Evaluation of the power law and patchiness regressions with regression diagnostics

We used regression diagnostics to evaluate the robustness of the least-squares regression method for estimating the power law and patchiness regression parameters for 3 data sets of insect counts, specifically for the Bemisia argentifolii Bellows and Perring, and the squash bug, Anasa tristis (De Ge...

Full description

Saved in:
Bibliographic Details
Published in:Journal of economic entomology Vol. 89; no. 6; pp. 1477 - 1484
Main Authors: Tonhasca, A. Jr. (UENF-CCTA, Brazil.), Palumbo, J.C, Byrne, D.N
Format: Journal Article
Language:English
Published: Lanham, MD Entomological Society of America 01-12-1996
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We used regression diagnostics to evaluate the robustness of the least-squares regression method for estimating the power law and patchiness regression parameters for 3 data sets of insect counts, specifically for the Bemisia argentifolii Bellows and Perring, and the squash bug, Anasa tristis (De Geer). Extreme values in the independent variable, x, and dependent variable, y, were detected with the leverage term, hi, and standardized residuals. es, respectively The assumption of homogeneity of variances was evaluated with plots of es against x for all regressions, and significant autocorrelations were tested with the Durbin-Watson statistic. For both techniques, we compared least-squares regression results for all data with regressions obtained after outlier data points were removed. We also calculated power law regressions excluding means (m) 2 and variances (s2) 4 to reduce possible bias resulting from small mean densities. Outlier data points did not have a significant effect on the power law regressions, but they had a strong influence on some patchiness regressions. The distribution of standardized residuals of some power law regressions were biased toward positive values for low mean densities, indicating underestimation of variances. Additionally, least-squares regression estimates for m greater than or equal to 2, s2 greater than or equal to 4 indicated a general increase in slopes for the power law. The distribution of standardized residuals for patchiness regressions indicated strong heteroscedasticity; therefore, the assumption of constant variance for y was not fulfilled. Our results show that suitability. of least-squares regression assumptions should be considered whenever pest management decisions are based on the power law or patchiness regressions
AbstractList We used regression diagnostics to evaluate the robustness of the least-squares regression method for estimating the power law and patchiness regression parameters for 3 data sets of insect counts, specifically for the Bemisia argentifolii Bellows and Perring, and the squash bug, Anasa tristis (De Geer). Extreme values in the independent variable, x, and dependent variable, y, were detected with the leverage term, hi, and standardized residuals. es, respectively The assumption of homogeneity of variances was evaluated with plots of es against x for all regressions, and significant autocorrelations were tested with the Durbin-Watson statistic. For both techniques, we compared least-squares regression results for all data with regressions obtained after outlier data points were removed. We also calculated power law regressions excluding means (m) 2 and variances (s2) 4 to reduce possible bias resulting from small mean densities. Outlier data points did not have a significant effect on the power law regressions, but they had a strong influence on some patchiness regressions. The distribution of standardized residuals of some power law regressions were biased toward positive values for low mean densities, indicating underestimation of variances. Additionally, least-squares regression estimates for m greater than or equal to 2, s2 greater than or equal to 4 indicated a general increase in slopes for the power law. The distribution of standardized residuals for patchiness regressions indicated strong heteroscedasticity; therefore, the assumption of constant variance for y was not fulfilled. Our results show that suitability. of least-squares regression assumptions should be considered whenever pest management decisions are based on the power law or patchiness regressions
We used regression diagnostics to evaluate the robustness of the least-squares regression method for estimating the power law and patchiness regression parameters for 3 data sets of insect counts, specifically for the Bemisia argentifolii Bellows & Perring, and the squash bug, Anasa tristis (De Geer). Extreme values in the independent variable, x, and dependent variable, y, were detected with the leverage term, h sub(i), and standardized residuals, e sub(s), respectively. The assumption of homogeneity of variances was evaluated with plots of e sub(s) against x for all regressions, and significant autocorrelations were tested with the Durbin-Watson statistic. For both techniques, we compared least-squares regression results for all data with regressions obtained after outlier data points were removed. We also calculated power law regressions excluding means (m) <2 and variances (s super(2)) <4 to reduce possible bias resulting from small mean densities. Outlier data points did not have a significant effect on the power law regressions, but they had a strong influence on some patchiness regressions. The distribution of standardized residuals of some power law regressions were biased toward positive values for low mean densities, indicating underestimation of variances. Additionally, least-squares regression estimates for m greater than or equal to 2, s super(2) greater than or equal to 4 indicated a general increase in slopes for the power law. The distribution of standardized residuals for patchiness regressions indicated strong heteroscedasticity; therefore, the assumption of constant variance for y was not fulfilled. Our results show that suitability of least-squares regression assumptions should be considered whenever pest management decisions are based on the power law or patchiness regressions.
