Phytotoxic Effect on Corn and Soybean Due Addition of Nanoiron to the Soil
Due to its low cost and high reactivity, nanoiron has been widely used for remediating contaminated soils. However, accumulation of large amounts of iron in the soil may be toxic for plants. This research aims at investigating the possible phytotoxic effects of the presence of nanoparticles of iron...
Saved in:
Published in: | Water, air, and soil pollution Vol. 231; no. 1 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
2020
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Due to its low cost and high reactivity, nanoiron has been widely used for remediating contaminated soils. However, accumulation of large amounts of iron in the soil may be toxic for plants. This research aims at investigating the possible phytotoxic effects of the presence of nanoparticles of iron in the soil, with emphasis on seedling emergence and initial plant growth of soybean and corn. Nanoiron concentrations of 0, 15, and 30 g/kg of soil were examined. For each concentration, 15 samples each of soybean and corn were studied. The plants were grown in vases with 1 kg of soil in a greenhouse. During the experiment, phytotoxicity symptoms such as inhibition of seedling emergence and initial plant growth and plant color changes were analyzed. Twenty-four days after sowing, the plants were harvested and measurements were taken of the root lengths, the aerial lengths, the total dry mass, and the retention of iron by the plants. While all corn plants emerged at the same time, plants under nanoiron treatments showed several symptoms of phytotoxicity, including necrosis, reddish coloration, and subsequent death. In soybean, the 30 g/kg nanoiron concentration completely inhibited seedling emergence. It was concluded that the addition of nanoiron to the soil causes phytotoxicity in soybean and corn plants, affecting seedling emergence, initial growth, and even causing plant death. The symptom differences observed between corn and soybean in relation to nanoiron exposure have become evident in the experiment and show that the same concentration of nanoiron can affect plant species differently. |
---|---|
AbstractList | Due to its low cost and high reactivity, nanoiron has been widely used for remediating contaminated soils. However, accumulation of large amounts of iron in the soil may be toxic for plants. This research aims at investigating the possible phytotoxic effects of the presence of nanoparticles of iron in the soil, with emphasis on seedling emergence and initial plant growth of soybean and corn. Nanoiron concentrations of 0, 15, and 30 g/kg of soil were examined. For each concentration, 15 samples each of soybean and corn were studied. The plants were grown in vases with 1 kg of soil in a greenhouse. During the experiment, phytotoxicity symptoms such as inhibition of seedling emergence and initial plant growth and plant color changes were analyzed. Twenty-four days after sowing, the plants were harvested and measurements were taken of the root lengths, the aerial lengths, the total dry mass, and the retention of iron by the plants. While all corn plants emerged at the same time, plants under nanoiron treatments showed several symptoms of phytotoxicity, including necrosis, reddish coloration, and subsequent death. In soybean, the 30 g/kg nanoiron concentration completely inhibited seedling emergence. It was concluded that the addition of nanoiron to the soil causes phytotoxicity in soybean and corn plants, affecting seedling emergence, initial growth, and even causing plant death. The symptom differences observed between corn and soybean in relation to nanoiron exposure have become evident in the experiment and show that the same concentration of nanoiron can affect plant species differently. Due to its low cost and high reactivity, nanoiron has been widely used for remediating contaminated soils. However, accumulation of large amounts of iron in the soil may be toxic for plants. This research aims at investigating the possible phytotoxic effects of the presence of nanoparticles of iron in the soil, with emphasis on seedling emergence and initial plant growth of soybean and corn. Nanoiron concentrations of 0, 15, and 30 g/kg of soil were examined. For each concentration, 15 samples each of soybean and corn were studied. The plants were grown in vases with 1 kg of soil in a greenhouse. During the experiment, phytotoxicity symptoms such as inhibition of seedling emergence and initial plant growth and plant color changes were analyzed. Twenty-four days after sowing, the plants were harvested and measurements were taken of the root lengths, the aerial lengths, the total dry mass, and the retention of iron by the plants. While all corn plants emerged at the same time, plants under nanoiron treatments showed several symptoms of phytotoxicity, including necrosis, reddish coloration, and subsequent death. In soybean, the 30 g/kg nanoiron concentration completely inhibited seedling emergence. It was concluded that the addition of nanoiron to the soil causes phytotoxicity in soybean and corn plants, affecting seedling emergence, initial growth, and even causing plant death. The symptom differences observed between corn and soybean in relation to nanoiron exposure have become evident in the experiment and show that the same concentration of nanoiron can affect plant species differently. |
ArticleNumber | 12 |
Audience | Academic |
Author | Reginatto, Cleomar Thomé, Antônio Thomé, Gladis Cleci Hermes de Souza, Tayene Oltramari |
Author_xml | – sequence: 1 givenname: Antônio orcidid: 0000-0002-1247-7434 surname: Thomé fullname: Thomé, Antônio email: thome@upf.br organization: Graduate Program of Civil and Environmental Engineering, University of Passo Fundo – sequence: 2 givenname: Tayene Oltramari surname: de Souza fullname: de Souza, Tayene Oltramari organization: Biology Undergraduate Course, University of Passo Fundo – sequence: 3 givenname: Gladis Cleci Hermes surname: Thomé fullname: Thomé, Gladis Cleci Hermes organization: Biology Undergraduate Course, University of Passo Fundo – sequence: 4 givenname: Cleomar surname: Reginatto fullname: Reginatto, Cleomar organization: Graduate Program of Civil and Environmental Engineering, University of Passo Fundo |
BookMark | eNp1kMtOAyEUhompiW31AdyRuKZymYFh2dR6S6Mm6powDLSYCpWhiX17acbElbCAnPN_B_JNwCjEYAG4JHhGMBbXPSFUYISJRBVrKsRPwJjUgiEqGR2BMcaVRFwKeQYmff-By5KNGIPHl80hxxy_vYFL56zJMAa4iClAHTr4Gg-t1QHe7C2cd53PvnSjg086RJ_KPUeYN7bk_PYcnDq97e3F7zkF77fLt8U9Wj3fPSzmK2RYXWdknG6rWvCmNc4SR7XgneauJUbTrm250VZKU5qk0VbYtuKSc9FqXEp1gy2bgqth7i7Fr73ts_qI-xTKk4oyRkTDRC1Lajak1nprlQ8u5qRN2Z399KbIc77U55wwwplsaAHIAJgU-z5Zp3bJf-p0UASro2M1OFbFsTo6VrwwdGD6kg1rm_6-8j_0A6O-gNk |
CitedBy_id | crossref_primary_10_1016_j_plana_2022_100017 crossref_primary_10_1016_j_envpol_2023_122683 |
Cites_doi | 10.1016/j.scitotenv.2009.05.033 10.1016/j.watres.2009.08.051 10.1007/s11270-014-2243-z 10.1016/j.plaphy.2016.04.024 10.1007/s11356-015-5850-3 10.1021/es101786y 10.1021/es9031198 10.1371/journal.pone.0122884 10.1016/j.jhazmat.2010.11.020 10.1016/j.jhazmat.2010.10.113 10.1016/j.envres.2018.01.030 10.1016/j.scitotenv.2016.04.197 10.1016/j.jhazmat.2013.11.067 10.1016/j.ecoenv.2011.11.030 10.1016/j.desal.2010.09.051 10.1021/es4043462 10.1016/j.ecoenv.2015.07.024 10.1039/b805998e 10.1021/es048038p 10.1007/s11356-017-8597-1 10.1021/es903744f 10.1186/gb-2002-3-8-reviews1024 10.1002/etc.58 10.1016/j.chemosphere.2014.03.109 10.1007/s10646-016-1674-2 10.1264/jsme2.me11126 10.1093/aob/mcl110 10.1007/978-3-319-76708-6_13 10.1128/aem.01009-10 10.1016/j.scitotenv.2008.02.004 10.1016/j.scitotenv.2012.11.073 10.1021/es800408u 10.1016/j.ibiod.2016.09.027 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2020 COPYRIGHT 2020 Springer Water, Air, and Soil Pollution is a copyright of Springer, (2020). All Rights Reserved. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020 – notice: COPYRIGHT 2020 Springer – notice: Water, Air, and Soil Pollution is a copyright of Springer, (2020). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7QH 7T7 7TV 7U7 7UA 7WY 7WZ 7X2 7X7 7XB 87Z 88E 88I 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ATCPS AZQEC BENPR BEZIV BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG FYUFA F~G GHDGH GNUQQ H96 H97 HCIFZ K60 K6~ K9. L.- L.G M0C M0K M0S M1P M2P P64 PATMY PCBAR PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U |
DOI | 10.1007/s11270-019-4384-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Business Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ABI/INFORM Global Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database One Business (ProQuest) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Aqualine ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection Pollution Abstracts ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Agricultural Science Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1573-2932 |
ExternalDocumentID | A613163982 10_1007_s11270_019_4384_6 |
GrantInformation_xml | – fundername: CNPq grantid: 400646/2014-5 |
GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 4P2 53G 5QI 5VS 67M 67Z 6NX 78A 7WY 7X2 7X7 7XC 88E 88I 8C1 8CJ 8FE 8FH 8FI 8FJ 8FL 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BKSAR BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP D1J D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EIOEI EJD EPAXT ESBYG ESTFP F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IFM IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- K60 K6~ KDC KOV KOW L8X LAK LLZTM M0C M0K M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PF0 PQBIZ PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XJT Y6R YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z8M Z8N Z8O Z8P Z8Q Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A~ ~EX ~KM AACDK AAEOY AAHBH AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFEUZ AGQEE AIGIU ALIPV CITATION H13 PQBZA 7QH 7T7 7TV 7U7 7UA 7XB 8FD 8FK C1K F1W FR3 H96 H97 K9. L.- L.G P64 PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c355t-cfab45768bcfe1f2a76da6fb1ca2dbb6cae99cbcf18ae7eb469667ba0bcf580e3 |
IEDL.DBID | AEJHL |
ISSN | 0049-6979 |
IngestDate | Fri Oct 18 23:32:17 EDT 2024 Tue Nov 12 23:25:09 EST 2024 Thu Nov 21 21:24:51 EST 2024 Sat Dec 16 12:05:04 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Initial plant growth Nanoremediation Toxicity Contaminant Iron retention |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-cfab45768bcfe1f2a76da6fb1ca2dbb6cae99cbcf18ae7eb469667ba0bcf580e3 |
ORCID | 0000-0002-1247-7434 |
PQID | 2331783759 |
PQPubID | 54157 |
ParticipantIDs | proquest_journals_2331783759 gale_infotracacademiconefile_A613163982 crossref_primary_10_1007_s11270_019_4384_6 springer_journals_10_1007_s11270_019_4384_6 |
PublicationCentury | 2000 |
PublicationDate | 1-2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 1-2020 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal of Environmental Pollution |
PublicationTitle | Water, air, and soil pollution |
PublicationTitleAbbrev | Water Air Soil Pollut |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Nano Iron s.r.o. (2014) Nanoiron, Future technology. http://www.nanoiron.cz/en/nanofer-25s. Accessed 10 May 2019. Scott, T. B., Popescu, L. C., Crane, R. A., & Noubactep, C. (2011). Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. Journal of Hazardous Materials.https://doi.org/10.1016/j.jhazmat.2010.10.113. TedescoMJGianelloCBissaniCABohnenHVolkweissSJAnalysis of soil, plants and other materials19952Porto AlegreSoil Department of the Federal University of Rio Grande do Sul(in Portuguese) Kirschiling, T. L., Gregory, K. B., Minkley, E. G. J. R., Lowry, G. V., & Tilton, R. D. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmental Science & Technology.https://doi.org/10.1021/es903744f. Connolly, E. L., Guerinot, M. L. (2002) Iron stress in plants. Genome Biol. https://doi.org/10.1186/gb-2002-3-8-reviews1024 Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring.https://doi.org/10.1039/b805998e. Gil-DíazMLoboMCFaisalMSaquibQAlatarAAl-KhedhairyAPhytotoxicity of nanoscale zerovalent iron (nZVI) in remediation strategiesPhytotoxicity of nanoparticles2018ChamSpringer10.1007/978-3-319-76708-6_13 PardoFSantosARomeroAFate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: a column studyScience of the Total Environment.2016566–5674804881:CAS:528:DC%2BC28XoslaisbY%3D10.1016/j.scitotenv.2016.04.197 Diao, M., & Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Research. https://doi.org/10.1016/j.watres.2009.08.051. Reginatto C. (2017) Evaluation of the transport process and remediation with nano iron of zero valence in a residual soil contaminated with hexavalent chromium. . Dissertation, Federal University of Rio Grande do Sul, Brazil http://hdl.handle.net/10183/174434. Accessed 18 June 2018 (in Portuguese). Thomé, A., Reddy, K. R., Reginatto, C., & Cecchin, I. (2015). Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives. Water Air and Soil Pollution.https://doi.org/10.1007/s11270-014-2243-z. Kumar, N., Labille, J., Bossa, N., Auffan, M., Doumenq, P., Rose, J., & Bottero, J. Y. (2017). Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances. Environmental Science and Pollution Research.https://doi.org/10.1007/s11356-017-8597-1. Du, W., Tan, W., Peralta-Videa, J. R., Gardea-Torresdey, J. L., Ji, R., Yin, Y., & Guo, H. (2017). Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiology and Biochemistry.https://doi.org/10.1016/j.plaphy.2016.04.024. Siqueira-Silva, A. I., Silva, L. C., Azevedo, A. A., & Oliva, M. A. (2012). Iron plaque formation and morphoanatomy of roots from species of resting subjected to excess iron. Ecotoxicology and Environmental Safety.https://doi.org/10.1016/j.ecoenv.2011.11.030. Fang, Z., Chen, J., Qiu, X., Qiu, X., Cheng, W., & Zhu, L. (2011). Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination.https://doi.org/10.1016/j.desal.2010.09.051. Li Z, Greden K, Alvarez PJJ, Gregory KB, Lowry GV (2010) Adsorbed polymer and non-limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environmental Science & Technology.https://doi.org/10.1021/es9031198. Kim, J. H., Lee, Y., Kim, E. J., Gu, S., Sohn, E. J., Seo, Y. S., An, Y. J., & Chang, Y. S. (2014). Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environmental Science & Technology.https://doi.org/10.1021/es4043462. Libralato, G., Devoti, A. C., Zanella, M., Sabbiini, E., Mičetić, I., Manodori, L., Pigozzo, A., Manenti, S., Groppi, F., & Ghirardini, A. V. (2016). Phytotoxicity of ionic, micro and nano-sized iron in three plant species. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2015.07.024. Sevcu, A., El-Themsa, Y. S., Joner, E. J., & Cernik, M. (2011). Oxidative stress induced in microorganisms by zero-valent Iron nanoparticles. Microbes and Environments.https://doi.org/10.1264/jsme2.me11126. Li, X., Yang, Y., Gao, B., & Zhang, M. (2015). Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS One. https://doi.org/10.1371/journal.pone.0122884. Katsenovich, Y. P., & Miralles-Wilhelm, F. R. (2009). Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils. Science of The Total Environment.https://doi.org/10.1016/j.scitotenv.2009.05.033. Peralta-Videa, J. R., Zhao, L., Lopez-Moreno, M. L., Rosa, G., Hong, J., & Gardea-Torresdey, J. L. (2011). Nanomaterials and the environment: a review for the biennium 2008–2010. Journal of Hazardous Materials.https://doi.org/10.1016/j.jhazmat.2010.11.020. Cecchin, I., Reddy, K. R., Thomé, A., Tessaro, E. F., & Schnaid, F. (2017). Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. International Biodeterioration & Biodegradation.https://doi.org/10.1016/j.ibiod.2016.09.027. FAO – Food and Agriculture Organizations of the United Nations (2018). Production/Yield quantities of Soybean and Maize in World. http//:www.fao.org/faostat. Accessed 24 Feb 2019. Wang, J., Fang, Z., Cheng, W., Tsang, P. E., & Zhao, D. (2016). Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Ecotoxicology.https://doi.org/10.1007/s10646-016-1674-2. JiangDGuangmingZDanlianHMingCChenZChaoHJiaWRemediation of contaminated soils by enhanced nanoscale zero valent ironEnvironmental Research20181632172271:CAS:528:DC%2BC1cXjtFCnu7w%3D10.1016/j.envres.2018.01.030 Ma, X., Gurung, A., & Deng, Y. (2013). Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Science of the Total Environment.https://doi.org/10.1016/j.scitotenv.2012.11.073. Liou, Y., Lo, S. L., Lin, C. J., Hu, C. Y., Kuan, W. H., & Weng, S. (2006). Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: effects of H 2 -reducing pretreatment and copper deposition. Environmental Science & Technology.https://doi.org/10.1021/es048038p. Olson, M. R., Blotevogel, J., Borch, T., Petersen, M. A., Royer, R. A., & Sale, T. C. (2014). Long-term potential of in situ chemical reduction for treatment of polychlorinated biphenyls in soils. Chemosphere.https://doi.org/10.1016/j.chemosphere.2014.03.109. Kim, J. Y., Park, H. J., Lee, C., Nelson, K. L., Sedlak, D. L., & Yoon, J. (2010). Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous iron. Applied and. Environmental Microbiology.https://doi.org/10.1128/aem.01009-10. Chen, R. F., Ren, F. S., Gu, P., Dong, X. Y., Du, C. W., & Ma, J. F. (2006). Response of rice (Oryza sativa) with root surface iron plaque under aluminium stress. Annals of Botany.https://doi.org/10.1093/aob/mcl110. Xiu, Z. M., Gregory, K. B., Lowry, G. V., & Alvarez, P. J. J. (2010). Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environmental Science & Technology. https://doi.org/10.1021/es101786y. Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y. C., Braam, J., & Alvarez, P. J. J. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry.https://doi.org/10.1002/etc.58. Han, Y., Shi, N., Wang, H., Pan, X., Fang, H., & Yu, Y. (2015). Nanoscale zerovalent iron-mediated degradation of DDT in soil. Environmental Science and Pollution Research.https://doi.org/10.1007/s11356-015-5850-3. Trujillo-Reyes, J., Peralta-Videa, J. R., Majumdar, S., Botez, C. E., & Gardea-Torresdey, J. L. (2014). Exposure studies of core–shell Fe/Fe3O4 and cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? Journal of Hazardous Materials.https://doi.org/10.1016/j.jhazmat.2013.11.067. Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental Science & Technology.https://doi.org/10.1021/es800408u. Liu, H., Zhang, J., Christie, P., & Zhang, F. (2008). Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2008.02.004. D Jiang (4384_CR10) 2018; 163 4384_CR24 4384_CR23 4384_CR25 4384_CR20 4384_CR22 4384_CR21 4384_CR28 F Pardo (4384_CR26) 2016; 566–567 4384_CR27 4384_CR29 4384_CR6 4384_CR5 4384_CR4 4384_CR3 4384_CR9 4384_CR7 4384_CR13 4384_CR35 4384_CR12 4384_CR34 4384_CR15 4384_CR37 4384_CR14 4384_CR36 4384_CR31 M Gil-Díaz (4384_CR8) 2018 4384_CR30 4384_CR11 4384_CR33 4384_CR2 4384_CR17 4384_CR1 4384_CR16 4384_CR19 4384_CR18 MJ Tedesco (4384_CR32) 1995 |
References_xml | – ident: 4384_CR11 doi: 10.1016/j.scitotenv.2009.05.033 – ident: 4384_CR4 doi: 10.1016/j.watres.2009.08.051 – ident: 4384_CR33 doi: 10.1007/s11270-014-2243-z – ident: 4384_CR5 doi: 10.1016/j.plaphy.2016.04.024 – ident: 4384_CR9 doi: 10.1007/s11356-015-5850-3 – ident: 4384_CR36 doi: 10.1021/es101786y – ident: 4384_CR18 doi: 10.1021/es9031198 – ident: 4384_CR19 doi: 10.1371/journal.pone.0122884 – ident: 4384_CR27 doi: 10.1016/j.jhazmat.2010.11.020 – ident: 4384_CR29 doi: 10.1016/j.jhazmat.2010.10.113 – volume: 163 start-page: 217 year: 2018 ident: 4384_CR10 publication-title: Environmental Research doi: 10.1016/j.envres.2018.01.030 contributor: fullname: D Jiang – volume: 566–567 start-page: 480 year: 2016 ident: 4384_CR26 publication-title: Science of the Total Environment. doi: 10.1016/j.scitotenv.2016.04.197 contributor: fullname: F Pardo – ident: 4384_CR34 doi: 10.1016/j.jhazmat.2013.11.067 – ident: 4384_CR24 – ident: 4384_CR31 doi: 10.1016/j.ecoenv.2011.11.030 – ident: 4384_CR6 doi: 10.1016/j.desal.2010.09.051 – ident: 4384_CR13 doi: 10.1021/es4043462 – ident: 4384_CR20 doi: 10.1016/j.ecoenv.2015.07.024 – ident: 4384_CR37 doi: 10.1039/b805998e – ident: 4384_CR21 doi: 10.1021/es048038p – ident: 4384_CR15 doi: 10.1007/s11356-017-8597-1 – ident: 4384_CR14 doi: 10.1021/es903744f – ident: 4384_CR3 doi: 10.1186/gb-2002-3-8-reviews1024 – ident: 4384_CR17 doi: 10.1002/etc.58 – ident: 4384_CR28 – ident: 4384_CR25 doi: 10.1016/j.chemosphere.2014.03.109 – volume-title: Analysis of soil, plants and other materials year: 1995 ident: 4384_CR32 contributor: fullname: MJ Tedesco – ident: 4384_CR35 doi: 10.1007/s10646-016-1674-2 – ident: 4384_CR30 doi: 10.1264/jsme2.me11126 – ident: 4384_CR2 doi: 10.1093/aob/mcl110 – volume-title: Phytotoxicity of nanoparticles year: 2018 ident: 4384_CR8 doi: 10.1007/978-3-319-76708-6_13 contributor: fullname: M Gil-Díaz – ident: 4384_CR12 doi: 10.1128/aem.01009-10 – ident: 4384_CR22 doi: 10.1016/j.scitotenv.2008.02.004 – ident: 4384_CR23 doi: 10.1016/j.scitotenv.2012.11.073 – ident: 4384_CR16 doi: 10.1021/es800408u – ident: 4384_CR1 doi: 10.1016/j.ibiod.2016.09.027 – ident: 4384_CR7 |
SSID | ssj0000987 |
Score | 2.3271792 |
Snippet | Due to its low cost and high reactivity, nanoiron has been widely used for remediating contaminated soils. However, accumulation of large amounts of iron in... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
SubjectTerms | Atmospheric Protection/Air Quality Control/Air Pollution Climate Change/Climate Change Impacts Coloration Colour Corn Earth and Environmental Science Emergence Environment Environmental monitoring Hydrogeology Iron Nanoparticles Necrosis Phytotoxicity Plant growth Plant species Planting Seedlings Soil Soil contamination Soil investigations Soil pollution Soil remediation Soil Science & Conservation Soils Soybean Soybeans Symptoms Vegetables Water Quality/Water Pollution |
Title | Phytotoxic Effect on Corn and Soybean Due Addition of Nanoiron to the Soil |
URI | https://link.springer.com/article/10.1007/s11270-019-4384-6 https://www.proquest.com/docview/2331783759 |
Volume | 231 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED7W5GV7aLtsYdnaoofBYEMjkW3ZegxNQghlDLJB8iQkWWKhwyqJA81_35Nj1_v5sD0ZrEMyd9LddzrrE8Bbo6MsT6KYikQnNDbMUOHSEU0txhZuTWKH1SW2y_TTKptMA00Oe9y6KG4_NhXJylG3Z91CjRQzX0HjKIspP4Euhp4E53Z3PF3Mb1r_K7IjU2YsKBepaGqZf-rkp2j0q0_-rThaxZzZ2f987Tmc1giTjI9T4jk8sUUPnv3AO9iD_rQ93oai9frevYDF52-H0pf-fmPIkdeY-IJc-21BVJGTpT9oqwoy2VsyzvPqby_iHUEX7UN_pPQEASXKbb6_hK-z6ZfrOa1vW6AGMUdJjVM6DtmHNs6OHFMpzxV3emQUy7XmRlkhDDaOMmVTqzGv5jzVaoivkmxooz50Cl_YV0AwxRoyrW2OHiI2KlYI2xwCSZa41KEbGcD7Ruvy7kiqIVv65KA5iZqTQXOSD-BdsIsMC67cKqPqcwM4VKCukmMEJAgqRcYGcNGYTtYrcSdZhAgJs_BEDOBDY6u2-a_Dvv4n6TfwlIVEvNqbuYBOud3bSzjZ5furenqG52q9njwAIeLgAg |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC58HFYP6vrA8bU5CIJLYKY7ne4cB53xsa4IzsLeQpJOWGHpyEwP6L-30tNN-zzotROSUElVfdWV-gJwaHSc5UnMqEh0QpmJDBUu7dHUom_h1iS2Wz1ie5te_81OB4EmJ25qYarb7k1KsrLUbbFbSJJi6CsoizNG-TwsMsEZHuXF_sXobNgaYJHNqDKZoFykoklmvjfIC3f02ii_yY5WTme4-qXlrsFKjTFJf3YovsOcLdZh-Rnz4DpsDdoCN-xaa_hkAy5v_j2WvvQPd4bMmI2JL8iJHxdEFTm59Y_aqoKcTi3p53l134t4R9BI-zAeKT1BSIn97v5vwp_hYHRyTuv3FqhB1FFS45RmIf7Qxtmei1TKc8Wd7hkV5Vpzo6wQBht7mbKp1RhZc55q1cVPSda18RYsFL6w20AwyOpGWtscbQQziikEbg6hZJS41KEh6cBxI3Z5P6PVkC2BcpCcRMnJIDnJO3AUNkYGlSvHyqi6cgCnCuRVso-QBGGlyKIO7DV7J2tdnMgoRoyEcXgiOvCz2au2-cNpdz7V-wd8Ox_9vpJXF9e_dmEpCmF59admDxbK8dTuw_wknx7UZ_UJjzviQA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD5UhaIP2nrB9dLmoVCoBHdnMpnJkyzuLtaKCLbQt5ArFcpEdmdB_70nc2HaWh9KXychCTnJyffNyfkC8MHotLBZyqjIdEaZSQwVPh_R3OHZwp3J3LB-xPY2v_5eTKZRJuesy4Wpb7t3IckmpyGqNJXV6b31p33iWwyYIg0WlKUFo3wF1hgSGVzoa-Pp5cVV74xF0chmMkG5yEUX2PxbI78dTX866GeR0voAmm3999DfwGaLPcm4WSxv4ZUrt2HjF0XCbdib9olvWLXd-YsduLz58ViFKjzcGdIoHpNQkvMwL4kqLbkNj9qpkkyWjoytre-BkeAJOu8Q2yNVIAg1sd7dz134Npt-Pb-g7TsM1CAaqajxSrPIS7TxbuQTlXOruNcjoxKrNTfKCWGwcFQolzuNjJvzXKshfsqKoUv3YLUMpdsHguRrmGjtLPoOZhRTCOg8Qswk87lHBzOAT50J5H0jtyF7YeU4cxJnTsaZk3wAH6ORZNyK1VwZ1WYUYFdR1EqOEaog3BRFMoCjzo6y3aMLmaSInZCfZ2IAJ53d-uIXuz34p9rv4fXNZCavPl9_OYT1JLL1-gfOEaxW86U7hpWFXb5rl-0T2OXrAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytotoxic+Effect+on+Corn+and+Soybean+Due+Addition+of+Nanoiron+to+the+Soil&rft.jtitle=Water%2C+air%2C+and+soil+pollution&rft.au=Thom%C3%A9%2C+Ant%C3%B4nio&rft.au=de+Souza%2C+Tayene+Oltramari&rft.au=Thom%C3%A9%2C+Gladis+Cleci+Hermes&rft.au=Reginatto%2C+Cleomar&rft.date=2020-01-01&rft.pub=Springer+International+Publishing&rft.issn=0049-6979&rft.eissn=1573-2932&rft.volume=231&rft.issue=1&rft_id=info:doi/10.1007%2Fs11270-019-4384-6&rft.externalDocID=10_1007_s11270_019_4384_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-6979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-6979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-6979&client=summon |