Stormflow against streamflow – Can LID-provided storage capacity ensure performance efficiency and maintenance of pre-development flow regime?

•The need for cost-efficient stormwater management designs is high.•Dynamic storage assessment of designs can quantify storage recovery rate.•Both storage capacity and capture ratio are important for cost efficiency.•Infiltration must be added to piped stormflow when compared to streamflow.•Comprehe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) Vol. 602; p. 126768
Main Authors: Khadka, Ambika, Kokkonen, Teemu, Koivusalo, Harri, Niemi, Tero J., Leskinen, Piia, Körber, Jan-Hendrik
Format: Journal Article
Language:English
Published: Elsevier B.V 01-11-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The need for cost-efficient stormwater management designs is high.•Dynamic storage assessment of designs can quantify storage recovery rate.•Both storage capacity and capture ratio are important for cost efficiency.•Infiltration must be added to piped stormflow when compared to streamflow.•Comprehensive model simulations can help designers in identifying key LID units. The goal of Low Impact Development (LID) is to restore and maintain the pre-development flow regime. The static storage capacity, which is often used as a parameter in LID designs, provides the maximum capacity of an LID type and is easily quantifiable already at the design phase. However, the static storage approach does not consider the inter-event recovery of storage capacity by infiltration and evapotranspiration. This study investigated dynamic storage capacities of three stormwater management designs with increasing proportions of LID units on a 1.2 ha urban residential block in Southern Finland, to compare their cost-efficiency, as well as their potential in restoring the pre-development flow regime. The cost-efficiency of LID designs was assessed based on their ability to contribute to water losses, and on the additional construction costs required when comparing them to conventional solutions (e.g. asphalt replaced with permeable pavement). The design with a small storage capacity and a large capture ratio, i.e., the ratio of contributing area to LID area, was the least efficient albeit its small construction cost. The design with an appropriate balance between the capture ratio and the LID provided storage capacity was the most efficient option. In assessing the potential of stormwater designs in restoring the pre-development flow regime, the sum of infiltration and flow in storm sewer networks was more representative of the catchment total runoff than flow alone. Finally, an extensive simulation of a large set of differently placed LID units proved useful in a priori identification of the most influential units in the treatment train.
AbstractList •The need for cost-efficient stormwater management designs is high.•Dynamic storage assessment of designs can quantify storage recovery rate.•Both storage capacity and capture ratio are important for cost efficiency.•Infiltration must be added to piped stormflow when compared to streamflow.•Comprehensive model simulations can help designers in identifying key LID units. The goal of Low Impact Development (LID) is to restore and maintain the pre-development flow regime. The static storage capacity, which is often used as a parameter in LID designs, provides the maximum capacity of an LID type and is easily quantifiable already at the design phase. However, the static storage approach does not consider the inter-event recovery of storage capacity by infiltration and evapotranspiration. This study investigated dynamic storage capacities of three stormwater management designs with increasing proportions of LID units on a 1.2 ha urban residential block in Southern Finland, to compare their cost-efficiency, as well as their potential in restoring the pre-development flow regime. The cost-efficiency of LID designs was assessed based on their ability to contribute to water losses, and on the additional construction costs required when comparing them to conventional solutions (e.g. asphalt replaced with permeable pavement). The design with a small storage capacity and a large capture ratio, i.e., the ratio of contributing area to LID area, was the least efficient albeit its small construction cost. The design with an appropriate balance between the capture ratio and the LID provided storage capacity was the most efficient option. In assessing the potential of stormwater designs in restoring the pre-development flow regime, the sum of infiltration and flow in storm sewer networks was more representative of the catchment total runoff than flow alone. Finally, an extensive simulation of a large set of differently placed LID units proved useful in a priori identification of the most influential units in the treatment train.
ArticleNumber 126768
Author Koivusalo, Harri
Körber, Jan-Hendrik
Niemi, Tero J.
