Electronic correlations in Fe at Earth's inner core conditions: Effects of alloying with Ni

We have studied the body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close-packed (hcp) phases of Fe alloyed with 25 at.% of Ni at Earth's core conditions using an ab initio local density approximation + dynamical mean-field theory approach. The alloys have been modeled by or...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B, Condensed matter and materials physics Vol. 91; no. 24; p. 245116
Main Authors: Vekilova, O. Yu, Pourovskii, L. V., Abrikosov, I. A., Simak, S. I.
Format: Journal Article
Language:English
Published: 08-06-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have studied the body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close-packed (hcp) phases of Fe alloyed with 25 at.% of Ni at Earth's core conditions using an ab initio local density approximation + dynamical mean-field theory approach. The alloys have been modeled by ordered crystal structures based on the bcc, fcc, and hcp unit cells with the minimum possible cell size allowing for the proper composition. Our calculations demonstrate that the strength of electronic correlations on the Fe 3d shell is highly sensitive to the phase and local environment. In the bcc phase, the 3d electrons at the Fe site with Fe only nearest neighbors remain rather strongly correlated, even at extreme pressure-temperature conditions, with the local and uniform magnetic susceptibility exhibiting a Curie-Weiss-like temperature evolution and the quasiparticle lifetime [down right crop] featuring a non-Fermi-liquid temperature dependence. In contrast, for the corresponding Fe site in the hcp phase, we predict a weakly correlated Fermi-liquid state with a temperature-independent local susceptibility and a quadratic temperature dependence of [down right crop]. The iron sites with nickel atoms in the local environment exhibit behavior in the range between those two extreme cases, with the strength of correlations gradually increasing along the hcp-fcc-bcc sequence. Further, the intersite magnetic interactions in the bcc and hcp phases are also strongly affected by the presence of Ni nearest neighbors. The sensitivity to the local environment is related to modifications of the Fe partial density of states due to mixing with Ni 3d states.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1098-0121
1550-235X
1550-235X
DOI:10.1103/PhysRevB.91.245116