Analysis, Design, Modeling, and Characterization of Low-Loss Scalable On-Chip Transformers

A few important design choices for a low-loss scalable on-chip transformer are discussed, the most important one being that the capacitive and inductive couplings should be aligned to minimize insertion loss. The importance of these design choices is illustrated both theoretically as well as experim...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques Vol. 61; no. 7; pp. 2545 - 2557
Main Authors: Tiemeijer, L. F., Pijper, R. M. T., Andrei, C., Grenados, E.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-07-2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A few important design choices for a low-loss scalable on-chip transformer are discussed, the most important one being that the capacitive and inductive couplings should be aligned to minimize insertion loss. The importance of these design choices is illustrated both theoretically as well as experimentally. In particular, for the first time the performance of these on-chip transformers is verified with four-port S -parameter measurements taken up to 67 GHz. With that, an insertion loss of only 0.6 dB up to 30 GHz is demonstrated. To facilitate the use of these low-loss on-chip transformers in the RF integrated-circuit design flow, a scalable compact equivalent-circuit model suitable for all pre-layout circuit simulations is described, which accurately predicts transformation ratios, transmission efficiencies and balun amplitude and phase imbalances.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2013.2265684