Author Palumbo, J.C
Tonhasca, A. Jr. (UENF-CCTA, Brazil.)
Byrne, D.N
Author_xml – sequence: 1
  fullname: Tonhasca, A. Jr. (UENF-CCTA, Brazil.)
– sequence: 2
  fullname: Palumbo, J.C
– sequence: 3
  fullname: Byrne, D.N
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2525689$$DView record in Pascal Francis
BookMark eNpNkEtLAzEUhYNUsFaXblxlIe6mzWOSmSyl1AcUBLXgLtzJZNop06QmU4v_3pQWcXXg8N3D5btEA-edReiGkjElik_W1k5KNZZjmhfFGRpSxcuMKfo5QENCGMtIrvgFuoxxTQiVjJIhept9Q7eDvvUO-wb3K4u3fm8D7mCPwdV4C71Ztc7GiINdhpQJjXjf9qt_Ba5bWDof-9bEK3TeQBft9SlHaPE4-5g-Z_PXp5fpwzwzXIg-q40hZUVAQSWNslAowkhdVkYoaThLDze2IKmWhpU51EwYUxFpCtlwK0HyEbo_7m6D_9rZ2OtNG43tOnDW76KmohRcKpLA7Aia4GMMttHb0G4g_GhK9MGcTuZ0qbTUB3OJvzsNQzTQNQGcaePfERNMyFIl7PaINeA1LENCFu-q4FTljP8Cjlx6FQ
CODEN JEENAI
CitedBy_id crossref_primary_10_1007_s10144_013_0417_y
crossref_primary_10_1603_0046_225X_29_6_1216
crossref_primary_10_3923_jbs_2007_1239_1243
ContentType Journal Article
Copyright 1997 INIST-CNRS
Copyright_xml – notice: 1997 INIST-CNRS
DBID FBQ
IQODW
AAYXX
CITATION
7SN
7SS
C1K
DOI 10.1093/jee/89.6.1477
DatabaseName AGRIS
Pascal-Francis
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Agriculture
EISSN 1938-291X
EndPage 1484
ExternalDocumentID 10_1093_jee_89_6_1477
2525689
US9731942
GroupedDBID ---
-JH
-~X
0R~
186
1TH
29K
3V.
4.4
48X
53G
5GY
5WD
79B
7X7
7XC
88E
8FE
8FH
8FI
8FJ
8G5
AABJS
AABMN
AACFU
AAESY
AAIMJ
AAIYJ
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPSS
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABCQX
ABEUO
ABIXL
ABJNI
ABPPZ
ABPTD
ABQLI
ABSAR
ABSMQ
ABUWG
ABWST
ABXZS
ACBTR
ACFRR
ACGFS
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADEIU
ADGZP
ADHKW
ADHSS
ADHZD
ADIPN
ADOJD
ADORX
ADOYD
ADQLU
ADRIX
ADRTK
ADVEK
ADYVW
AEDJY
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AEPYG
AETBJ
AEWNT
AFFIJ
AFFNX
AFFZL
AFGWE
AFIYH
AFKRA
AFNWH
AFOFC
AFRAH
AFXEN
AFYAG
AGINJ
AGQXC
AGSYK
AHMBA
AI.
AIKOY
AJEEA
AKPMI
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
AQDSO
ARIXL
ASAOO
ATDFG
AVWKF
AXUDD
AYOIW
AZQEC
AZQFJ
BAYMD
BBNVY
BCRHZ
BENPR
BEYMZ
BHONS
BHPHI
BPHCQ
BQDIO
BSWAC
BVXVI
BYORX
CAG
CASEJ
CCPQU
CDBKE
COF
CS3
CXTWN
D-I
DAKXR
DC7
DFGAJ
DILTD
DPPUQ
DU5
DWQXO
EBS
EJD
ELUNK
F5P
FBQ
FHSFR
FLUFQ
FOEOM
FQBLK
FYUFA
GAUVT
GJXCC
GNUQQ
GUQSH
HAR
HCIFZ
HMCUK
H~9
IAO
J21
KBUDW
KOP
KSI
KSN
L7B
LK8
M1P
M2O
M7P
MBTAY
MVM
NHB
NLBLG
NOMLY
NVLIB
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OWPYF
P2P
PAFKI
PEELM
PQ0
PQQKQ
PROAC
PSQYO
Q5J
Q5Y
RBO
REY
ROL
ROX
ROZ
RUSNO
RXO
TCN
TLC
TN5
TWZ
UKHRP
UPT
VH1
WH7
XOL
YAYTL
YKOAZ
YQT
YXANX
ZCG
ZXP
~EF
~KM
08R
H13
IQODW
AAHBH
AARHZ
AAUAY
AAYXX
ABEJV
ABMNT
ABXVV
ADQBN
ALIPV
ATGXG
CITATION
7SN
7SS
C1K
ID FETCH-LOGICAL-c355t-dcc08b0a9ab6c9ea79020d8bc596c32002fe70a796c284ad25ccb06c76f3e6a63
ISSN 0022-0493
IngestDate Fri Oct 25 21:55:10 EDT 2024
Thu Nov 21 22:48:37 EST 2024
Sun Oct 29 17:08:24 EDT 2023
Wed Dec 27 19:20:40 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Methodology
Insecta
Cucurbitaceae
Regression analysis
Heteroptera
Anasa tristis
Pest
Vegetable crop
Coreidae
Arthropoda
Dicotyledones
Angiospermae
Spermatophyta
Cucumis melo
Invertebrata
Sampling
Power law
Population density
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c355t-dcc08b0a9ab6c9ea79020d8bc596c32002fe70a796c284ad25ccb06c76f3e6a63
Notes 9731942
U10
H10
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://academic.oup.com/jee/article-pdf/89/6/1477/19239637/jee89-1477.pdf
PQID 15853690
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_15853690
crossref_primary_10_1093_jee_89_6_1477
pascalfrancis_primary_2525689
fao_agris_US9731942
PublicationCentury 1900
PublicationDate 1996-12-01
PublicationDateYYYYMMDD 1996-12-01
PublicationDate_xml – month: 12
  year: 1996
  text: 1996-12-01
  day: 01
PublicationDecade 1990
PublicationPlace Lanham, MD
PublicationPlace_xml – name: Lanham, MD
PublicationTitle Journal of economic entomology
PublicationYear 1996
Publisher Entomological Society of America
Publisher_xml – name: Entomological Society of America
SSID ssj0016210
Score 1.5268899
Snippet We used regression diagnostics to evaluate the robustness of the least-squares regression method for estimating the power law and patchiness regression...
SourceID proquest
crossref
pascalfrancis
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 1477
SubjectTerms Aleyrodidae
Anasa tristis
BEMISIA
Bemisia argentifolii
Biological and medical sciences
CONTROL DE INSECTOS
Coreidae
ECHANTILLONNAGE
Fundamental and applied biological sciences. Psychology
Generalities
INSECTICIDAS
INSECTICIDE
LUTTE ANTIINSECTE
METHODE STATISTIQUE
METODOS ESTADISTICOS
MUESTREO
Phytopathology. Animal pests. Plant and forest protection
Protozoa. Invertebrates
Title Evaluation of the power law and patchiness regressions with regression diagnostics
URI https://search.proquest.com/docview/15853690
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa6oErtAbXbVmwp1Ieql1XAeXmT41KyQgjRqmQr1IvlV0AVJKt9HPrvO147j9UeCgcuUTJKnGjm02Q8_jyD0BdBwlhG2vd0wKUXKRJ7XHPuKRH5ouAwzV13azi_Hl3dJGdZlLXdRlvZs1oaZGBrs3P2CdZuBgUBnIPN4QhWh-Oj7J415bvr5f-ZaYQ2vHfc3xn43jvLdZ_rW8uCLd0et1ZgcrKGgresyfDb8at2W5qH8NuqHjay83lV3vGFtCnb4UXD__0Bn_Yg7FpPm549_evSqmduXUi5XXm0Q-hoNwXAZCPsOlbbG8gBqOsl_ci1btHu0naJ2_LmttLVH8NImiTpMT1uH-zWzb76zibTy0uWZzd5D-0G4HLA4-2OT7OLX82KEg18UleONx_q6q3CK07gBSfN8BvxSa_glWHLGpXdF7bTydZPex2J5G_QnjMBHlvbv0UvdNlHr8e3c1dGRffRy9_V2iDv0M8WD7gqMOABr_GAAQ8Y8IBbPOAOHrDBQ0eAO3h4j6aTLP927rk-Gp6EaHLpKSlJIghPuaAy1XyUwhxBJULGKZWhYekUekRATCUEK1wFsZSCUDmiRagpp-EHtFNWpd5HWAQJ9YUuEhVTuJMIpZMwLFQcKUqJVAP0tdYem9lyKczSHEIGamZJyigzah6gPuiWcdDNgk2vTQO1NAoG6HBD180YQQyheZIO0Oda9wzcoFnb4qWuVgvmw7Q3pCn5-N87DtCrFsGf0M5yvtKHqLdQqyOHmX-b5H4X
link.rule.ids 315,782,786,27933,27934
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+power+law+and+patchiness+regressions+with+regression+diagnostics&rft.jtitle=Journal+of+economic+entomology&rft.au=Tonhasca%2C+A+Jr&rft.au=Palumbo%2C+J+C&rft.au=Byrne%2C+D+N&rft.date=1996-12-01&rft.issn=0022-0493&rft.volume=89&rft.issue=6&rft.spage=1477&rft.epage=1484&rft_id=info:doi/10.1093%2Fjee%2F89.6.1477&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0493&client=summon