Leskinen, Piia
Khadka, Ambika
Kokkonen, Teemu
Author_xml – sequence: 1
  givenname: Ambika
  surname: Khadka
  fullname: Khadka, Ambika
  email: ambika.khadka@aalto.fi
  organization: Department of Built Environment, School of Engineering, Aalto University, Finland
– sequence: 2
  givenname: Teemu
  surname: Kokkonen
  fullname: Kokkonen, Teemu
  organization: Department of Built Environment, School of Engineering, Aalto University, Finland
– sequence: 3
  givenname: Harri
  surname: Koivusalo
  fullname: Koivusalo, Harri
  organization: Department of Built Environment, School of Engineering, Aalto University, Finland
– sequence: 4
  givenname: Tero J.
  surname: Niemi
  fullname: Niemi, Tero J.
  organization: Finnish Meteorological Institute, Helsinki, Finland
– sequence: 5
  givenname: Piia
  surname: Leskinen
  fullname: Leskinen, Piia
  organization: Turku University of Applied Sciences, Turku, Finland
– sequence: 6
  givenname: Jan-Hendrik
  surname: Körber
  fullname: Körber, Jan-Hendrik
  organization: Turku University of Applied Sciences, Turku, Finland
BookMark eNqFkEtOwzAQhi1UJNrCEZB8gQTbea8qVF6VKrEA1pZrj4ujxI7sUNQdR0DihpyEtOme2Yxmfs0_M98MTayzgNA1JTElNL-p4_p9r7xrYkYYjSnLi7w8Q1NaFlXEClJM0JQQxiKaV-kFmoVQkyGSJJ2i75fe-VY37hOLrTA29Dj0HsTY-v36wUth8Xp1F3Xe7YwCNejOiy1gKTohTb_HYMOHB9yB14OXsBIwaG2kASv3WFiF28G5B3uUnMadh0jBDhrXtWB7fNzlYWtaWFyicy2aAFenPEdvD_evy6do_fy4Wt6uI5lkeR9lpQahU0mStGJJrjdpClUmKkUzlmw2OYEiqUpQmpZplRYDpmIoKqmBlVptIJmjbPSV3oXgQfPOm1b4PaeEH7Dymp-w8gNWPmId5hbjHAzH7Qx4Ho6PgjIeZM-VM_84_AH624qu
CitedBy_id crossref_primary_10_2166_nh_2022_120
crossref_primary_10_1016_j_scitotenv_2022_155755
crossref_primary_10_1080_1573062X_2022_2121735
crossref_primary_10_1016_j_jhydrol_2023_129332
crossref_primary_10_3390_su16103990
crossref_primary_10_1007_s13157_022_01593_z
crossref_primary_10_1016_j_ecolind_2022_109238
Cites_doi 10.1016/j.jhydrol.2018.07.044
10.1002/2016WR019836
10.1371/journal.pone.0045814
10.1016/j.proeng.2014.11.501
10.1016/j.scitotenv.2020.138787
10.1016/j.jhydrol.2015.12.011
10.1016/j.seppur.2011.04.026
10.1016/j.scitotenv.2019.06.256
10.3390/su11082440
10.1002/hyp.10410
10.1111/1752-1688.12832
10.1002/hyp.11347
10.1016/j.watres.2020.116780
10.1002/hyp.10808
10.1016/j.scs.2016.10.002
10.1016/j.jhydrol.2018.10.006
10.1080/1573062X.2019.1700285
10.1061/(ASCE)EE.1943-7870.0000698
10.3390/su10020276
10.1016/j.jenvman.2019.109920
10.1016/j.jenvman.2017.11.064
10.1016/j.jenvman.2013.08.026
10.1007/s11783-017-0973-z
10.1080/1573062X.2020.1828500
10.1016/j.jhydrol.2013.10.038
10.2166/wst.2015.129
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jhydrol.2021.126768
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2021_126768
S0022169421008180
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c356t-58feaf4c0349236fb44e95a9d1523bb60e7398edf1849470167edf9cfe28fdbe3
ISSN 0022-1694
IngestDate Thu Sep 26 19:23:45 EDT 2024
Fri Feb 23 02:43:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pre-development flow regime
Storage capacity
Performance efficiency
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c356t-58feaf4c0349236fb44e95a9d1523bb60e7398edf1849470167edf9cfe28fdbe3
OpenAccessLink https://dx.doi.org/10.1016/j.jhydrol.2021.126768
ParticipantIDs crossref_primary_10_1016_j_jhydrol_2021_126768
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2021_126768
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chui, Liu, Zhan (b0035) 2016; 533
CORINE, 2018. CORINE Land Cover - Copernicus Land Monitoring Service [WWW Document]. Copenhagen, Denmark Eur. Environ. Agency. URL https://land.copernicus.eu/pan-european/corine-land-cover/clc2018.
Rossman, Huber (b0145) 2016; 233
Baek, Ligaray, Pachepsky, Chun, Yoon, Park, Cho (b0010) 2020; 261
Haghighatafshar, la Cour Jansen, Aspegren, Jönsson (b0070) 2018; 10
Huang, Hsu, Liu, Huang (b0085) 2018; 564
Manfred (b0125) 2012
Ebrahimian, Wadzuk, Traver (b0050) 2019; 688
Khadka, Kokkonen, Niemi, Lähde, Sillanpää, Koivusalo (b0110) 2019; 17
Avellaneda, Jefferson, Grieser, Bush (b0005) 2017; 53
Yang, Chui (b0185) 2018; 206
Walsh, Pomeroy, Burian (b0180) 2014; 508
DWA, 2014. DWA Set of Rules Standard DWA-A 272E: Planning for the Planning and Implementation of New Alternative Sanitation Systems (NASS) [WWW Document].
Bixler, Houle, Ballestero, Mo (b0025) 2020; 728
Jefferson, Bhaskar, Hopkins, Fanelli, Avellaneda, McMillan (b0090) 2017; 31
Behörde für Stadtentwicklung und Umwelt Freie und Hansestadt Hamburg, 2006. Dezentrale naturnahe Regenwasserbewirtschaftung [WWW Document].
Hamouz, Møller-Pedersen, Muthanna (b0075) 2020; 17
Qin, Li, Fu (b0140) 2013; 129
Houle, Roseen, Ballestero, Puls, Sherrard (b0080) 2013; 139
Joshi, Leitão, Maurer, Bach (b0105) 2021; 191
Platz, Simon, Tryby (b0135) 2020; 56
Sarkkola, Nieminen, Koivusalo, Lauren, Ahti, Launiainen, Nikinmaa, Marttila, Laine, Hökkä (b0150) 2013; 11
Traver, Ebrahimian (b0165) 2017; 11
EEA, 2018. Copernicus Land Monitoring Service-High Resolution Layers-Imperviousness [WWW Document]. Copenhagen, Denmark Eur. Environ. Agency. URL https://www.eea.europa.eu/data-and-maps/data/copernicus- land-monitoring-service-imperviousness-2.
Turunen (b0170) 2017; 67
Joksimovic, D., Alam, Z., 2014. Cost efficiency of Low Impact Development (LID) stormwater management practices, in: Procedia Engineering. Elsevier Ltd, pp. 734–741. 10.1016/j.proeng.2014.11.501.
Bonneau, Fletcher, Costelloe, Poelsma, James, Burns (b0030) 2018; 567
Jia, Lu, Yu, Chen (b0095) 2012; 84
Guan, Sillanpää, Koivusalo (b0065) 2015; 29
Bhaskar, Hogan, Archfield (b0020) 2016; 30
Liu, Sample, Bell, Guan (b0120) 2014; 6
Guan, Sillanpaa, Koivusalo (b0060) 2015; 71
Leimgruber, Krebs, Camhy, Muschalla (b0115) 2019; 11
Walsh, Fletcher, Burns, Gilbert (b0175) 2012; 7
Ossa-Moreno, Smith, Mijic (b0130) 2017; 28
Sillanpää, N., 2013. Effects of suburban development on runoff generation and water quality. Aalto Univ. Publ. Ser. Dr. Diss. 160/2013.
Tahvonen (b0160) 2018; 10
Guan (10.1016/j.jhydrol.2021.126768_b0065) 2015; 29
Leimgruber (10.1016/j.jhydrol.2021.126768_b0115) 2019; 11
Liu (10.1016/j.jhydrol.2021.126768_b0120) 2014; 6
Avellaneda (10.1016/j.jhydrol.2021.126768_b0005) 2017; 53
Guan (10.1016/j.jhydrol.2021.126768_b0060) 2015; 71
Yang (10.1016/j.jhydrol.2021.126768_b0185) 2018; 206
Ossa-Moreno (10.1016/j.jhydrol.2021.126768_b0130) 2017; 28
Turunen (10.1016/j.jhydrol.2021.126768_b0170) 2017; 67
10.1016/j.jhydrol.2021.126768_b0015
Traver (10.1016/j.jhydrol.2021.126768_b0165) 2017; 11
Ebrahimian (10.1016/j.jhydrol.2021.126768_b0050) 2019; 688
Tahvonen (10.1016/j.jhydrol.2021.126768_b0160) 2018; 10
10.1016/j.jhydrol.2021.126768_b0155
10.1016/j.jhydrol.2021.126768_b0055
Rossman (10.1016/j.jhydrol.2021.126768_b0145) 2016; 233
Baek (10.1016/j.jhydrol.2021.126768_b0010) 2020; 261
Sarkkola (10.1016/j.jhydrol.2021.126768_b0150) 2013; 11
Hamouz (10.1016/j.jhydrol.2021.126768_b0075) 2020; 17
Qin (10.1016/j.jhydrol.2021.126768_b0140) 2013; 129
Bixler (10.1016/j.jhydrol.2021.126768_b0025) 2020; 728
Bonneau (10.1016/j.jhydrol.2021.126768_b0030) 2018; 567
Chui (10.1016/j.jhydrol.2021.126768_b0035) 2016; 533
Walsh (10.1016/j.jhydrol.2021.126768_b0180) 2014; 508
Bhaskar (10.1016/j.jhydrol.2021.126768_b0020) 2016; 30
Walsh (10.1016/j.jhydrol.2021.126768_b0175) 2012; 7
10.1016/j.jhydrol.2021.126768_b0045
10.1016/j.jhydrol.2021.126768_b0100
Manfred (10.1016/j.jhydrol.2021.126768_b0125) 2012
Houle (10.1016/j.jhydrol.2021.126768_b0080) 2013; 139
Haghighatafshar (10.1016/j.jhydrol.2021.126768_b0070) 2018; 10
Jefferson (10.1016/j.jhydrol.2021.126768_b0090) 2017; 31
10.1016/j.jhydrol.2021.126768_b0040
Huang (10.1016/j.jhydrol.2021.126768_b0085) 2018; 564
Jia (10.1016/j.jhydrol.2021.126768_b0095) 2012; 84
Joshi (10.1016/j.jhydrol.2021.126768_b0105) 2021; 191
Platz (10.1016/j.jhydrol.2021.126768_b0135) 2020; 56
Khadka (10.1016/j.jhydrol.2021.126768_b0110) 2019; 17
References_xml – volume: 564
  start-page: 542
  year: 2018
  end-page: 558
  ident: b0085
  article-title: Optimization of low impact development layout designs for megacity flood mitigation
  publication-title: J. Hydrol.
  contributor:
    fullname: Huang
– volume: 508
  start-page: 240
  year: 2014
  end-page: 253
  ident: b0180
  article-title: Hydrologic modeling analysis of a passive, residential rainwater harvesting program in an urbanized, semi-arid watershed
  publication-title: J. Hydrol.
  contributor:
    fullname: Burian
– volume: 53
  start-page: 3087
  year: 2017
  end-page: 3101
  ident: b0005
  article-title: Simulation of the cumulative hydrological response to green infrastructure
  publication-title: Water Resour. Res.
  contributor:
    fullname: Bush
– volume: 30
  start-page: 3156
  year: 2016
  end-page: 3171
  ident: b0020
  article-title: Urban base flow with low impact development
  publication-title: Hydrol. Process.
  contributor:
    fullname: Archfield
– volume: 206
  start-page: 1090
  year: 2018
  end-page: 1103
  ident: b0185
  article-title: Optimizing surface and contributing areas of bioretention cells for stormwater runoff quality and quantity management
  publication-title: J. Environ. Manage.
  contributor:
    fullname: Chui
– volume: 6
  start-page: 1069
  year: 2014
  end-page: 1099
  ident: b0120
  article-title: Review and research needs of bioretention used for the treatment of urban stormwater
  publication-title: Water (Switzerland)
  contributor:
    fullname: Guan
– year: 2012
  ident: b0125
  article-title: Handbuch Bauwerksbegrünung Planung – Konstruktion – Ausführung
  contributor:
    fullname: Manfred
– volume: 129
  start-page: 577
  year: 2013
  end-page: 585
  ident: b0140
  article-title: The effects of low impact development on urban flooding under different rainfall characteristics
  publication-title: J. Environ. Manage.
  contributor:
    fullname: Fu
– volume: 11
  start-page: 1
  year: 2013
  end-page: 11
  ident: b0150
  article-title: Domination of growing-season evapotranspiration over runoff makes ditch network maintenance in mature peatland forests questionable
  publication-title: Mires Peat
  contributor:
    fullname: Hökkä
– volume: 56
  start-page: 283
  year: 2020
  end-page: 296
  ident: b0135
  article-title: Testing of the storm water management model low impact development modules
  publication-title: J. Am. Water Resour. Assoc.
  contributor:
    fullname: Tryby
– volume: 11
  year: 2017
  ident: b0165
  article-title: Dynamic design of green stormwater infrastructure
  publication-title: Front. Environ. Sci. Eng.
  contributor:
    fullname: Ebrahimian
– volume: 533
  start-page: 353
  year: 2016
  end-page: 364
  ident: b0035
  article-title: Assessing cost-effectiveness of specific LID practice designs in response to large storm events
  publication-title: J. Hydrol.
  contributor:
    fullname: Zhan
– volume: 688
  start-page: 797
  year: 2019
  end-page: 810
  ident: b0050
  article-title: Evapotranspiration in green stormwater infrastructure systems
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Traver
– volume: 11
  start-page: 2440
  year: 2019
  ident: b0115
  article-title: Model-based selection of cost-effective low impact development strategies to control water balance
  publication-title: Sustain
  contributor:
    fullname: Muschalla
– volume: 17
  start-page: 813
  year: 2020
  end-page: 826
  ident: b0075
  article-title: Modelling runoff reduction through implementation of green and grey roofs in urban catchments using PCSWMM
  publication-title: Urban Water J.
  contributor:
    fullname: Muthanna
– volume: 84
  start-page: 112
  year: 2012
  end-page: 119
  ident: b0095
  article-title: Planning of LID-BMPs for urban runoff control: the case of Beijing Olympic Village
  publication-title: Sep. Purif. Technol.
  contributor:
    fullname: Chen
– volume: 139
  start-page: 932
  year: 2013
  end-page: 938
  ident: b0080
  article-title: Comparison of maintenance cost, labor demands, and system performance for LID and conventional stormwater management
  publication-title: J. Environ. Eng.
  contributor:
    fullname: Sherrard
– volume: 728
  start-page: 138787
  year: 2020
  ident: b0025
  article-title: A spatial life cycle cost assessment of stormwater management systems
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Mo
– volume: 71
  start-page: 2015
  year: 2015
  end-page: 2017
  ident: b0060
  article-title: Assessment of LID practices for restoring pre- development runoff regime in an urbanized catchment in Southern Finland
  publication-title: Water Sci. Technol.
  contributor:
    fullname: Koivusalo
– volume: 28
  start-page: 411
  year: 2017
  end-page: 419
  ident: b0130
  article-title: Economic analysis of wider benefits to facilitate SuDS uptake in London, UK
  publication-title: Sustain. Cities Soc.
  contributor:
    fullname: Mijic
– volume: 29
  start-page: 2880
  year: 2015
  end-page: 2894
  ident: b0065
  article-title: Modelling and assessment of hydrological changes in a developing urban catchment
  publication-title: Hydrol. Process.
  contributor:
    fullname: Koivusalo
– volume: 7
  start-page: e45814
  year: 2012
  ident: b0175
  article-title: Urban stormwater runoff: a new class of environmental flow problem
  publication-title: PLoS ONE
  contributor:
    fullname: Gilbert
– volume: 233
  year: 2016
  ident: b0145
  article-title: Storm water management model reference manual volume I – hydrology
  publication-title: U.S. Environ. Prot. Agency I
  contributor:
    fullname: Huber
– volume: 261
  start-page: 109920
  year: 2020
  ident: b0010
  article-title: Assessment of a green roof practice using the coupled SWMM and HYDRUS models
  publication-title: J. Environ. Manage.
  contributor:
    fullname: Cho
– volume: 567
  start-page: 121
  year: 2018
  end-page: 132
  ident: b0030
  article-title: Where does infiltrated stormwater go? interactions with vegetation and subsurface anthropogenic features
  publication-title: J. Hydrol.
  contributor:
    fullname: Burns
– volume: 17
  start-page: 587
  year: 2019
  end-page: 597
  ident: b0110
  article-title: Towards natural water cycle in urban areas: modelling stormwater management designs
  publication-title: Urban Water J.
  contributor:
    fullname: Koivusalo
– volume: 67
  start-page: 173
  year: 2017
  ident: b0170
  article-title: Assessing water and sediment balances in clayey agricultural fields in high latitude conditions
  publication-title: Aalto Univ. Publ. Ser. Dr. Diss.
  contributor:
    fullname: Turunen
– volume: 31
  start-page: 4056
  year: 2017
  end-page: 4080
  ident: b0090
  article-title: Stormwater management network effectiveness and implications for urban watershed function: a critical review
  publication-title: Hydrol. Process.
  contributor:
    fullname: McMillan
– volume: 10
  start-page: 276
  year: 2018
  ident: b0160
  article-title: Adapting bioretention construction details to local practices in Finland
  publication-title: Sustain.
  contributor:
    fullname: Tahvonen
– volume: 10
  start-page: 1041
  year: 2018
  ident: b0070
  article-title: Conceptualization and schematization of mesoscale sustainable drainage systems: a full-scale study
  publication-title: Water (Switzerland)
  contributor:
    fullname: Jönsson
– volume: 191
  start-page: 116780
  year: 2021
  ident: b0105
  article-title: Not all SuDS are created equal: Impact of different approaches on combined sewer overflows
  publication-title: Water Res.
  contributor:
    fullname: Bach
– volume: 564
  start-page: 542
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126768_b0085
  article-title: Optimization of low impact development layout designs for megacity flood mitigation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.07.044
  contributor:
    fullname: Huang
– ident: 10.1016/j.jhydrol.2021.126768_b0015
– ident: 10.1016/j.jhydrol.2021.126768_b0040
– year: 2012
  ident: 10.1016/j.jhydrol.2021.126768_b0125
  contributor:
    fullname: Manfred
– volume: 67
  start-page: 173
  issue: 2017
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126768_b0170
  article-title: Assessing water and sediment balances in clayey agricultural fields in high latitude conditions
  publication-title: Aalto Univ. Publ. Ser. Dr. Diss.
  contributor:
    fullname: Turunen
– volume: 53
  start-page: 3087
  issue: 4
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126768_b0005
  article-title: Simulation of the cumulative hydrological response to green infrastructure
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019836
  contributor:
    fullname: Avellaneda
– volume: 7
  start-page: e45814
  issue: 9
  year: 2012
  ident: 10.1016/j.jhydrol.2021.126768_b0175
  article-title: Urban stormwater runoff: a new class of environmental flow problem
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0045814
  contributor:
    fullname: Walsh
– volume: 233
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126768_b0145
  article-title: Storm water management model reference manual volume I – hydrology
  publication-title: U.S. Environ. Prot. Agency I
  contributor:
    fullname: Rossman
– ident: 10.1016/j.jhydrol.2021.126768_b0155
– ident: 10.1016/j.jhydrol.2021.126768_b0100
  doi: 10.1016/j.proeng.2014.11.501
– volume: 728
  start-page: 138787
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126768_b0025
  article-title: A spatial life cycle cost assessment of stormwater management systems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138787
  contributor:
    fullname: Bixler
– volume: 533
  start-page: 353
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126768_b0035
  article-title: Assessing cost-effectiveness of specific LID practice designs in response to large storm events
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.12.011
  contributor:
    fullname: Chui
– volume: 84
  start-page: 112
  year: 2012
  ident: 10.1016/j.jhydrol.2021.126768_b0095
  article-title: Planning of LID-BMPs for urban runoff control: the case of Beijing Olympic Village
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2011.04.026
  contributor:
    fullname: Jia
– volume: 688
  start-page: 797
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126768_b0050
  article-title: Evapotranspiration in green stormwater infrastructure systems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.256
  contributor:
    fullname: Ebrahimian
– volume: 11
  start-page: 2440
  issue: 8
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126768_b0115
  article-title: Model-based selection of cost-effective low impact development strategies to control water balance
  publication-title: Sustain
  doi: 10.3390/su11082440
  contributor:
    fullname: Leimgruber
– volume: 29
  start-page: 2880
  issue: 13
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126768_b0065
  article-title: Modelling and assessment of hydrological changes in a developing urban catchment
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10410
  contributor:
    fullname: Guan
– volume: 56
  start-page: 283
  issue: 2
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126768_b0135
  article-title: Testing of the storm water management model low impact development modules
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12832
  contributor:
    fullname: Platz
– volume: 31
  start-page: 4056
  issue: 23
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126768_b0090
  article-title: Stormwater management network effectiveness and implications for urban watershed function: a critical review
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.11347
  contributor:
    fullname: Jefferson
– volume: 191
  start-page: 116780
  year: 2021
  ident: 10.1016/j.jhydrol.2021.126768_b0105
  article-title: Not all SuDS are created equal: Impact of different approaches on combined sewer overflows
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116780
  contributor:
    fullname: Joshi
– volume: 30
  start-page: 3156
  issue: 18
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126768_b0020
  article-title: Urban base flow with low impact development
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10808
  contributor:
    fullname: Bhaskar
– volume: 10
  start-page: 1041
  issue: 8
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126768_b0070
  article-title: Conceptualization and schematization of mesoscale sustainable drainage systems: a full-scale study
  publication-title: Water (Switzerland)
  contributor:
    fullname: Haghighatafshar
– ident: 10.1016/j.jhydrol.2021.126768_b0045
– volume: 11
  start-page: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126768_b0150
  article-title: Domination of growing-season evapotranspiration over runoff makes ditch network maintenance in mature peatland forests questionable
  publication-title: Mires Peat
  contributor:
    fullname: Sarkkola
– volume: 28
  start-page: 411
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126768_b0130
  article-title: Economic analysis of wider benefits to facilitate SuDS uptake in London, UK
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2016.10.002
  contributor:
    fullname: Ossa-Moreno
– volume: 567
  start-page: 121
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126768_b0030
  article-title: Where does infiltrated stormwater go? interactions with vegetation and subsurface anthropogenic features
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.10.006
  contributor:
    fullname: Bonneau
– volume: 17
  start-page: 587
  issue: 7
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126768_b0110
  article-title: Towards natural water cycle in urban areas: modelling stormwater management designs
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2019.1700285
  contributor:
    fullname: Khadka
– volume: 139
  start-page: 932
  issue: 7
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126768_b0080
  article-title: Comparison of maintenance cost, labor demands, and system performance for LID and conventional stormwater management
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0000698
  contributor:
    fullname: Houle
– volume: 10
  start-page: 276
  issue: 2
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126768_b0160
  article-title: Adapting bioretention construction details to local practices in Finland
  publication-title: Sustain.
  doi: 10.3390/su10020276
  contributor:
    fullname: Tahvonen
– volume: 261
  start-page: 109920
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126768_b0010
  article-title: Assessment of a green roof practice using the coupled SWMM and HYDRUS models
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.109920
  contributor:
    fullname: Baek
– volume: 206
  start-page: 1090
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126768_b0185
  article-title: Optimizing surface and contributing areas of bioretention cells for stormwater runoff quality and quantity management
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2017.11.064
  contributor:
    fullname: Yang
– volume: 129
  start-page: 577
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126768_b0140
  article-title: The effects of low impact development on urban flooding under different rainfall characteristics
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2013.08.026
  contributor:
    fullname: Qin
– volume: 11
  issue: 4
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126768_b0165
  article-title: Dynamic design of green stormwater infrastructure
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-017-0973-z
  contributor:
    fullname: Traver
– volume: 17
  start-page: 813
  issue: 9
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126768_b0075
  article-title: Modelling runoff reduction through implementation of green and grey roofs in urban catchments using PCSWMM
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2020.1828500
  contributor:
    fullname: Hamouz
– volume: 6
  start-page: 1069
  issue: 4
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126768_b0120
  article-title: Review and research needs of bioretention used for the treatment of urban stormwater
  publication-title: Water (Switzerland)
  contributor:
    fullname: Liu
– volume: 508
  start-page: 240
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126768_b0180
  article-title: Hydrologic modeling analysis of a passive, residential rainwater harvesting program in an urbanized, semi-arid watershed
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.10.038
  contributor:
    fullname: Walsh
– volume: 71
  start-page: 2015
  issue: 10
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126768_b0060
  article-title: Assessment of LID practices for restoring pre- development runoff regime in an urbanized catchment in Southern Finland
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2015.129
  contributor:
    fullname: Guan
– ident: 10.1016/j.jhydrol.2021.126768_b0055
SSID ssj0000334
Score 2.4739742
Snippet •The need for cost-efficient stormwater management designs is high.•Dynamic storage assessment of designs can quantify storage recovery rate.•Both storage...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 126768
SubjectTerms Performance efficiency
Pre-development flow regime
Storage capacity
Title Stormflow against streamflow – Can LID-provided storage capacity ensure performance efficiency and maintenance of pre-development flow regime?
URI https://dx.doi.org/10.1016/j.jhydrol.2021.126768
Volume 602
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6l7QEuiKcoL-2BW2QT7_p5QlEbaIvEpUHqzVrvgyapE-QkIG78BCT-Ib-EGe_6obRCgMTFctZZr-z5NDvene8bQl7qAuZsESVeFJuRF_JCe6nMYk8XSaACLqU0demE8-T9RXo8CSeDQVMVs2v7r5aGNrA1Mmf_wtrtTaEBzsHmcASrw_GP7H4OH9GluVp9GYqP8NW_3tR0EGGbmtQGPjzCcr2nx55j4qkhZkli_o6E2VNiaI41MCqNusYts0DXehM1WRPX20uBYhPL-hImTlfaU10O0rAeEQs_lHonfbAXBV9-VZWVgYJQd1yibINCjHY54JdCLezib1nMFu0s8m61gNjWOs2p1uW2uzD7vF0Lu6V0Iqpq1u296HJm_1-thmd-f8WDBY761y7DXaPitLSEILYVk31tvXmaZEi4S_ruPq4Z3tenDruKMffn9sF9HNkPWJzYsj87qty4yc1wOBbUqoCjPXLAwNeBqz0Yn04uzrpwgPOwkazHDh2N7NWNg90cIPWCnuldcsfZiY4tzO6RgV7eJ7feaqdz_oB8b-FGHdxoBzf689sPCkCjfaBRBzTaAI1aoNEe0GgHNApAoz2g0ZWhO0Cj9VgWaK8fkg9vJtOjE88V-fAkj-KNF6VGCxNK1EliPDZFGOosEpmCwJIXRTzSCc9SrUyQhlmYIGsGfmTSaJYaVWj-iOwvAW6PCQ0yoUIeKzYyBryOyQrOAhMwmYgo5Ul0SPzmzeafrJZL3iQ5znNnihxNkVtTHJK0ef-5C0htoJkDaH7f9cm_d31Kbneof0b2N9VWPyd7a7V94bD1CyRutpk
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stormflow+against+streamflow+%E2%80%93+Can+LID-provided+storage+capacity+ensure+performance+efficiency+and+maintenance+of+pre-development+flow+regime%3F&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Khadka%2C+Ambika&rft.au=Kokkonen%2C+Teemu&rft.au=Koivusalo%2C+Harri&rft.au=Niemi%2C+Tero+J.&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=602&rft_id=info:doi/10.1016%2Fj.jhydrol.2021.126768&rft.externalDocID=S0022169421008180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon