AC Magnetron Sputtering: An Industrial Approach for High‐Voltage and High‐Performance Thin‐Film Cathodes for Li‐Ion Batteries
Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel...
Saved in:
Published in: | Advanced materials interfaces Vol. 8; no. 10 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
John Wiley & Sons, Inc
01-05-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage.
Deposited LiNi0.5Mn1.5O4 films are amorphous and they crystallize in electroactive disordered spinel phase upon annealing at 600 °C. The obtained thin‐film electrodes are tested against metallic Li in liquid electrolyte showing outstanding cycling performance. |
---|---|
AbstractList | Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage. Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi 0.5 Mn 1.5 O 4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage. Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage. Deposited LiNi0.5Mn1.5O4 films are amorphous and they crystallize in electroactive disordered spinel phase upon annealing at 600 °C. The obtained thin‐film electrodes are tested against metallic Li in liquid electrolyte showing outstanding cycling performance. |
Author | Rikarte, Jokin Baraldi, Giorgio García‐Luis, Alberto Muñoz‐Márquez, Miguel Ángel Bellido‐González, Víctor Madinabeitia, Iñaki Fernández‐Carretero, Francisco José |
Author_xml | – sequence: 1 givenname: Jokin orcidid: 0000-0003-2403-1568 surname: Rikarte fullname: Rikarte, Jokin organization: UPV/EHU – sequence: 2 givenname: Iñaki orcidid: 0000-0003-1896-9365 surname: Madinabeitia fullname: Madinabeitia, Iñaki organization: Parque Científico y Tecnológico de Gipuzkoa – sequence: 3 givenname: Giorgio orcidid: 0000-0002-5026-7921 surname: Baraldi fullname: Baraldi, Giorgio organization: Basque Research and Technology Alliance (BRTA) – sequence: 4 givenname: Francisco José orcidid: 0000-0003-4350-8368 surname: Fernández‐Carretero fullname: Fernández‐Carretero, Francisco José organization: Parque Científico y Tecnológico de Gipuzkoa – sequence: 5 givenname: Víctor surname: Bellido‐González fullname: Bellido‐González, Víctor organization: Gencoa Ltd – sequence: 6 givenname: Alberto surname: García‐Luis fullname: García‐Luis, Alberto organization: Parque Científico y Tecnológico de Gipuzkoa – sequence: 7 givenname: Miguel Ángel orcidid: 0000-0002-5351-828X surname: Muñoz‐Márquez fullname: Muñoz‐Márquez, Miguel Ángel email: mamunoz@cicenergigune.com organization: Basque Research and Technology Alliance (BRTA) |
BookMark | eNqFkDtPwzAUhS0EEqV0ZbbEnOJHnMRsoVBaqRVIFNbITezUVeoEOxXqxsLOb-SX4La8NqZ7dfSde3TPCTg0tZEAnGHUxwiRC1GsdJ8g4ndM2AHoEMyjIKYMHf7Zj0HPuSVCCGOPJbQD3tIBnIrSyNbWBj4067aVVpvyEqYGjk2xdq3VooJp09ha5AuoagtHulx8vL4_1VUrSgmFKb6le2k9sBIml3C20MZLQ12t4EC0i7qQbmefaC-PfdyV2KVJdwqOlKic7H3NLngc3swGo2BydzsepJMgpyxiQaIwj0NKwgSRIudqThUTao4IFzwuIsEiqYjMVcJ5TDFBPEyiUDHKKMkTjGPaBef7u_6Z57V0bbas19b4yIww7-AoirGn-nsqt7VzVqqssXol7CbDKNu2nW3bzn7a9ga-N7zoSm7-obP0ejr-9X4CwTmIQA |
CitedBy_id | crossref_primary_10_1021_acsaem_2c01581 crossref_primary_10_1016_j_ceramint_2022_11_200 crossref_primary_10_1016_j_jallcom_2023_173232 crossref_primary_10_1021_acsami_1c18247 |
Cites_doi | 10.1016/j.tsf.2014.08.034 10.1016/0378-7753(85)88016-2 10.1039/c3ee42981d 10.1039/b923490j 10.1021/acs.chemmater.7b01921 10.1038/natrevmats.2016.103 10.1016/0378-7753(93)80106-Y 10.1016/j.ssi.2013.07.009 10.1007/s10832-018-0168-4 10.1149/1.3567954 10.1016/j.apsusc.2010.10.051 10.1016/j.ssi.2012.05.008 10.1016/j.jpowsour.2012.03.076 10.1002/sia.5789 10.1016/j.surfcoat.2006.08.079 10.1016/j.jpowsour.2014.05.052 10.1016/j.jpowsour.2013.07.051 10.1149/1.1837386 10.1016/j.electacta.2006.07.013 10.1149/1.2198110 10.1039/C4TA01810A 10.1021/cm200899k 10.1021/cm060729s 10.1002/sia.740040204 10.1002/aenm201300378 10.1016/j.surfcoat.2017.09.015 10.1039/C3TA14928E 10.1039/C7RA03580B 10.1016/j.jpowsour.2010.02.011 10.1016/j.ssi.2011.04.007 10.1116/1.579868 10.1021/jp308828p 10.1002/sia.740180908 10.1021/acs.chemmater.5b01654 10.1149/2.0261508jes 10.1016/j.physc.2013.11.003 10.1016/j.jpowsour.2016.03.070 10.1038/srep08027 10.1016/S0167-2738(00)00327-1 10.1002/aenm.201401408 10.1016/j.gee.2018.01.003 10.1016/j.electacta.2012.11.120 10.1557/jmr.2019.299 10.1038/nenergy.2016.141 10.1016/S0013-4686(00)00725-8 10.1016/j.jascer.2014.05.008 10.1149/2.052203jes 10.1016/j.electacta.2013.04.018 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/admi.202002125 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | 10_1002_admi_202002125 ADMI202002125 |
Genre | article |
GrantInformation_xml | – fundername: European H2020 funderid: 687561; CICe2017‐L4 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU CITATION EJD GROUPED_DOAJ HCIFZ KB. M7S PDBOC PTHSS 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3565-8f1974324802dc9fb3f5afb029a97d6a56ef2ecf8997312094864f53532c81173 |
IEDL.DBID | 33P |
ISSN | 2196-7350 |
IngestDate | Thu Oct 10 22:41:11 EDT 2024 Thu Nov 21 22:08:36 EST 2024 Sat Aug 24 01:03:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3565-8f1974324802dc9fb3f5afb029a97d6a56ef2ecf8997312094864f53532c81173 |
ORCID | 0000-0002-5351-828X 0000-0002-5026-7921 0000-0003-2403-1568 0000-0003-1896-9365 0000-0003-4350-8368 |
PQID | 2531290671 |
PQPubID | 2034582 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2531290671 crossref_primary_10_1002_admi_202002125 wiley_primary_10_1002_admi_202002125_ADMI202002125 |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2015; 162 2017; 7 2011; 158 2011; 257 2013; 3 2017; 2 2015; 5 2000; 135 2010 1995; 13 1993; 43 2016; 53 2013; 90 1992; 18 2006; 18 2013; 102 2006; 153 2020; 35 2017; 29 2007; 52 2014; 572 2012; 225 2001; 46 2011; 193 2014; 497 2010; 20 2015; 47 2018; 3 2016; 1 2015; 27 2012; 211 2014; 2 2019; 42 2013; 249–250 2018; 336 2016; 316 1997; 144 2013; 117 1982; 4 2016 2011; 23 2010; 195 2012; 159 2014; 7 2014; 246 2014; 269 1985; 14 2006; 201 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 Bui H. V. (e_1_2_8_17_1) 2016; 53 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 Martin P. M. (e_1_2_8_10_1) 2010 e_1_2_8_23_1 e_1_2_8_44_1 Griesser H. J. (e_1_2_8_18_1) 2016 e_1_2_8_40_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 18 start-page: 3585 year: 2006 publication-title: Chem. Mater. – volume: 27 start-page: 5324 year: 2015 publication-title: Chem. Mater. – volume: 3 start-page: 1275 year: 2013 publication-title: Adv. Energy Mater. – volume: 90 start-page: 135 year: 2013 publication-title: Electrochim. Acta – volume: 497 start-page: 38 year: 2014 publication-title: Phys. C – volume: 249–250 start-page: 49 year: 2013 publication-title: Solid State Ionics – volume: 14 start-page: 87 year: 1985 publication-title: J. Power Sources – volume: 5 start-page: 8027 year: 2015 publication-title: Sci. Rep. – volume: 159 start-page: A259 year: 2012 publication-title: J. Electrochem. Soc. – volume: 153 year: 2006 publication-title: J. Electrochem. Soc. – volume: 572 start-page: 15 year: 2014 publication-title: Thin Solid Films – volume: 193 start-page: 32 year: 2011 publication-title: Solid State Ionics – volume: 2 start-page: 9566 year: 2014 publication-title: J. Mater. Chem. A – volume: 18 start-page: 679 year: 1992 publication-title: Surf. Interface Anal. – volume: 47 start-page: 871 year: 2015 publication-title: Surf. Interface Anal. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 29 start-page: 6044 year: 2017 publication-title: Chem. Mater. – volume: 2 start-page: 258 year: 2014 publication-title: J. Asian Ceram. Soc. – volume: 20 start-page: 2877 year: 2010 publication-title: J. Mater. Chem. – volume: 316 start-page: 85 year: 2016 publication-title: J. Power Sources – volume: 158 start-page: A537 year: 2011 publication-title: J. Electrochem. Soc. – volume: 225 start-page: 636 year: 2012 publication-title: Solid State Ionics – volume: 35 start-page: 31 year: 2020 publication-title: J. Mater. Res. – volume: 162 year: 2015 publication-title: J. Electrochem. Soc. – volume: 117 start-page: 1677 year: 2013 publication-title: J. Phys. Chem. C – volume: 46 start-page: 2327 year: 2001 publication-title: Electrochim. Acta – volume: 211 start-page: 108 year: 2012 publication-title: J. Power Sources – volume: 269 start-page: 293 year: 2014 publication-title: J. Power Sources – volume: 195 start-page: 5005 year: 2010 publication-title: J. Power Sources – volume: 257 start-page: 2717 year: 2011 publication-title: Appl. Surf. Sci. – volume: 3 start-page: 239 year: 2018 publication-title: Green Energy Environ. – volume: 13 start-page: 1239 year: 1995 publication-title: J. Vac. Sci. Technol., A – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 102 start-page: 416 year: 2013 publication-title: Electrochim. Acta – volume: 336 start-page: 54 year: 2018 publication-title: Surf. Coat. Technol. – volume: 53 start-page: 45 year: 2016 publication-title: Chem. Commun. – volume: 4 start-page: 47 year: 1982 publication-title: Surf. Interface Anal. – volume: 201 start-page: 4411 year: 2006 publication-title: Surf. Coat. Technol. – volume: 144 start-page: 205 year: 1997 publication-title: J. Electrochem. Soc. – year: 2016 – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 7 start-page: 1339 year: 2014 publication-title: Energy Environ. Sci. – volume: 135 start-page: 33 year: 2000 publication-title: Solid State Ionics – year: 2010 – volume: 246 start-page: 365 year: 2014 publication-title: J. Power Sources – volume: 52 start-page: 2822 year: 2007 publication-title: Electrochim. Acta – volume: 23 start-page: 4669 year: 2011 publication-title: Chem. Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 43 start-page: 103 year: 1993 publication-title: J. Power Sources – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 42 start-page: 104 year: 2019 publication-title: J. Electroceram. – ident: e_1_2_8_29_1 doi: 10.1016/j.tsf.2014.08.034 – volume-title: Handbook of Deposition Technologies for Films and Coatings year: 2010 ident: e_1_2_8_10_1 contributor: fullname: Martin P. M. – ident: e_1_2_8_7_1 doi: 10.1016/0378-7753(85)88016-2 – ident: e_1_2_8_1_1 doi: 10.1039/c3ee42981d – ident: e_1_2_8_11_1 doi: 10.1039/b923490j – ident: e_1_2_8_28_1 doi: 10.1021/acs.chemmater.7b01921 – ident: e_1_2_8_4_1 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_8_5_1 doi: 10.1016/0378-7753(93)80106-Y – ident: e_1_2_8_9_1 doi: 10.1016/j.ssi.2013.07.009 – ident: e_1_2_8_30_1 doi: 10.1007/s10832-018-0168-4 – ident: e_1_2_8_42_1 doi: 10.1149/1.3567954 – ident: e_1_2_8_43_1 doi: 10.1016/j.apsusc.2010.10.051 – ident: e_1_2_8_8_1 doi: 10.1016/j.ssi.2012.05.008 – ident: e_1_2_8_23_1 doi: 10.1016/j.jpowsour.2012.03.076 – ident: e_1_2_8_44_1 doi: 10.1002/sia.5789 – ident: e_1_2_8_34_1 doi: 10.1016/j.surfcoat.2006.08.079 – ident: e_1_2_8_22_1 doi: 10.1016/j.jpowsour.2014.05.052 – ident: e_1_2_8_21_1 doi: 10.1016/j.jpowsour.2013.07.051 – ident: e_1_2_8_2_1 doi: 10.1149/1.1837386 – ident: e_1_2_8_19_1 doi: 10.1016/j.electacta.2006.07.013 – ident: e_1_2_8_47_1 doi: 10.1149/1.2198110 – ident: e_1_2_8_37_1 doi: 10.1039/C4TA01810A – ident: e_1_2_8_12_1 doi: 10.1021/cm200899k – ident: e_1_2_8_46_1 doi: 10.1021/cm060729s – ident: e_1_2_8_40_1 doi: 10.1002/sia.740040204 – ident: e_1_2_8_25_1 doi: 10.1002/aenm201300378 – ident: e_1_2_8_32_1 doi: 10.1016/j.surfcoat.2017.09.015 – ident: e_1_2_8_15_1 doi: 10.1039/C3TA14928E – ident: e_1_2_8_27_1 doi: 10.1039/C7RA03580B – ident: e_1_2_8_38_1 doi: 10.1016/j.jpowsour.2010.02.011 – ident: e_1_2_8_48_1 doi: 10.1016/j.ssi.2011.04.007 – ident: e_1_2_8_41_1 doi: 10.1116/1.579868 – ident: e_1_2_8_14_1 doi: 10.1021/jp308828p – ident: e_1_2_8_51_1 doi: 10.1002/sia.740180908 – ident: e_1_2_8_16_1 doi: 10.1021/acs.chemmater.5b01654 – ident: e_1_2_8_50_1 doi: 10.1149/2.0261508jes – ident: e_1_2_8_33_1 doi: 10.1016/j.physc.2013.11.003 – ident: e_1_2_8_45_1 doi: 10.1016/j.jpowsour.2016.03.070 – ident: e_1_2_8_49_1 doi: 10.1038/srep08027 – ident: e_1_2_8_6_1 doi: 10.1016/S0167-2738(00)00327-1 – ident: e_1_2_8_26_1 doi: 10.1002/aenm.201401408 – ident: e_1_2_8_31_1 doi: 10.1016/j.gee.2018.01.003 – ident: e_1_2_8_24_1 doi: 10.1016/j.electacta.2012.11.120 – volume-title: Thin Film Coatings for Biomaterials and Biomedical Applications year: 2016 ident: e_1_2_8_18_1 contributor: fullname: Griesser H. J. – volume: 53 start-page: 45 year: 2016 ident: e_1_2_8_17_1 publication-title: Chem. Commun. contributor: fullname: Bui H. V. – ident: e_1_2_8_35_1 doi: 10.1557/jmr.2019.299 – ident: e_1_2_8_3_1 doi: 10.1038/nenergy.2016.141 – ident: e_1_2_8_36_1 doi: 10.1016/S0013-4686(00)00725-8 – ident: e_1_2_8_39_1 doi: 10.1016/j.jascer.2014.05.008 – ident: e_1_2_8_13_1 doi: 10.1149/2.052203jes – ident: e_1_2_8_20_1 doi: 10.1016/j.electacta.2013.04.018 |
SSID | ssj0001121283 |
Score | 2.28566 |
Snippet | Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film... Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi 0.5 Mn 1.5 O 4 high‐voltage thin‐film... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | AC magnetron sputtering Alternating current Annealing Cathodes Chemical composition Crystal structure Crystallization Evolution LiNi 0.5Mn 1.5O 4 Lithium-ion batteries Li‐ion batteries Magnetron sputtering Morphology Oxidation Photoelectrons Raman Raman spectroscopy Room temperature Spectrum analysis Spinel Substrates Temperature Thin films thin‐film cathodes X‐ray photoelectron spectroscopy |
Title | AC Magnetron Sputtering: An Industrial Approach for High‐Voltage and High‐Performance Thin‐Film Cathodes for Li‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202002125 https://www.proquest.com/docview/2531290671 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86ELz4LU6n5CB4KmuSfnor-2CCk8FUvJWkaWSwdcNudy_e_Rv9S3xJ29WdBL0UmpK2JHnJ7z3e7_cQuibS8bgIiKVcR-rQjWcFjlBwIUJImySJyXYfjP2Hl6Db0zI5axZ_oQ-xDrhpyzD7tTZwLvJ2LRrK5WwC_p1JMqCaZQ6uguFwsFEdZCHwzEhxgmF6ls9cuxJutGl78w2bB1ONNn9iVnPo9Pf__7sHaK8EnDgqVsgh2kqzI7RjEj-T_Bh9RB085K9ZqkPieLwwdavhOLvFUYbruh44KrXHMYBcrJNDvt4_n-fTJWxHmGeyahrVPASsS4JCU38ynWFNNJzLNDfd7yfQfAefK8Q9wVc_QU_93mNnYJWlGayEAQS0AkXAEQEwFthUJqESTLlcCZuGPPSlx10vVTRNFHhzPtP0XCfwHOUyl9FEU1vZKWpk8yw9Q9hXkqSeSGyuQodIV4QB88JQgaslQ4CrTXRTzUu8KBQ44kJrmcZ6UOP1oDZRq5q2uLTEPKawyWhJe580ETUT9Mtb4qg7vFvfnf-l0wXapTr1xeRFtlBj-bZKL9F2LldXZn1-AxcH5n4 |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oRPTitzg_cxA8FZukTVtvRR0bbmPgB95K2zQy2LrhtrsX7_6N_iW-pOuqJ0G8FJqSNOTlJb_3eO_3AM6pdESc-NRSriO160ZYvpMofNAkkTZNUxPt3rz3us_-za2myQnLXJiCH2LhcNOaYc5rreDaIX1ZsYbGcthHA89EGTB3GVYcgbtRZ3HwXuVmofjRkHGiagrL465dUjfa7PLnED-vpgpvfket5tppbP7DhLdgY445SVhskm1YyvIdWDWxn-lkF97Da9KJX_JMe8XJ_diUrsYb7YqEOalKe5BwTj9OEOcSHR_y-fbxNBpM8UQicS7Lpl6VikB0VVBsavQHQ6JzDUcym5ju7T42t_B3Bb8nmut78Ni4fbhuWvPqDFbKEQVavqJoiyAe820m00AlXLmxSmwWxIEnReyKTLEsVWjQeVxn6Dq-cJTLXc5Snd3K96GWj_LsAIinJM1EktqxChwq3STwuQgChdaWDBCx1uGiFEw0Lkg4ooJumUV6UaPFotbhuJRbNFfGScTwnNGs9h6tAzMS-mWUKLzptBZvh3_pdAZrzYdOO2q3undHsM50JIwJkzyG2vR1lp3A8kTOTs1m_QKx_uqm |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH84RfHitzidmoPgqaxJ-umtuI0Npwym4q20TSMD7Ybb7l68-zf6l_iSrq07CXopNCVpyMtLfu_x3u8BXFBhOVHsUUPallCuG8fwrFjig8axMGmS6Gj37tC9e_JabUWTU2bx5_wQpcNNaYY-r5WCT4RsVqShkXgdoX2ngwyYXYM1C7G4Ys_nfFB5WSh-1FycqJmO4XLbLJgbTdZcHmL5Zqrg5k_Qqm-dzvb_57sDWwvESYJ8i-zCSprtwbqO_Eym-_ARXJPb6DlLlU-cDCe6cDXeZ1ckyEhV2IMEC_JxgiiXqOiQr_fPx_HLDM8jEmWiaBpUiQhE1QTFps7o5ZWoTMOxSKe6e3-EzT38Xc7uicb6ATx02vfXXWNRm8FIOGJAw5MULRFEY57JROLLmEs7krHJ_Mh3hRPZTipZmkg051yu8nMtz7GkzW3OEpXbyg9hNRtn6REQVwqaOnFiRtK3qLBj3-OO70u0tYSPeLUOl4VcwklOwRHmZMssVIsalotah0YhtnChitOQ4SmjOO1dWgemBfTLKGHQuu2Vb8d_6XQOG4NWJ-z37m5OYJOpMBgdI9mA1dnbPD2F2lTMz_RW_QbmT-lM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AC+Magnetron+Sputtering%3A+An+Industrial+Approach+for+High%E2%80%90Voltage+and+High%E2%80%90Performance+Thin%E2%80%90Film+Cathodes+for+Li%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+interfaces&rft.au=Rikarte%2C+Jokin&rft.au=Madinabeitia%2C+I%C3%B1aki&rft.au=Baraldi%2C+Giorgio&rft.au=Fern%C3%A1ndez%E2%80%90Carretero%2C+Francisco+Jos%C3%A9&rft.date=2021-05-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=8&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202002125&rft.externalDBID=10.1002%252Fadmi.202002125&rft.externalDocID=ADMI202002125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |