhicheng, Sun, Rui, Geng, Chuannan, Liang, Qinghua, Guo, Xiaoxia, Mo, Yanbing, Zhi, Xing, Kang, Feiyu, Weng, Zhe, Yang, Quan‐Hong
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01-03-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Aqueous zinc batteries, that demonstrate high safety and low cost, are considered promising candidates for large‐scale energy storage. However, Zn anodes suffer from rapid performance deterioration due to the severe Zn dendrite growth and side reactions. Herein, with a low‐cost ammonium acetate (NH4OAc) additive, a self‐regulated Zn/electrolyte interface is built to address these problems. The NH4+ induces a dynamic electrostatic shielding layer around the abrupt Zn protuberance to make the Zn deposition uniform, and the OAc− acts as an interfacial pH buffer to suppress the proton‐induced side reactions and the precipitation of insoluble by‐products. As a result, in the electrolyte with the NH4OAc additive, Zn anodes exhibit a long cycling stability of 3500 h at 1 mA cm−2, an impressive cumulative areal capacity of 5000 mAh cm−2 at 10 mA cm−2, and a high Coulombic efficiency of ≈99.7%. A prototype full cell coupled with a NH4V4O10 cathode performs much better in terms of capacity retention than the additive‐free case. The findings pave the way for developing practical Zn batteries. A self‐regulated interface is built using a dual‐functional ammonium acetate additive to address zinc dendrite growth and proton‐induced side reactions simultaneously, thus enabling an Zn anode with long cycling stability of 3500 h, an impressive cumulative areal capacity of 5000 mAh cm−2 at 10 mA cm−2, and a high Coulombic efficiency of 99.7%.
AbstractList Aqueous zinc batteries, that demonstrate high safety and low cost, are considered promising candidates for large‐scale energy storage. However, Zn anodes suffer from rapid performance deterioration due to the severe Zn dendrite growth and side reactions. Herein, with a low‐cost ammonium acetate (NH4OAc) additive, a self‐regulated Zn/electrolyte interface is built to address these problems. The NH4+ induces a dynamic electrostatic shielding layer around the abrupt Zn protuberance to make the Zn deposition uniform, and the OAc− acts as an interfacial pH buffer to suppress the proton‐induced side reactions and the precipitation of insoluble by‐products. As a result, in the electrolyte with the NH4OAc additive, Zn anodes exhibit a long cycling stability of 3500 h at 1 mA cm−2, an impressive cumulative areal capacity of 5000 mAh cm−2 at 10 mA cm−2, and a high Coulombic efficiency of ≈99.7%. A prototype full cell coupled with a NH4V4O10 cathode performs much better in terms of capacity retention than the additive‐free case. The findings pave the way for developing practical Zn batteries.
Abstract Aqueous zinc batteries, that demonstrate high safety and low cost, are considered promising candidates for large‐scale energy storage. However, Zn anodes suffer from rapid performance deterioration due to the severe Zn dendrite growth and side reactions. Herein, with a low‐cost ammonium acetate (NH 4 OAc) additive, a self‐regulated Zn/electrolyte interface is built to address these problems. The NH 4 + induces a dynamic electrostatic shielding layer around the abrupt Zn protuberance to make the Zn deposition uniform, and the OAc − acts as an interfacial pH buffer to suppress the proton‐induced side reactions and the precipitation of insoluble by‐products. As a result, in the electrolyte with the NH 4 OAc additive, Zn anodes exhibit a long cycling stability of 3500 h at 1 mA cm −2 , an impressive cumulative areal capacity of 5000 mAh cm −2  at 10 mA cm −2 , and a high Coulombic efficiency of ≈ 99.7%. A prototype full cell coupled with a NH 4 V 4 O 10  cathode performs much better in terms of capacity retention than the additive‐free case. The findings pave the way for developing practical Zn batteries.
Aqueous zinc batteries, that demonstrate high safety and low cost, are considered promising candidates for large‐scale energy storage. However, Zn anodes suffer from rapid performance deterioration due to the severe Zn dendrite growth and side reactions. Herein, with a low‐cost ammonium acetate (NH4OAc) additive, a self‐regulated Zn/electrolyte interface is built to address these problems. The NH4+ induces a dynamic electrostatic shielding layer around the abrupt Zn protuberance to make the Zn deposition uniform, and the OAc− acts as an interfacial pH buffer to suppress the proton‐induced side reactions and the precipitation of insoluble by‐products. As a result, in the electrolyte with the NH4OAc additive, Zn anodes exhibit a long cycling stability of 3500 h at 1 mA cm−2, an impressive cumulative areal capacity of 5000 mAh cm−2 at 10 mA cm−2, and a high Coulombic efficiency of ≈99.7%. A prototype full cell coupled with a NH4V4O10 cathode performs much better in terms of capacity retention than the additive‐free case. The findings pave the way for developing practical Zn batteries. A self‐regulated interface is built using a dual‐functional ammonium acetate additive to address zinc dendrite growth and proton‐induced side reactions simultaneously, thus enabling an Zn anode with long cycling stability of 3500 h, an impressive cumulative areal capacity of 5000 mAh cm−2 at 10 mA cm−2, and a high Coulombic efficiency of 99.7%.
Author Zhi, Xing
Yang, Quan‐Hong
Wang, Zhenxing
Mo, Yanbing
Cui, Changjun
Li, Huan
Geng, Chuannan
Lu, Haotian
Sun, Rui
Kang, Feiyu
Han, Daliang
Liang, Qinghua
Zhang, Zhicheng
Weng, Zhe
Guo, Xiaoxia
Author_xml – sequence: 1
  givenname: Daliang
  orcidid: 0000-0002-4094-3279
  surname: Han
  fullname: Han, Daliang
  organization: Tianjin University
– sequence: 2
  givenname: Zhenxing
  surname: Wang
  fullname: Wang, Zhenxing
  organization: Tianjin University
– sequence: 3
  givenname: Haotian
  surname: Lu
  fullname: Lu, Haotian
  organization: International Campus of Tianjin University
– sequence: 4
  givenname: Huan
  surname: Li
  fullname: Li, Huan
  organization: The University of Adelaide
– sequence: 5
  givenname: Changjun
  surname: Cui
  fullname: Cui, Changjun
  organization: Tianjin University
– sequence: 6
  givenname: Zhicheng
  surname: Zhang
  fullname: Zhang, Zhicheng
  organization: Tianjin University
– sequence: 7
  givenname: Rui
  surname: Sun
  fullname: Sun, Rui
  organization: Tianjin University
– sequence: 8
  givenname: Chuannan
  surname: Geng
  fullname: Geng, Chuannan
  organization: Tianjin University
– sequence: 9
  givenname: Qinghua
  surname: Liang
  fullname: Liang, Qinghua
  organization: The University of Melbourne
– sequence: 10
  givenname: Xiaoxia
  surname: Guo
  fullname: Guo, Xiaoxia
  organization: Tianjin University
– sequence: 11
  givenname: Yanbing
  surname: Mo
  fullname: Mo, Yanbing
  organization: Tianjin University
– sequence: 12
  givenname: Xing
  surname: Zhi
  fullname: Zhi, Xing
  organization: The University of Adelaide
– sequence: 13
  givenname: Feiyu
  surname: Kang
  fullname: Kang, Feiyu
  organization: Tsinghua University
– sequence: 14
  givenname: Zhe
  orcidid: 0000-0002-6005-9552
  surname: Weng
  fullname: Weng, Zhe
  email: zweng@tju.edu.cn
  organization: Tianjin University
– sequence: 15
  givenname: Quan‐Hong
  orcidid: 0000-0003-2882-3968
  surname: Yang
  fullname: Yang, Quan‐Hong
  organization: International Campus of Tianjin University
BookMark eNqFkEFPwkAQhTcGExG5et7Ec3F3tlvaYyUoJKgJcvKy2S5TLCkt7rYSbv4Ef6O_xCUYPDqXmcP75r28S9Kp6goJueZswBmDW43VZgAMOIMkhjPS5REPgygOWed0C7ggfefWzE-YcCZEl8xS-oJl_v35NcdVW-oGl3RaNWhzbZA29U7bJZ0Uq7dyT-f4gdYVWYk0fW-xbh19LSpD73TjgQLdFTnPdemw_7t7ZHE_Xowmwez5YTpKZ4ERcghBLBEkJBxCbrgGM8SEyzCOsyjOMgH50ESYCck501kuUKCMZMQkgDaGL5nokZvj262tfQ7XqHXd2so7Kog85z1C4VWDo8rY2jmLudraYqPtXnGmDp2pQ2fq1JkHkiOwK0rc_6NW6fjp8Y_9Aba3cWM
CitedBy_id crossref_primary_10_1002_adma_202306508
crossref_primary_10_1002_anie_202218872
crossref_primary_10_1016_j_cej_2023_143642
crossref_primary_10_1007_s40820_023_01227_x
crossref_primary_10_1016_j_jechem_2023_04_006
crossref_primary_10_1002_eom2_12438
crossref_primary_10_1002_smll_202400221
crossref_primary_10_1002_adfm_202310995
crossref_primary_10_1016_j_jechem_2022_06_009
crossref_primary_10_1002_smll_202205462
crossref_primary_10_1002_adma_202309212
crossref_primary_10_1002_batt_202300486
crossref_primary_10_1002_batt_202200535
crossref_primary_10_1016_j_ensm_2022_10_043
crossref_primary_10_1039_D3EE02114A
crossref_primary_10_1016_j_xcrp_2022_100824
crossref_primary_10_1002_adma_202208630
crossref_primary_10_1021_acsnano_3c04155
crossref_primary_10_1002_inf2_12344
crossref_primary_10_1007_s11426_022_1556_x
crossref_primary_10_1021_acsnano_3c03500
crossref_primary_10_1016_j_jcis_2022_05_157
crossref_primary_10_1002_adfm_202402186
crossref_primary_10_1039_D4EE01226G
crossref_primary_10_3390_batteries8100153
crossref_primary_10_1002_anie_202311988
crossref_primary_10_1016_j_ccr_2024_215722
crossref_primary_10_1016_j_jechem_2024_06_036
crossref_primary_10_1002_anie_202207711
crossref_primary_10_1016_j_jpowsour_2022_232262
crossref_primary_10_1039_D2TA06975J
crossref_primary_10_1002_celc_202400188
crossref_primary_10_1016_j_ensm_2023_102934
crossref_primary_10_1039_D3CC04476A
crossref_primary_10_1039_D2SC01818G
crossref_primary_10_1002_anie_202302302
crossref_primary_10_1002_smll_202308209
crossref_primary_10_1016_j_mtchem_2022_101238
crossref_primary_10_1039_D3TA07207J
crossref_primary_10_1021_acs_jpclett_4c00626
crossref_primary_10_1016_j_cej_2024_152050
crossref_primary_10_1002_adfm_202307201
crossref_primary_10_1021_acsaem_3c02618
crossref_primary_10_1038_s41467_023_41276_9
crossref_primary_10_1021_acsami_4c01180
crossref_primary_10_1021_acs_nanolett_2c00398
crossref_primary_10_1016_j_cej_2024_152852
crossref_primary_10_1002_ange_202302302
crossref_primary_10_1016_j_ensm_2023_102949
crossref_primary_10_1039_D3TA07315G
crossref_primary_10_1002_ange_202319091
crossref_primary_10_1002_batt_202200560
crossref_primary_10_1002_smll_202401916
crossref_primary_10_1002_aenm_202300283
crossref_primary_10_1002_ange_202301192
crossref_primary_10_1002_smll_202403412
crossref_primary_10_1016_j_matre_2022_100161
crossref_primary_10_1016_j_jpowsour_2024_234977
crossref_primary_10_1021_acs_nanolett_2c00065
crossref_primary_10_1007_s42765_023_00323_2
crossref_primary_10_1021_acsami_2c21135
crossref_primary_10_1002_anie_202307271
crossref_primary_10_1016_j_jcis_2023_12_030
crossref_primary_10_1021_acsnano_2c05124
crossref_primary_10_1021_cbe_4c00053
crossref_primary_10_1002_aenm_202303967
crossref_primary_10_1016_j_cej_2023_147759
crossref_primary_10_1002_adfm_202402014
crossref_primary_10_1002_smtd_202300101
crossref_primary_10_1002_adma_202207344
crossref_primary_10_1021_acs_nanolett_3c02904
crossref_primary_10_1002_anie_202212695
crossref_primary_10_1021_acs_energyfuels_4c02287
crossref_primary_10_1021_acsmaterialslett_4c00308
crossref_primary_10_1021_acsnano_2c01571
crossref_primary_10_1016_j_jechem_2023_05_021
crossref_primary_10_1016_j_cej_2024_152839
crossref_primary_10_1016_j_cej_2023_146534
crossref_primary_10_1002_adma_202308628
crossref_primary_10_1016_j_ijoes_2023_100191
crossref_primary_10_1016_j_nxener_2023_100073
crossref_primary_10_1002_adma_202200131
crossref_primary_10_1002_cnl2_54
crossref_primary_10_1016_j_mattod_2022_06_006
crossref_primary_10_1039_D4EE00109E
crossref_primary_10_1002_ange_202212695
crossref_primary_10_1021_acsami_4c07076
crossref_primary_10_1039_D3EE00018D
crossref_primary_10_1186_s43074_024_00122_x
crossref_primary_10_1002_advs_202304549
crossref_primary_10_1021_acsaem_4c00102
crossref_primary_10_1002_smll_202311407
crossref_primary_10_1007_s40820_023_01050_4
crossref_primary_10_1039_D2SE00762B
crossref_primary_10_1016_j_cej_2022_138048
crossref_primary_10_1016_j_ensm_2024_103615
crossref_primary_10_1007_s41918_023_00194_6
crossref_primary_10_1016_j_ensm_2022_07_010
crossref_primary_10_1002_adma_202203905
crossref_primary_10_1016_j_jcis_2024_03_034
crossref_primary_10_1002_bte2_20220029
crossref_primary_10_1039_D4SC00711E
crossref_primary_10_1002_adma_202406071
crossref_primary_10_1002_adma_202203104
crossref_primary_10_1039_D2SE01398C
crossref_primary_10_1016_j_jcis_2024_02_111
crossref_primary_10_1016_j_ensm_2024_103569
crossref_primary_10_1002_aenm_202301466
crossref_primary_10_1002_ange_202311988
crossref_primary_10_1021_acsenergylett_3c02824
crossref_primary_10_1002_anie_202301192
crossref_primary_10_1016_j_jcis_2024_03_168
crossref_primary_10_1021_acsami_2c19022
crossref_primary_10_1002_smtd_202300660
crossref_primary_10_1016_j_cej_2024_148544
crossref_primary_10_1002_adfm_202314388
crossref_primary_10_1002_ange_202307271
crossref_primary_10_1039_D3TA06593F
crossref_primary_10_1016_j_mtphys_2024_101356
crossref_primary_10_1016_j_est_2023_110037
crossref_primary_10_1021_acsaelm_3c00933
crossref_primary_10_1002_cssc_202300730
crossref_primary_10_1007_s12598_023_02541_4
crossref_primary_10_1016_j_ensm_2022_12_024
crossref_primary_10_1016_j_cej_2022_136218
crossref_primary_10_1002_ange_202218872
crossref_primary_10_1039_D3TA03172A
crossref_primary_10_1002_aenm_202300331
crossref_primary_10_1002_smll_202202363
crossref_primary_10_1039_D3EE01724A
crossref_primary_10_1002_batt_202400237
crossref_primary_10_1039_D3DT03398H
crossref_primary_10_1016_j_ensm_2023_01_027
crossref_primary_10_1002_adfm_202312506
crossref_primary_10_1016_j_cej_2022_141016
crossref_primary_10_1016_j_ensm_2022_04_031
crossref_primary_10_1039_D3TA01904G
crossref_primary_10_1016_j_cej_2023_141272
crossref_primary_10_1016_j_ensm_2024_103497
crossref_primary_10_1002_adfm_202313150
crossref_primary_10_1016_j_scib_2023_05_015
crossref_primary_10_1126_sciadv_adn2265
crossref_primary_10_1016_j_ensm_2022_03_038
crossref_primary_10_1016_j_matt_2022_08_025
crossref_primary_10_1002_adma_202200677
crossref_primary_10_1039_D2EE03528F
crossref_primary_10_1002_ange_202318470
crossref_primary_10_1039_D3EE00658A
crossref_primary_10_1021_acsnano_2c11516
crossref_primary_10_1016_j_ensm_2023_04_006
crossref_primary_10_1039_D3TA02154H
crossref_primary_10_1016_j_joule_2024_02_002
crossref_primary_10_1002_smll_202309519
crossref_primary_10_1002_anie_202319091
crossref_primary_10_1002_aenm_202304535
crossref_primary_10_1007_s12598_023_02561_0
crossref_primary_10_1016_j_jcis_2023_08_047
crossref_primary_10_1016_j_cej_2023_143312
crossref_primary_10_1016_j_ensm_2024_103248
crossref_primary_10_1002_advs_202201433
crossref_primary_10_1016_j_cej_2024_151111
crossref_primary_10_1002_ange_202207711
crossref_primary_10_1002_adma_202202188
crossref_primary_10_1016_j_ensm_2024_103361
crossref_primary_10_1016_j_ensm_2022_07_046
crossref_primary_10_1039_D4CC02062F
crossref_primary_10_1016_j_ensm_2022_06_005
crossref_primary_10_1016_j_jpowsour_2023_233375
crossref_primary_10_1002_aenm_202203165
crossref_primary_10_1002_aenm_202300782
crossref_primary_10_1002_adfm_202316605
crossref_primary_10_1016_j_ensm_2023_103153
crossref_primary_10_1007_s40820_023_01031_7
crossref_primary_10_1016_j_ensm_2023_102858
crossref_primary_10_1002_adfm_202303205
crossref_primary_10_1002_anie_202303557
crossref_primary_10_1002_cnl2_106
crossref_primary_10_1016_j_cej_2024_152789
crossref_primary_10_1016_j_ensm_2024_103588
crossref_primary_10_1016_j_ensm_2024_103227
crossref_primary_10_1021_acsenergylett_2c02455
crossref_primary_10_1016_j_pmatsci_2023_101171
crossref_primary_10_1016_j_ensm_2022_03_045
crossref_primary_10_1002_adma_202307708
crossref_primary_10_1007_s11664_022_09984_y
crossref_primary_10_1002_adfm_202203905
crossref_primary_10_1002_ange_202303557
crossref_primary_10_1002_anie_202318470
crossref_primary_10_1002_adma_202310667
crossref_primary_10_1002_adfm_202313358
crossref_primary_10_1021_acsami_4c02476
crossref_primary_10_1002_advs_202301785
crossref_primary_10_1007_s40843_023_2598_0
crossref_primary_10_1007_s11426_024_2098_6
crossref_primary_10_3390_batteries9050284
crossref_primary_10_1039_D4TA02193B
Cites_doi 10.1126/science.aax6873
10.1002/anie.202008960
10.1149/1945-7111/abcd46
10.1038/s41565-021-00905-4
10.1002/anie.201106307
10.1038/s41560-020-0674-x
10.1002/aenm.202003931
10.1038/nenergy.2016.39
10.1039/D1EE02021H
10.1016/j.enchem.2021.100052
10.1002/anie.202108624
10.1039/D1EE01472B
10.1039/D1EE00308A
10.1002/anie.201813223
10.1002/aenm.202000962
10.1039/D0EE02620D
10.1016/j.ensm.2020.10.027
10.1021/acsenergylett.0c00502
10.1126/sciadv.aba4098
10.1002/adma.202007416
10.1002/adfm.202001867
10.1038/nenergy.2016.119
10.1002/smll.202001736
10.1021/acsenergylett.1c00393
10.1021/acs.chemrev.9b00628
10.1002/adfm.202004187
10.1039/D0EE01538E
10.1039/D0SC00022A
10.1038/ncomms11801
10.1002/adma.202001854
10.1002/anie.202016531
10.1021/acsenergylett.1c00638
10.1021/ja312241y
10.1016/j.cej.2021.131705
10.1002/adma.202007388
10.1038/s41467-019-13436-3
10.1002/anie.202005603
10.1039/C8CC07730D
10.1021/acsenergylett.0c02371
10.1016/j.mattod.2020.12.003
10.1002/adma.202007497
10.1002/anie.202001844
10.1126/science.aak9991
10.1039/C9CS00349E
10.1038/s41578-020-00241-4
10.1021/acsenergylett.0c01792
10.1002/anie.202000162
10.1016/j.nanoen.2020.105478
10.1016/j.ensm.2019.04.022
10.1039/D0EE02079F
10.1002/cey2.70
10.1038/s41467-020-15478-4
10.1039/D0NR03394D
10.1038/s41467-018-04060-8
10.1002/adfm.201802564
10.1002/cssc.201600702
10.1039/D0EE02162H
10.1038/s41563-018-0063-z
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202102982
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202102982
AENM202102982
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51972223; 22109116
– fundername: Natural Science Foundation of Tianjin City
  funderid: No. 20JCYBJC01550
– fundername: China Postdoctoral Science Foundation
  funderid: 2021M692385
– fundername: Local Innovative Research Teams Project of Guangdong Pearl River Talents Program
  funderid: 2017BT01N111
– fundername: Natural Science Foundation of Tianjin
  funderid: 20JCYBJC01550
– fundername: Australian Research Council
  funderid: DE190100445
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AASGY
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3572-85e25291241c1a2c7e915488b68bb32f7c6eb35110abf3e3e56560522acc1d03
IEDL.DBID 33P
ISSN 1614-6832
IngestDate Thu Oct 10 19:54:37 EDT 2024
Fri Aug 23 03:37:51 EDT 2024
Sat Aug 24 00:57:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3572-85e25291241c1a2c7e915488b68bb32f7c6eb35110abf3e3e56560522acc1d03
ORCID 0000-0002-4094-3279
0000-0002-6005-9552
0000-0003-2882-3968
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/aenm.202102982
PQID 2635157243
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_2635157243
crossref_primary_10_1002_aenm_202102982
wiley_primary_10_1002_aenm_202102982_AENM202102982
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 28
2021; 6
2021; 45
2021; 3
2020; 120
2019; 10
2019; 58
2020; 16
2020; 59
2019; 366
2020; 13
2020; 35
2020; 167
2020; 12
2020; 11
2020; 32
2017; 356
2012; 51
2021; 14
2020; 6
2021; 16
2018; 9
2016; 7
2020; 5
2018; 17
2016; 1
2020; 3
2021; 11
2021; 33
2019; 20
2020; 31
2020; 30
2021
2020; 49
2013; 135
2022; 427
2021; 60
2018; 54
2016; 9
2021; 80
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
Han D. (e_1_2_7_16_1) 2021
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
Yang Q. (e_1_2_7_57_1) 2021
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 14
  start-page: 4463
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 3527
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 3609
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 109
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 11
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 1656
  year: 2018
  publication-title: Nat. Commun.
– volume: 13
  start-page: 4625
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 2948
  year: 2016
  publication-title: ChemSusChem
– volume: 60
  start-page: 7366
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 5374
  year: 2019
  publication-title: Nat. Commun.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 58
  start-page: 2760
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 543
  year: 2018
  publication-title: Nat. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 3012
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 59
  start-page: 9377
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 1634
  year: 2020
  publication-title: Nat. Commun.
– volume: 49
  start-page: 4203
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 3
  year: 2021
  publication-title: EnergyChem
– volume: 35
  start-page: 19
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 366
  start-page: 645
  year: 2019
  publication-title: Science
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 20
  start-page: 410
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 120
  start-page: 7795
  year: 2020
  publication-title: Chem. Rev.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 427
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 1990
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 1665
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 902
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 356
  start-page: 415
  year: 2017
  publication-title: Science
– volume: 3
  start-page: 339
  year: 2020
  publication-title: Carbon Energy
– year: 2021
  publication-title: Nat. Sustain.
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 14
  start-page: 5669
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 395
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 45
  start-page: 191
  year: 2021
  publication-title: Mater. Today
– volume: 5
  start-page: 743
  year: 2020
  publication-title: Nat. Energy
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 80
  year: 2021
  publication-title: Nano Energy
– volume: 13
  start-page: 3917
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 933
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 2028
  year: 2020
  publication-title: Chem. Sci.
– volume: 6
  start-page: 1773
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 13
  start-page: 3330
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 135
  start-page: 4450
  year: 2013
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_15_1
  doi: 10.1126/science.aax6873
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.202008960
– ident: e_1_2_7_43_1
  doi: 10.1149/1945-7111/abcd46
– ident: e_1_2_7_46_1
  doi: 10.1038/s41565-021-00905-4
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.201106307
– ident: e_1_2_7_9_1
  doi: 10.1038/s41560-020-0674-x
– ident: e_1_2_7_28_1
  doi: 10.1002/aenm.202003931
– ident: e_1_2_7_5_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_7_30_1
  doi: 10.1039/D1EE02021H
– ident: e_1_2_7_55_1
  doi: 10.1016/j.enchem.2021.100052
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.202108624
– ident: e_1_2_7_35_1
  doi: 10.1039/D1EE01472B
– ident: e_1_2_7_51_1
  doi: 10.1039/D1EE00308A
– ident: e_1_2_7_41_1
  doi: 10.1002/anie.201813223
– ident: e_1_2_7_24_1
  doi: 10.1002/aenm.202000962
– ident: e_1_2_7_45_1
  doi: 10.1039/D0EE02620D
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ensm.2020.10.027
– ident: e_1_2_7_25_1
  doi: 10.1021/acsenergylett.0c00502
– ident: e_1_2_7_12_1
  doi: 10.1126/sciadv.aba4098
– ident: e_1_2_7_47_1
  doi: 10.1002/adma.202007416
– ident: e_1_2_7_29_1
  doi: 10.1002/adfm.202001867
– ident: e_1_2_7_4_1
  doi: 10.1038/nenergy.2016.119
– ident: e_1_2_7_27_1
  doi: 10.1002/smll.202001736
– ident: e_1_2_7_23_1
  doi: 10.1021/acsenergylett.1c00393
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.chemrev.9b00628
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.202004187
– ident: e_1_2_7_39_1
  doi: 10.1039/D0EE01538E
– ident: e_1_2_7_20_1
  doi: 10.1039/D0SC00022A
– ident: e_1_2_7_2_1
  doi: 10.1038/ncomms11801
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.202001854
– ident: e_1_2_7_38_1
  doi: 10.1002/anie.202016531
– year: 2021
  ident: e_1_2_7_16_1
  publication-title: Nat. Sustain.
  contributor:
    fullname: Han D.
– ident: e_1_2_7_22_1
  doi: 10.1021/acsenergylett.1c00638
– ident: e_1_2_7_54_1
  doi: 10.1021/ja312241y
– ident: e_1_2_7_37_1
  doi: 10.1016/j.cej.2021.131705
– ident: e_1_2_7_48_1
  doi: 10.1002/adma.202007388
– ident: e_1_2_7_40_1
  doi: 10.1038/s41467-019-13436-3
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.202005603
– ident: e_1_2_7_33_1
  doi: 10.1039/C8CC07730D
– ident: e_1_2_7_49_1
  doi: 10.1021/acsenergylett.0c02371
– ident: e_1_2_7_7_1
  doi: 10.1016/j.mattod.2020.12.003
– ident: e_1_2_7_50_1
  doi: 10.1002/adma.202007497
– ident: e_1_2_7_56_1
  doi: 10.1002/anie.202001844
– ident: e_1_2_7_1_1
  doi: 10.1126/science.aak9991
– ident: e_1_2_7_17_1
  doi: 10.1039/C9CS00349E
– ident: e_1_2_7_60_1
  doi: 10.1038/s41578-020-00241-4
– ident: e_1_2_7_52_1
  doi: 10.1021/acsenergylett.0c01792
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.202000162
– ident: e_1_2_7_36_1
  doi: 10.1016/j.nanoen.2020.105478
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ensm.2019.04.022
– year: 2021
  ident: e_1_2_7_57_1
  publication-title: Angew. Chem., Int. Ed.
  contributor:
    fullname: Yang Q.
– ident: e_1_2_7_14_1
  doi: 10.1039/D0EE02079F
– ident: e_1_2_7_34_1
  doi: 10.1002/cey2.70
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-020-15478-4
– ident: e_1_2_7_59_1
  doi: 10.1039/D0NR03394D
– ident: e_1_2_7_53_1
  doi: 10.1038/s41467-018-04060-8
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.201802564
– ident: e_1_2_7_58_1
  doi: 10.1002/cssc.201600702
– ident: e_1_2_7_13_1
  doi: 10.1039/D0EE02162H
– ident: e_1_2_7_32_1
  doi: 10.1038/s41563-018-0063-z
SSID ssj0000491033
Score 2.7183177
Snippet Aqueous zinc batteries, that demonstrate high safety and low cost, are considered promising candidates for large‐scale energy storage. However, Zn anodes...
Abstract Aqueous zinc batteries, that demonstrate high safety and low cost, are considered promising candidates for large‐scale energy storage. However, Zn...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Ammonium acetate
Anodes
aqueous zinc batteries
Dendritic structure
dynamic regulation
electrolyte additives
Electrolytes
Electrostatic shielding
Energy storage
Performance degradation
pH buffers
Zinc
Title A Self‐Regulated Interface toward Highly Reversible Aqueous Zinc Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202102982
https://www.proquest.com/docview/2635157243
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagEwz8IwoFeUBiiprY-R0jKOoAFWo7IBbLds4SUpUi0g5sPALPyJNwdtq0nZBAypIh1ul85_vucveZkOvEhJBJzjzgPLCk2sqz45leEfsA-Bjj_pj2R8ngOb3rWZqcZoq_5odoCm7WM9x5bR1cqqq7Ig2VUNpJcpuyZKk9hDFVcDMc_KkpsiD8DXx3nTwCm9CL0XyXxI0-626usBmYVmhzHbO6oHO__39xD8jeAnDSvLaQQ7IF5RHZXaMhPCYPOR3BxHx_fg3rm-mhoK5SaKQGOnONtdQ2hEw-6BBcH4eaAM1R9Om8oi-vpaY1Tyem3SdkfN8b3_a9xS0LnuYR7koaAYtYhnE-0IFkOoHMpjGpilOlODOJjjHhRlzmS2U4cLAQ0EfYJrUOCp-fklY5LeGM0DAMI18ipjSKh1EqZSrRQAqZJJInRRy1yc1Sw-Kt5tIQNWsyE1Y9olFPm3SWGyAWPlUJS5sToMQhbxPmVP3LKiLvDR6bt_O_fHRBdpidd3BNZx3Smr3P4ZJsV8X8ylnaD08x0cQ
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELagDMDAP6JQwAMSU9TEdv7GCFoV0Vao7YBYLMc5S0hVimg7sPEIPCNPgu00aTshIaQsGWKdznf2d5e77xC6CRWDWFDiAKWeIdVOHdOe6WSBC6Afpewf084w7D9H9y1Dk5OUvTAFP0SVcDOeYc9r4-AmId1csoYKyE0ruYlZ4kifwlssYLGZ3kDpU5Vm0QDYc-1AeQ1tmBNoAy6pG13SXF9i_Wpa4s1V1Gqvnfb-Pwh8gPYWmBMnhZEcog3Ij9DuChPhMeomeAhj9f35NSiG00OGbbJQCQl4ZmtrsakJGX_gAdhSjnQMONGyT-ZT_PKaS1xQderI-wSN2q3RXcdZDFpwJPX1xkQ-EJ_E-qr3pCeIDCE2kUyUBlGaUqJCGeiYW0MzV6SKAgWDAl2N3ISUXubSU1TLJzmcIcwY812hYaVKKfMjISKhbSQTYShomAV-Hd2WKuZvBZ0GL4iTCTfq4ZV66qhR7gBfuNWUG-YcT0vMaB0Rq-tfVuFJq9-r3s7_8tE12u6Mel3efeg_XqAdYtofbA1aA9Vm73O4RJvTbH5lze4HnUvV5Q
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSgMxEA5aQfTgv1itmoPgaelukv07LralYi2l7UG8hGx2AkLZFtsevPkIPqNPYpJtt-1JUNjLHjYMk5nMN7MzXxC6CxWDWFDiAKWeIdVOHTOe6WSBC6Afpewf0_Yg7L5EjaahySmn-At-iLLgZjzDntfGwSeZqq9IQwXkZpLcpCxxpA_hHWawuBnioL2yyqLxr-fa--Q1smFOoO13ydzokvrmEpuRaQU310GrjTqtw__Le4QOFogTJ4WJHKMtyE_Q_hoP4SnqJHgAI_X9-dUvrqaHDNtSoRIS8Mx21mLTETL6wH2wjRzpCHCiRR_Pp_j1LZe4IOrUefcZGraaw4e2s7hmwZHU19sS-UB8EutA70lPEBlCbPKYKA2iNKVEhTLQGbcGZq5IFQUKBgO6GrcJKb3Mpeeoko9zuECYMea7QoNKlVLmR0JEQltIJsJQ0DAL_Cq6X2qYTwoyDV7QJhNu1MNL9VRRbbkBfOFUU254czwtMaNVRKyqf1mFJ83uc_l2-ZePbtFur9Hincfu0xXaI2b2wTag1VBl9j6Ha7Q9zeY31uh-ADIf1JQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Self%E2%80%90Regulated+Interface+toward+Highly+Reversible+Aqueous+Zinc+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Han%2C+Daliang&rft.au=Wang%2C+Zhenxing&rft.au=Lu%2C+Haotian&rft.au=Li%2C+Huan&rft.date=2022-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202102982&rft.externalDBID=10.1002%252Faenm.202102982&rft.externalDocID=AENM202102982
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon