AC Magnetron Sputtering: An Industrial Approach for High‐Voltage and High‐Performance Thin‐Film Cathodes for Li‐Ion Batteries

Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials interfaces Vol. 8; no. 10
Main Authors: Rikarte, Jokin, Madinabeitia, Iñaki, Baraldi, Giorgio, Fernández‐Carretero, Francisco José, Bellido‐González, Víctor, García‐Luis, Alberto, Muñoz‐Márquez, Miguel Ángel
Format: Journal Article
Language:English
Published: Weinheim John Wiley & Sons, Inc 01-05-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage. Deposited LiNi0.5Mn1.5O4 films are amorphous and they crystallize in electroactive disordered spinel phase upon annealing at 600 °C. The obtained thin‐film electrodes are tested against metallic Li in liquid electrolyte showing outstanding cycling performance.
AbstractList Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage.
Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi 0.5 Mn 1.5 O 4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage.
Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film cathodes. Films are deposited on bare stainless‐steel substrate at room temperature and then annealed to induce crystallization in disordered spinel phase. In situ X‐ray diffraction is used to follow film structural evolution from room temperature to 900 °C. Scanning electron microscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy are used to study the evolution with temperature of film morphology, surface chemical composition, and crystal structure arrangement, respectively. Film structure evolves almost continuously in the studied temperature range. A pattern corresponding to spinel phase is observed after annealing at 600 °C, while poor crystallization is obtained for lower temperatures, and additional unwanted phase changes are observed for higher temperatures. Cyclic voltammetry, rate capability, and cycling performance of fabricated films are tested. Only the film annealed at 600 °C shows redox peaks corresponding to Ni oxidation from 2+ to 3+ and 3+ to 4+ oxidation states, confirming that this film crystallizes in disordered spinel phase. The thin‐film cathode shows good rate performance and outstanding cyclability, despite the impurities formed upon electrolyte decomposition at high voltage. Deposited LiNi0.5Mn1.5O4 films are amorphous and they crystallize in electroactive disordered spinel phase upon annealing at 600 °C. The obtained thin‐film electrodes are tested against metallic Li in liquid electrolyte showing outstanding cycling performance.
Author Rikarte, Jokin
Baraldi, Giorgio
García‐Luis, Alberto
Muñoz‐Márquez, Miguel Ángel
Bellido‐González, Víctor
Madinabeitia, Iñaki
Fernández‐Carretero, Francisco José
Author_xml – sequence: 1
  givenname: Jokin
  orcidid: 0000-0003-2403-1568
  surname: Rikarte
  fullname: Rikarte, Jokin
  organization: UPV/EHU
– sequence: 2
  givenname: Iñaki
  orcidid: 0000-0003-1896-9365
  surname: Madinabeitia
  fullname: Madinabeitia, Iñaki
  organization: Parque Científico y Tecnológico de Gipuzkoa
– sequence: 3
  givenname: Giorgio
  orcidid: 0000-0002-5026-7921
  surname: Baraldi
  fullname: Baraldi, Giorgio
  organization: Basque Research and Technology Alliance (BRTA)
– sequence: 4
  givenname: Francisco José
  orcidid: 0000-0003-4350-8368
  surname: Fernández‐Carretero
  fullname: Fernández‐Carretero, Francisco José
  organization: Parque Científico y Tecnológico de Gipuzkoa
– sequence: 5
  givenname: Víctor
  surname: Bellido‐González
  fullname: Bellido‐González, Víctor
  organization: Gencoa Ltd
– sequence: 6
  givenname: Alberto
  surname: García‐Luis
  fullname: García‐Luis, Alberto
  organization: Parque Científico y Tecnológico de Gipuzkoa
– sequence: 7
  givenname: Miguel Ángel
  orcidid: 0000-0002-5351-828X
  surname: Muñoz‐Márquez
  fullname: Muñoz‐Márquez, Miguel Ángel
  email: mamunoz@cicenergigune.com
  organization: Basque Research and Technology Alliance (BRTA)
BookMark eNqFkDtPwzAUhS0EEqV0ZbbEnOJHnMRsoVBaqRVIFNbITezUVeoEOxXqxsLOb-SX4La8NqZ7dfSde3TPCTg0tZEAnGHUxwiRC1GsdJ8g4ndM2AHoEMyjIKYMHf7Zj0HPuSVCCGOPJbQD3tIBnIrSyNbWBj4067aVVpvyEqYGjk2xdq3VooJp09ha5AuoagtHulx8vL4_1VUrSgmFKb6le2k9sBIml3C20MZLQ12t4EC0i7qQbmefaC-PfdyV2KVJdwqOlKic7H3NLngc3swGo2BydzsepJMgpyxiQaIwj0NKwgSRIudqThUTao4IFzwuIsEiqYjMVcJ5TDFBPEyiUDHKKMkTjGPaBef7u_6Z57V0bbas19b4yIww7-AoirGn-nsqt7VzVqqssXol7CbDKNu2nW3bzn7a9ga-N7zoSm7-obP0ejr-9X4CwTmIQA
CitedBy_id crossref_primary_10_1021_acsaem_2c01581
crossref_primary_10_1016_j_ceramint_2022_11_200
crossref_primary_10_1016_j_jallcom_2023_173232
crossref_primary_10_1021_acsami_1c18247
Cites_doi 10.1016/j.tsf.2014.08.034
10.1016/0378-7753(85)88016-2
10.1039/c3ee42981d
10.1039/b923490j
10.1021/acs.chemmater.7b01921
10.1038/natrevmats.2016.103
10.1016/0378-7753(93)80106-Y
10.1016/j.ssi.2013.07.009
10.1007/s10832-018-0168-4
10.1149/1.3567954
10.1016/j.apsusc.2010.10.051
10.1016/j.ssi.2012.05.008
10.1016/j.jpowsour.2012.03.076
10.1002/sia.5789
10.1016/j.surfcoat.2006.08.079
10.1016/j.jpowsour.2014.05.052
10.1016/j.jpowsour.2013.07.051
10.1149/1.1837386
10.1016/j.electacta.2006.07.013
10.1149/1.2198110
10.1039/C4TA01810A
10.1021/cm200899k
10.1021/cm060729s
10.1002/sia.740040204
10.1002/aenm201300378
10.1016/j.surfcoat.2017.09.015
10.1039/C3TA14928E
10.1039/C7RA03580B
10.1016/j.jpowsour.2010.02.011
10.1016/j.ssi.2011.04.007
10.1116/1.579868
10.1021/jp308828p
10.1002/sia.740180908
10.1021/acs.chemmater.5b01654
10.1149/2.0261508jes
10.1016/j.physc.2013.11.003
10.1016/j.jpowsour.2016.03.070
10.1038/srep08027
10.1016/S0167-2738(00)00327-1
10.1002/aenm.201401408
10.1016/j.gee.2018.01.003
10.1016/j.electacta.2012.11.120
10.1557/jmr.2019.299
10.1038/nenergy.2016.141
10.1016/S0013-4686(00)00725-8
10.1016/j.jascer.2014.05.008
10.1149/2.052203jes
10.1016/j.electacta.2013.04.018
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.202002125
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 10_1002_admi_202002125
ADMI202002125
Genre article
GrantInformation_xml – fundername: European H2020
  funderid: 687561; CICe2017‐L4
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PTHSS
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3565-8f1974324802dc9fb3f5afb029a97d6a56ef2ecf8997312094864f53532c81173
IEDL.DBID 33P
ISSN 2196-7350
IngestDate Thu Oct 10 22:41:11 EDT 2024
Thu Nov 21 22:08:36 EST 2024
Sat Aug 24 01:03:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3565-8f1974324802dc9fb3f5afb029a97d6a56ef2ecf8997312094864f53532c81173
ORCID 0000-0002-5351-828X
0000-0002-5026-7921
0000-0003-2403-1568
0000-0003-1896-9365
0000-0003-4350-8368
PQID 2531290671
PQPubID 2034582
PageCount 10
ParticipantIDs proquest_journals_2531290671
crossref_primary_10_1002_admi_202002125
wiley_primary_10_1002_admi_202002125_ADMI202002125
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 162
2017; 7
2011; 158
2011; 257
2013; 3
2017; 2
2015; 5
2000; 135
2010
1995; 13
1993; 43
2016; 53
2013; 90
1992; 18
2006; 18
2013; 102
2006; 153
2020; 35
2017; 29
2007; 52
2014; 572
2012; 225
2001; 46
2011; 193
2014; 497
2010; 20
2015; 47
2018; 3
2016; 1
2015; 27
2012; 211
2014; 2
2019; 42
2013; 249–250
2018; 336
2016; 316
1997; 144
2013; 117
1982; 4
2016
2011; 23
2010; 195
2012; 159
2014; 7
2014; 246
2014; 269
1985; 14
2006; 201
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
Bui H. V. (e_1_2_8_17_1) 2016; 53
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
Martin P. M. (e_1_2_8_10_1) 2010
e_1_2_8_23_1
e_1_2_8_44_1
Griesser H. J. (e_1_2_8_18_1) 2016
e_1_2_8_40_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 18
  start-page: 3585
  year: 2006
  publication-title: Chem. Mater.
– volume: 27
  start-page: 5324
  year: 2015
  publication-title: Chem. Mater.
– volume: 3
  start-page: 1275
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 90
  start-page: 135
  year: 2013
  publication-title: Electrochim. Acta
– volume: 497
  start-page: 38
  year: 2014
  publication-title: Phys. C
– volume: 249–250
  start-page: 49
  year: 2013
  publication-title: Solid State Ionics
– volume: 14
  start-page: 87
  year: 1985
  publication-title: J. Power Sources
– volume: 5
  start-page: 8027
  year: 2015
  publication-title: Sci. Rep.
– volume: 159
  start-page: A259
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 153
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 572
  start-page: 15
  year: 2014
  publication-title: Thin Solid Films
– volume: 193
  start-page: 32
  year: 2011
  publication-title: Solid State Ionics
– volume: 2
  start-page: 9566
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 679
  year: 1992
  publication-title: Surf. Interface Anal.
– volume: 47
  start-page: 871
  year: 2015
  publication-title: Surf. Interface Anal.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 29
  start-page: 6044
  year: 2017
  publication-title: Chem. Mater.
– volume: 2
  start-page: 258
  year: 2014
  publication-title: J. Asian Ceram. Soc.
– volume: 20
  start-page: 2877
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 316
  start-page: 85
  year: 2016
  publication-title: J. Power Sources
– volume: 158
  start-page: A537
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 225
  start-page: 636
  year: 2012
  publication-title: Solid State Ionics
– volume: 35
  start-page: 31
  year: 2020
  publication-title: J. Mater. Res.
– volume: 162
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 117
  start-page: 1677
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 46
  start-page: 2327
  year: 2001
  publication-title: Electrochim. Acta
– volume: 211
  start-page: 108
  year: 2012
  publication-title: J. Power Sources
– volume: 269
  start-page: 293
  year: 2014
  publication-title: J. Power Sources
– volume: 195
  start-page: 5005
  year: 2010
  publication-title: J. Power Sources
– volume: 257
  start-page: 2717
  year: 2011
  publication-title: Appl. Surf. Sci.
– volume: 3
  start-page: 239
  year: 2018
  publication-title: Green Energy Environ.
– volume: 13
  start-page: 1239
  year: 1995
  publication-title: J. Vac. Sci. Technol., A
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 102
  start-page: 416
  year: 2013
  publication-title: Electrochim. Acta
– volume: 336
  start-page: 54
  year: 2018
  publication-title: Surf. Coat. Technol.
– volume: 53
  start-page: 45
  year: 2016
  publication-title: Chem. Commun.
– volume: 4
  start-page: 47
  year: 1982
  publication-title: Surf. Interface Anal.
– volume: 201
  start-page: 4411
  year: 2006
  publication-title: Surf. Coat. Technol.
– volume: 144
  start-page: 205
  year: 1997
  publication-title: J. Electrochem. Soc.
– year: 2016
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 7
  start-page: 1339
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 135
  start-page: 33
  year: 2000
  publication-title: Solid State Ionics
– year: 2010
– volume: 246
  start-page: 365
  year: 2014
  publication-title: J. Power Sources
– volume: 52
  start-page: 2822
  year: 2007
  publication-title: Electrochim. Acta
– volume: 23
  start-page: 4669
  year: 2011
  publication-title: Chem. Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 43
  start-page: 103
  year: 1993
  publication-title: J. Power Sources
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 42
  start-page: 104
  year: 2019
  publication-title: J. Electroceram.
– ident: e_1_2_8_29_1
  doi: 10.1016/j.tsf.2014.08.034
– volume-title: Handbook of Deposition Technologies for Films and Coatings
  year: 2010
  ident: e_1_2_8_10_1
  contributor:
    fullname: Martin P. M.
– ident: e_1_2_8_7_1
  doi: 10.1016/0378-7753(85)88016-2
– ident: e_1_2_8_1_1
  doi: 10.1039/c3ee42981d
– ident: e_1_2_8_11_1
  doi: 10.1039/b923490j
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.chemmater.7b01921
– ident: e_1_2_8_4_1
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_8_5_1
  doi: 10.1016/0378-7753(93)80106-Y
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ssi.2013.07.009
– ident: e_1_2_8_30_1
  doi: 10.1007/s10832-018-0168-4
– ident: e_1_2_8_42_1
  doi: 10.1149/1.3567954
– ident: e_1_2_8_43_1
  doi: 10.1016/j.apsusc.2010.10.051
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ssi.2012.05.008
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jpowsour.2012.03.076
– ident: e_1_2_8_44_1
  doi: 10.1002/sia.5789
– ident: e_1_2_8_34_1
  doi: 10.1016/j.surfcoat.2006.08.079
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jpowsour.2014.05.052
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jpowsour.2013.07.051
– ident: e_1_2_8_2_1
  doi: 10.1149/1.1837386
– ident: e_1_2_8_19_1
  doi: 10.1016/j.electacta.2006.07.013
– ident: e_1_2_8_47_1
  doi: 10.1149/1.2198110
– ident: e_1_2_8_37_1
  doi: 10.1039/C4TA01810A
– ident: e_1_2_8_12_1
  doi: 10.1021/cm200899k
– ident: e_1_2_8_46_1
  doi: 10.1021/cm060729s
– ident: e_1_2_8_40_1
  doi: 10.1002/sia.740040204
– ident: e_1_2_8_25_1
  doi: 10.1002/aenm201300378
– ident: e_1_2_8_32_1
  doi: 10.1016/j.surfcoat.2017.09.015
– ident: e_1_2_8_15_1
  doi: 10.1039/C3TA14928E
– ident: e_1_2_8_27_1
  doi: 10.1039/C7RA03580B
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jpowsour.2010.02.011
– ident: e_1_2_8_48_1
  doi: 10.1016/j.ssi.2011.04.007
– ident: e_1_2_8_41_1
  doi: 10.1116/1.579868
– ident: e_1_2_8_14_1
  doi: 10.1021/jp308828p
– ident: e_1_2_8_51_1
  doi: 10.1002/sia.740180908
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.chemmater.5b01654
– ident: e_1_2_8_50_1
  doi: 10.1149/2.0261508jes
– ident: e_1_2_8_33_1
  doi: 10.1016/j.physc.2013.11.003
– ident: e_1_2_8_45_1
  doi: 10.1016/j.jpowsour.2016.03.070
– ident: e_1_2_8_49_1
  doi: 10.1038/srep08027
– ident: e_1_2_8_6_1
  doi: 10.1016/S0167-2738(00)00327-1
– ident: e_1_2_8_26_1
  doi: 10.1002/aenm.201401408
– ident: e_1_2_8_31_1
  doi: 10.1016/j.gee.2018.01.003
– ident: e_1_2_8_24_1
  doi: 10.1016/j.electacta.2012.11.120
– volume-title: Thin Film Coatings for Biomaterials and Biomedical Applications
  year: 2016
  ident: e_1_2_8_18_1
  contributor:
    fullname: Griesser H. J.
– volume: 53
  start-page: 45
  year: 2016
  ident: e_1_2_8_17_1
  publication-title: Chem. Commun.
  contributor:
    fullname: Bui H. V.
– ident: e_1_2_8_35_1
  doi: 10.1557/jmr.2019.299
– ident: e_1_2_8_3_1
  doi: 10.1038/nenergy.2016.141
– ident: e_1_2_8_36_1
  doi: 10.1016/S0013-4686(00)00725-8
– ident: e_1_2_8_39_1
  doi: 10.1016/j.jascer.2014.05.008
– ident: e_1_2_8_13_1
  doi: 10.1149/2.052203jes
– ident: e_1_2_8_20_1
  doi: 10.1016/j.electacta.2013.04.018
SSID ssj0001121283
Score 2.28566
Snippet Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi0.5Mn1.5O4 high‐voltage thin‐film...
Industrial‐oriented mid‐frequency alternating current (MF‐AC) magnetron sputtering technique is used to fabricate LiNi 0.5 Mn 1.5 O 4 high‐voltage thin‐film...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms AC magnetron sputtering
Alternating current
Annealing
Cathodes
Chemical composition
Crystal structure
Crystallization
Evolution
LiNi 0.5Mn 1.5O 4
Lithium-ion batteries
Li‐ion batteries
Magnetron sputtering
Morphology
Oxidation
Photoelectrons
Raman
Raman spectroscopy
Room temperature
Spectrum analysis
Spinel
Substrates
Temperature
Thin films
thin‐film cathodes
X‐ray photoelectron spectroscopy
Title AC Magnetron Sputtering: An Industrial Approach for High‐Voltage and High‐Performance Thin‐Film Cathodes for Li‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202002125
https://www.proquest.com/docview/2531290671
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86ELz4LU6n5CB4KmuSfnor-2CCk8FUvJWkaWSwdcNudy_e_Rv9S3xJ29WdBL0UmpK2JHnJ7z3e7_cQuibS8bgIiKVcR-rQjWcFjlBwIUJImySJyXYfjP2Hl6Db0zI5axZ_oQ-xDrhpyzD7tTZwLvJ2LRrK5WwC_p1JMqCaZQ6uguFwsFEdZCHwzEhxgmF6ls9cuxJutGl78w2bB1ONNn9iVnPo9Pf__7sHaK8EnDgqVsgh2kqzI7RjEj-T_Bh9RB085K9ZqkPieLwwdavhOLvFUYbruh44KrXHMYBcrJNDvt4_n-fTJWxHmGeyahrVPASsS4JCU38ynWFNNJzLNDfd7yfQfAefK8Q9wVc_QU_93mNnYJWlGayEAQS0AkXAEQEwFthUJqESTLlcCZuGPPSlx10vVTRNFHhzPtP0XCfwHOUyl9FEU1vZKWpk8yw9Q9hXkqSeSGyuQodIV4QB88JQgaslQ4CrTXRTzUu8KBQ44kJrmcZ6UOP1oDZRq5q2uLTEPKawyWhJe580ETUT9Mtb4qg7vFvfnf-l0wXapTr1xeRFtlBj-bZKL9F2LldXZn1-AxcH5n4
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oRPTitzg_cxA8FZukTVtvRR0bbmPgB95K2zQy2LrhtrsX7_6N_iW-pOuqJ0G8FJqSNOTlJb_3eO_3AM6pdESc-NRSriO160ZYvpMofNAkkTZNUxPt3rz3us_-za2myQnLXJiCH2LhcNOaYc5rreDaIX1ZsYbGcthHA89EGTB3GVYcgbtRZ3HwXuVmofjRkHGiagrL465dUjfa7PLnED-vpgpvfket5tppbP7DhLdgY445SVhskm1YyvIdWDWxn-lkF97Da9KJX_JMe8XJ_diUrsYb7YqEOalKe5BwTj9OEOcSHR_y-fbxNBpM8UQicS7Lpl6VikB0VVBsavQHQ6JzDUcym5ju7T42t_B3Bb8nmut78Ni4fbhuWvPqDFbKEQVavqJoiyAe820m00AlXLmxSmwWxIEnReyKTLEsVWjQeVxn6Dq-cJTLXc5Snd3K96GWj_LsAIinJM1EktqxChwq3STwuQgChdaWDBCx1uGiFEw0Lkg4ooJumUV6UaPFotbhuJRbNFfGScTwnNGs9h6tAzMS-mWUKLzptBZvh3_pdAZrzYdOO2q3undHsM50JIwJkzyG2vR1lp3A8kTOTs1m_QKx_uqm
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH84RfHitzidmoPgqaxJ-umtuI0Npwym4q20TSMD7Ybb7l68-zf6l_iSrq07CXopNCVpyMtLfu_x3u8BXFBhOVHsUUPallCuG8fwrFjig8axMGmS6Gj37tC9e_JabUWTU2bx5_wQpcNNaYY-r5WCT4RsVqShkXgdoX2ngwyYXYM1C7G4Ys_nfFB5WSh-1FycqJmO4XLbLJgbTdZcHmL5Zqrg5k_Qqm-dzvb_57sDWwvESYJ8i-zCSprtwbqO_Eym-_ARXJPb6DlLlU-cDCe6cDXeZ1ckyEhV2IMEC_JxgiiXqOiQr_fPx_HLDM8jEmWiaBpUiQhE1QTFps7o5ZWoTMOxSKe6e3-EzT38Xc7uicb6ATx02vfXXWNRm8FIOGJAw5MULRFEY57JROLLmEs7krHJ_Mh3hRPZTipZmkg051yu8nMtz7GkzW3OEpXbyg9hNRtn6REQVwqaOnFiRtK3qLBj3-OO70u0tYSPeLUOl4VcwklOwRHmZMssVIsalotah0YhtnChitOQ4SmjOO1dWgemBfTLKGHQuu2Vb8d_6XQOG4NWJ-z37m5OYJOpMBgdI9mA1dnbPD2F2lTMz_RW_QbmT-lM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AC+Magnetron+Sputtering%3A+An+Industrial+Approach+for+High%E2%80%90Voltage+and+High%E2%80%90Performance+Thin%E2%80%90Film+Cathodes+for+Li%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+interfaces&rft.au=Rikarte%2C+Jokin&rft.au=Madinabeitia%2C+I%C3%B1aki&rft.au=Baraldi%2C+Giorgio&rft.au=Fern%C3%A1ndez%E2%80%90Carretero%2C+Francisco+Jos%C3%A9&rft.date=2021-05-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=8&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202002125&rft.externalDBID=10.1002%252Fadmi.202002125&rft.externalDocID=ADMI202002125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon