Marginal Magnesium Doping for High‐Performance Lithium Metal Batteries

Due to unparalleled theoretical capacity and operation voltage, metallic Li is considered as the most attractive candidate for lithium‐ion battery anodes. However, Li metal electrodes suffer from uncontrolled dendrite growth and consequent interfacial instability, which result in an unacceptable lev...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials Vol. 9; no. 41
Main Authors: Choi, Seung Ho, Lee, Seung Jong, Yoo, Dong‐Joo, Park, Jun Ho, Park, Jae‐Hyuk, Ko, You Na, Park, Jungjin, Sung, Yung‐Eun, Chung, Sung‐Yoon, Kim, Heejin, Choi, Jang Wook
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01-11-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to unparalleled theoretical capacity and operation voltage, metallic Li is considered as the most attractive candidate for lithium‐ion battery anodes. However, Li metal electrodes suffer from uncontrolled dendrite growth and consequent interfacial instability, which result in an unacceptable level of performance in cycling stability and safety. Herein, it is reported that a marginal amount (1.5 at%) of magnesium (Mg) doping alters the surface properties of Li metal foil drastically in such a way that upon Li plating, a highly dense Li whisker layer is induced, instead of sharp dendrites, with enhanced interfacial stability and cycling performance. The effect of Mg doping is explained in terms of increased surface energy, which facilitates plating of Li onto the main surface over the existing whiskers. The present study offers a useful guideline for Li metal batteries, as it largely resolves the longstanding shortcoming of Li metal electrodes without significantly sacrificing their main advantages. Marginal magnesium doping, (1.5 at%), alters the surface properties of Li metal foil drastically, such that a highly compact Li layer is induced upon Li plating, instead of troublesome dendrite formation, resulting in markedly improved long‐term battery performance. Density functional theory calculations capture the enhanced lithiophilicity of Li metal by magnesium doping.
AbstractList Due to unparalleled theoretical capacity and operation voltage, metallic Li is considered as the most attractive candidate for lithium‐ion battery anodes. However, Li metal electrodes suffer from uncontrolled dendrite growth and consequent interfacial instability, which result in an unacceptable level of performance in cycling stability and safety. Herein, it is reported that a marginal amount (1.5 at%) of magnesium (Mg) doping alters the surface properties of Li metal foil drastically in such a way that upon Li plating, a highly dense Li whisker layer is induced, instead of sharp dendrites, with enhanced interfacial stability and cycling performance. The effect of Mg doping is explained in terms of increased surface energy, which facilitates plating of Li onto the main surface over the existing whiskers. The present study offers a useful guideline for Li metal batteries, as it largely resolves the longstanding shortcoming of Li metal electrodes without significantly sacrificing their main advantages.
Due to unparalleled theoretical capacity and operation voltage, metallic Li is considered as the most attractive candidate for lithium‐ion battery anodes. However, Li metal electrodes suffer from uncontrolled dendrite growth and consequent interfacial instability, which result in an unacceptable level of performance in cycling stability and safety. Herein, it is reported that a marginal amount (1.5 at%) of magnesium (Mg) doping alters the surface properties of Li metal foil drastically in such a way that upon Li plating, a highly dense Li whisker layer is induced, instead of sharp dendrites, with enhanced interfacial stability and cycling performance. The effect of Mg doping is explained in terms of increased surface energy, which facilitates plating of Li onto the main surface over the existing whiskers. The present study offers a useful guideline for Li metal batteries, as it largely resolves the longstanding shortcoming of Li metal electrodes without significantly sacrificing their main advantages. Marginal magnesium doping, (1.5 at%), alters the surface properties of Li metal foil drastically, such that a highly compact Li layer is induced upon Li plating, instead of troublesome dendrite formation, resulting in markedly improved long‐term battery performance. Density functional theory calculations capture the enhanced lithiophilicity of Li metal by magnesium doping.
Author Ko, You Na
Park, Jae‐Hyuk
Kim, Heejin
Sung, Yung‐Eun
Lee, Seung Jong
Choi, Jang Wook
Yoo, Dong‐Joo
Park, Jungjin
Chung, Sung‐Yoon
Choi, Seung Ho
Park, Jun Ho
Author_xml – sequence: 1
  givenname: Seung Ho
  surname: Choi
  fullname: Choi, Seung Ho
  organization: Korea Advanced Institute of Science and Technology
– sequence: 2
  givenname: Seung Jong
  surname: Lee
  fullname: Lee, Seung Jong
  organization: Korea Advanced Institute of Science and Technology
– sequence: 3
  givenname: Dong‐Joo
  surname: Yoo
  fullname: Yoo, Dong‐Joo
  organization: Seoul National University
– sequence: 4
  givenname: Jun Ho
  surname: Park
  fullname: Park, Jun Ho
  organization: Seoul National University
– sequence: 5
  givenname: Jae‐Hyuk
  surname: Park
  fullname: Park, Jae‐Hyuk
  organization: Institute for Basic Science (IBS)
– sequence: 6
  givenname: You Na
  surname: Ko
  fullname: Ko, You Na
  organization: Korea Basic Science Institute
– sequence: 7
  givenname: Jungjin
  surname: Park
  fullname: Park, Jungjin
  organization: Seoul National University
– sequence: 8
  givenname: Yung‐Eun
  surname: Sung
  fullname: Sung, Yung‐Eun
  organization: Institute for Basic Science (IBS)
– sequence: 9
  givenname: Sung‐Yoon
  surname: Chung
  fullname: Chung, Sung‐Yoon
  email: sychung@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology
– sequence: 10
  givenname: Heejin
  surname: Kim
  fullname: Kim, Heejin
  email: heejinkim@kbsi.re.kr
  organization: Korea Basic Science Institute
– sequence: 11
  givenname: Jang Wook
  orcidid: 0000-0001-8783-0901
  surname: Choi
  fullname: Choi, Jang Wook
  email: jangwookchoi@snu.ac.kr
  organization: Seoul National University
BookMark eNqFkL9OwzAQhy1UJErpyhyJOcVnO__GUgpFaoABZss459RVkxQ7FerGI_CMPAmJisrILXcnfd9J9zsng7qpkZBLoBOglF0rrKsJo5BRxpL0hAwhBhHGqaCD48zZGRl7v6ZdiQwo50OyyJUrba02Qa7KGr3dVcFts7V1GZjGBQtbrr4_v57RdVulao3B0rarnsqx7awb1bboLPoLcmrUxuP4t4_I6938ZbYIl0_3D7PpMtQ8itNQGVqoSCemAF1wniSgeKZAZMIonaBGbhhlIqJo8M2kUNAUATVkGiOM4piPyNXh7tY17zv0rVw3O9c94CXjwCARkeAdNTlQ2jXeOzRy62yl3F4ClX1gsg9MHgPrhOwgfNgN7v-h5XT-mP-5P2HMcgk
CitedBy_id crossref_primary_10_1016_j_jpowsour_2021_230739
crossref_primary_10_1016_j_cej_2021_129739
crossref_primary_10_1016_j_jcis_2023_08_058
crossref_primary_10_1002_eem2_12618
crossref_primary_10_1002_adma_202206625
crossref_primary_10_1021_acsaem_1c00477
crossref_primary_10_1016_j_cej_2022_135705
crossref_primary_10_1016_j_esci_2024_100266
crossref_primary_10_1002_adfm_202213905
crossref_primary_10_1016_j_esci_2024_100265
crossref_primary_10_1039_D2CC00123C
crossref_primary_10_1002_ange_202309622
crossref_primary_10_1016_j_jcis_2023_03_191
crossref_primary_10_1021_acsaem_2c03875
crossref_primary_10_1002_aenm_202303128
crossref_primary_10_1021_acsami_1c12736
crossref_primary_10_1007_s40820_023_01234_y
crossref_primary_10_1007_s12274_022_5044_5
crossref_primary_10_1007_s40843_021_1728_2
crossref_primary_10_1021_acsenergylett_1c02127
crossref_primary_10_1016_j_cej_2022_136243
crossref_primary_10_1016_j_ensm_2024_103284
crossref_primary_10_1016_j_jallcom_2023_169362
crossref_primary_10_1021_acsami_0c22573
crossref_primary_10_1002_ange_202103344
crossref_primary_10_1021_acsami_2c15662
crossref_primary_10_1016_j_ensm_2020_08_034
crossref_primary_10_1016_j_jallcom_2024_174120
crossref_primary_10_1002_anie_202309622
crossref_primary_10_1002_aenm_202304229
crossref_primary_10_1002_smll_202102126
crossref_primary_10_1016_j_nxmate_2024_100188
crossref_primary_10_3389_fenrg_2022_837071
crossref_primary_10_1002_anie_202103344
crossref_primary_10_1016_j_mtener_2021_100751
crossref_primary_10_1002_adfm_202002578
crossref_primary_10_1002_adma_202211032
crossref_primary_10_1016_j_ensm_2022_02_050
crossref_primary_10_1016_j_cej_2023_145115
crossref_primary_10_1016_j_cej_2020_126834
crossref_primary_10_1016_j_jechem_2020_07_009
crossref_primary_10_1039_D2TA02162E
crossref_primary_10_12677_JAPC_2023_124040
crossref_primary_10_1039_D4QI00802B
crossref_primary_10_1016_j_jechem_2021_06_001
crossref_primary_10_1002_aenm_202103332
crossref_primary_10_1021_acsami_4c00061
crossref_primary_10_1016_j_electacta_2020_136374
crossref_primary_10_1039_D0EE03967E
crossref_primary_10_3390_nano12172912
Cites_doi 10.1002/adma.201506124
10.1039/C8EE00364E
10.1038/s41467-017-00519-2
10.1002/aenm.201802352
10.1038/nmat4834
10.1038/nenergy.2017.119
10.1021/acs.nanolett.7b03606
10.1002/anie.201712702
10.1149/1.1502684
10.1038/s41560-018-0107-2
10.1039/C3EE40795K
10.1039/C6EE01674J
10.1103/PhysRevB.13.5188
10.1038/ncomms8436
10.1038/nenergy.2016.10
10.1038/s41560-018-0104-5
10.1016/j.chempr.2017.10.017
10.1016/j.joule.2017.11.004
10.1126/sciadv.aau7728
10.1016/0364-5916(90)90040-7
10.1016/S0378-7753(00)00521-8
10.1002/adfm.201808756
10.1002/aenm.201800266
10.1016/0927-0256(96)00008-0
10.1016/S0378-7753(98)00242-0
10.1016/j.joule.2017.06.002
10.1038/s41467-019-09932-1
10.1002/smll.201702989
10.1149/2.006311jes
10.1016/j.joule.2018.03.008
10.1038/ncomms9058
10.1002/aenm.201600811
10.1002/aenm.201803722
10.1016/j.ensm.2018.03.004
10.1149/1.1392649
10.1103/PhysRevLett.77.3865
10.1002/aenm.201804019
10.1002/admi.201600140
10.1016/j.apsusc.2004.10.021
10.1002/advs.201600168
10.1021/acs.chemrev.7b00115
10.1002/adma.201706375
10.1016/j.jpowsour.2007.06.106
10.1073/pnas.1708224114
10.1038/nenergy.2016.114
10.1038/nnano.2017.16
10.1038/natrevmats.2016.13
10.1149/1.2146628
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201902278
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201902278
AENM201902278
Genre article
GrantInformation_xml – fundername: Research Center Program of the Institute for Basic Science
  funderid: IBS‐R006‐A2
– fundername: National Research Foundation of Korea
  funderid: NRF‐2018R1A2A1A19023146; NRF‐2018M1A2A2063340
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AAMNL
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3568-af0da5c7fd1cd33771a39a1494fac7ece3f202450efebf81d08e1ec19ce5e5663
IEDL.DBID 33P
ISSN 1614-6832
IngestDate Thu Oct 10 17:07:56 EDT 2024
Fri Nov 22 00:37:30 EST 2024
Sat Aug 24 01:10:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3568-af0da5c7fd1cd33771a39a1494fac7ece3f202450efebf81d08e1ec19ce5e5663
ORCID 0000-0001-8783-0901
PQID 2312174543
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2312174543
crossref_primary_10_1002_aenm_201902278
wiley_primary_10_1002_aenm_201902278_AENM201902278
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2001; 92
2017; 8
2019; 9
2015; 6
2017; 1
2017; 2
2019; 5
2017; 4
1990; 14
2019; 10
2006; 9
1999; 146
1999; 81
1996; 13
2017; 114
2013; 160
2017; 117
1996; 77
2016; 6
2018; 8
2018; 3
2016; 1
2018; 2
2018; 4
2016; 3
2017; 17
2017; 16
2005; 245
2007; 174
2017; 12
2002; 149
2019; 29
2018; 30
2018; 11
2016; 28
2014; 7
2003; 21
2016; 9
2018; 14
1996; 6
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Ratsch C. (e_1_2_7_24_1) 2003; 21
e_1_2_7_30_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 11
  start-page: 2600
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 92
  start-page: 70
  year: 2001
  publication-title: J. Power Sources
– volume: 8
  start-page: 336
  year: 2017
  publication-title: Nat. Commun.
– volume: 13
  start-page: 5188
  year: 1996
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 174
  year: 2018
  publication-title: Chem
– volume: 160
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 3
  start-page: 227
  year: 2018
  publication-title: Nat. Energy
– volume: 2
  start-page: 184
  year: 2018
  publication-title: Joule
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 1
  start-page: 394
  year: 2017
  publication-title: Joule
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 16
  start-page: 16
  year: 2017
  publication-title: Nat. Mater.
– volume: 7
  start-page: 513
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 8058
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 2888
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7436
  year: 2015
  publication-title: Nat. Commun.
– volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 174
  start-page: 810
  year: 2007
  publication-title: J. Power Sources
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3221
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: S96
  year: 2003
  publication-title: Sci. Technol., A
– volume: 146
  start-page: 4393
  year: 1999
  publication-title: J. Electrochem. Soc.
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 149
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 114
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 7606
  year: 2017
  publication-title: Nano Lett.
– volume: 3
  start-page: 267
  year: 2018
  publication-title: Nat. Energy
– volume: 14
  start-page: 143
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 14
  start-page: 61
  year: 1990
  publication-title: Calphad
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 2
  start-page: 833
  year: 2018
  publication-title: Joule
– volume: 9
  start-page: A72
  year: 2006
  publication-title: Electrochem. Solid‐State Lett.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 10
  start-page: 1896
  year: 2019
  publication-title: Nat. Commun.
– volume: 245
  start-page: 281
  year: 2005
  publication-title: Appl. Surf. Sci.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 81
  start-page: 925
  year: 1999
  publication-title: J. Power Sources
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201506124
– ident: e_1_2_7_16_1
  doi: 10.1039/C8EE00364E
– ident: e_1_2_7_19_1
  doi: 10.1038/s41467-017-00519-2
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201802352
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat4834
– ident: e_1_2_7_12_1
  doi: 10.1038/nenergy.2017.119
– ident: e_1_2_7_36_1
  doi: 10.1021/acs.nanolett.7b03606
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.201712702
– ident: e_1_2_7_41_1
  doi: 10.1149/1.1502684
– ident: e_1_2_7_3_1
  doi: 10.1038/s41560-018-0107-2
– ident: e_1_2_7_11_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_7_37_1
  doi: 10.1039/C6EE01674J
– ident: e_1_2_7_49_1
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_2_7_18_1
  doi: 10.1038/ncomms8436
– ident: e_1_2_7_32_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_7_38_1
  doi: 10.1038/s41560-018-0104-5
– ident: e_1_2_7_17_1
  doi: 10.1016/j.chempr.2017.10.017
– ident: e_1_2_7_39_1
  doi: 10.1016/j.joule.2017.11.004
– ident: e_1_2_7_26_1
  doi: 10.1126/sciadv.aau7728
– volume: 21
  start-page: S96
  year: 2003
  ident: e_1_2_7_24_1
  publication-title: Sci. Technol., A
  contributor:
    fullname: Ratsch C.
– ident: e_1_2_7_34_1
  doi: 10.1016/0364-5916(90)90040-7
– ident: e_1_2_7_44_1
  doi: 10.1016/S0378-7753(00)00521-8
– ident: e_1_2_7_46_1
  doi: 10.1002/adfm.201808756
– ident: e_1_2_7_23_1
  doi: 10.1002/aenm.201800266
– ident: e_1_2_7_47_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_7_14_1
  doi: 10.1016/S0378-7753(98)00242-0
– ident: e_1_2_7_20_1
  doi: 10.1016/j.joule.2017.06.002
– ident: e_1_2_7_28_1
  doi: 10.1038/s41467-019-09932-1
– ident: e_1_2_7_4_1
  doi: 10.1002/smll.201702989
– ident: e_1_2_7_45_1
  doi: 10.1149/2.006311jes
– ident: e_1_2_7_8_1
  doi: 10.1016/j.joule.2018.03.008
– ident: e_1_2_7_22_1
  doi: 10.1038/ncomms9058
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.201600811
– ident: e_1_2_7_21_1
  doi: 10.1002/aenm.201803722
– ident: e_1_2_7_30_1
  doi: 10.1016/j.ensm.2018.03.004
– ident: e_1_2_7_13_1
  doi: 10.1149/1.1392649
– ident: e_1_2_7_48_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_7_27_1
  doi: 10.1002/aenm.201804019
– ident: e_1_2_7_31_1
  doi: 10.1002/admi.201600140
– ident: e_1_2_7_25_1
  doi: 10.1016/j.apsusc.2004.10.021
– ident: e_1_2_7_33_1
  doi: 10.1002/advs.201600168
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201706375
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jpowsour.2007.06.106
– ident: e_1_2_7_35_1
  doi: 10.1073/pnas.1708224114
– ident: e_1_2_7_10_1
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_7_5_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_2_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_7_42_1
  doi: 10.1149/1.2146628
SSID ssj0000491033
Score 2.5375533
Snippet Due to unparalleled theoretical capacity and operation voltage, metallic Li is considered as the most attractive candidate for lithium‐ion battery anodes....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms adsorption energy
Cycles
Dendritic structure
density functional theory
Doping
Electrodes
Interface stability
interfacial energy
lithium metal anodes
Lithium-ion batteries
Magnesium
Metal foils
Plating
Surface energy
Surface properties
Whiskers (metals)
Title Marginal Magnesium Doping for High‐Performance Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902278
https://www.proquest.com/docview/2312174543
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgEwx8IwoFeUBishrnkjgdK9qqA60qARJb5Dhn6EBBtN35CfxGfglnp03bCQm2RIqt6HQf75y8d4xdW6AqnUsQEKpcRFoZkUOgBQRY5LJoRTbxQ2zv1fAp7XSdTE7F4i_1IaoDNxcZPl-7ANf5tLkSDdU4cUxyKmiOzUlJmFoFz-GAUXXIQvBXBn6cPAGbSCTkvkvhxiBsbu6wWZhWaHMds_qi09v__-sesL0F4OTt0kMO2RZOjtjumgzhMeu7abduOhYf6GdKfeP5K-94IhUnSMvdryDfn1-jFcWA341nL-6pARJ256VGJ7XcJ-yx13247YvFhAVhIE5SoW1Q6NgoW0hTACglNbQ0NU2R1UahQbCh-zYboMXcErQNUpRoZMtgjAQE4ZTVJm8TPGMcUlSENkOZOBFCWk-dXooQp-68hEBmnd0szZu9l0IaWSmZHGbONlllmzprLK2fLQJqmhEMdc1THEGdhd7Ov-yStbvDQXV3_pdFF2zHXZfMwwarzT7meMm2p8X8yrvZD0W90Pc
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5sPagH32K1ag6Cp9Akm1ePxbZUbErBCt6WzWaiPRjFtnd_gr_RX-JM0vRxEsRjQnYJw8zON5N83wBcp4KydGwLUzhBbLoq0GYsLGUKC5PYTppu6udDbB-CwVPY7rBMTqvkwhT6EIuGG0dGfl5zgHNDurFUDVWYMZWcMhrTOSuw6frkjcziEMNFm4UAsG3lA-UJ2rimTw5cSjdaTmN9i_XUtMSbq6g1TzvdvX944X3YnWNOo1U4yQFsYHYIOytKhEfQ44G3PCDLiNQznX7j2avRzrlUBqFag_8G-f78Gi5ZBkZ_PH3hpyIk-G4UMp1UdR_DY7czuu2Z8yELphaeH5oqtRLl6SBNbJ0IEQS2Ek1FdZObKh2gRpE6_HnWwhTjlNCtFaKN2m5q9JCwoDiBavaW4SkYIsSAAKdj-6xDSOup2AtReCG3TAhn1uCmtK98L7Q0ZKGa7Ei2jVzYpgb10vxyHlMTSUiU6yfPFTVwckP_sotsdQbR4ursL4uuYKs3ivqyfze4P4dtvl8QEetQnX7M8AIqk2R2mfvcD5fg1R8
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMdfBBOjB38bUdQeTDw1rOtGx5EIBCMQEjXx1nRdqxycRODun-Df6F_i6wYDTiZ63LI2y8tr3-d1e98HcG05RumYccp9EdNACU1j7inKPZPELGkEtp41sX0Qg-eo1XYyOUUVf64PURy4uZWR7ddugY8TW1uKhiqTukpyDGiumrMEmwGyuFPP53xYnLIg_zIv6yePZBPQOvrvQrnR82vrU6xHpiVurkJrFnU6e_9_333YnRMnaeYucgAbJj2EnRUdwiPouna3rj0W6asX3PtGszfSyiqpCDItcf-CfH9-DZc1BqQ3mr66p_oG4Z3kIp2Ycx_DU6f9eNul8xYLVPOwHlFlvUSFWtiE6YRzIZjiDYVZU2CVFkYbbn33cdYz1sQW2daLDDOaNbQJDZIgP4Fy-p6aUyA8MgJx02d1p0KI4zHViwwPI3dggpRZgZuFeeU4V9KQuWayL51tZGGbClQX1pfzFTWRyKEuewoDXgE_s_Mvs8hme9Avrs7-MugKtoatjuzdDe7PYdvdzqsQq1CefszMBZQmyewy87gfGfvTxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marginal+Magnesium+Doping+for+High%E2%80%90Performance+Lithium+Metal+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Choi%2C+Seung+Ho&rft.au=Lee%2C+Seung+Jong&rft.au=Yoo%2C+Dong%E2%80%90Joo&rft.au=Park%2C+Jun+Ho&rft.date=2019-11-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=41&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201902278&rft.externalDBID=10.1002%252Faenm.201902278&rft.externalDocID=AENM201902278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon