Phytotoxic Effect on Corn and Soybean Due Addition of Nanoiron to the Soil

Due to its low cost and high reactivity, nanoiron has been widely used for remediating contaminated soils. However, accumulation of large amounts of iron in the soil may be toxic for plants. This research aims at investigating the possible phytotoxic effects of the presence of nanoparticles of iron...

Full description

Saved in:
Bibliographic Details
Published in:Water, air, and soil pollution Vol. 231; no. 1
Main Authors: Thomé, Antônio, de Souza, Tayene Oltramari, Thomé, Gladis Cleci Hermes, Reginatto, Cleomar
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 2020
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to its low cost and high reactivity, nanoiron has been widely used for remediating contaminated soils. However, accumulation of large amounts of iron in the soil may be toxic for plants. This research aims at investigating the possible phytotoxic effects of the presence of nanoparticles of iron in the soil, with emphasis on seedling emergence and initial plant growth of soybean and corn. Nanoiron concentrations of 0, 15, and 30 g/kg of soil were examined. For each concentration, 15 samples each of soybean and corn were studied. The plants were grown in vases with 1 kg of soil in a greenhouse. During the experiment, phytotoxicity symptoms such as inhibition of seedling emergence and initial plant growth and plant color changes were analyzed. Twenty-four days after sowing, the plants were harvested and measurements were taken of the root lengths, the aerial lengths, the total dry mass, and the retention of iron by the plants. While all corn plants emerged at the same time, plants under nanoiron treatments showed several symptoms of phytotoxicity, including necrosis, reddish coloration, and subsequent death. In soybean, the 30 g/kg nanoiron concentration completely inhibited seedling emergence. It was concluded that the addition of nanoiron to the soil causes phytotoxicity in soybean and corn plants, affecting seedling emergence, initial growth, and even causing plant death. The symptom differences observed between corn and soybean in relation to nanoiron exposure have become evident in the experiment and show that the same concentration of nanoiron can affect plant species differently.
AbstractList Due to its low cost and high reactivity, nanoiron has been widely used for remediating contaminated soils. However, accumulation of large amounts of iron in the soil may be toxic for plants. This research aims at investigating the possible phytotoxic effects of the presence of nanoparticles of iron in the soil, with emphasis on seedling emergence and initial plant growth of soybean and corn. Nanoiron concentrations of 0, 15, and 30 g/kg of soil were examined. For each concentration, 15 samples each of soybean and corn were studied. The plants were grown in vases with 1 kg of soil in a greenhouse. During the experiment, phytotoxicity symptoms such as inhibition of seedling emergence and initial plant growth and plant color changes were analyzed. Twenty-four days after sowing, the plants were harvested and measurements were taken of the root lengths, the aerial lengths, the total dry mass, and the retention of iron by the plants. While all corn plants emerged at the same time, plants under nanoiron treatments showed several symptoms of phytotoxicity, including necrosis, reddish coloration, and subsequent death. In soybean, the 30 g/kg nanoiron concentration completely inhibited seedling emergence. It was concluded that the addition of nanoiron to the soil causes phytotoxicity in soybean and corn plants, affecting seedling emergence, initial growth, and even causing plant death. The symptom differences observed between corn and soybean in relation to nanoiron exposure have become evident in the experiment and show that the same concentration of nanoiron can affect plant species differently.
Due to its low cost and high reactivity, nanoiron has been widely used for remediating contaminated soils. However, accumulation of large amounts of iron in the soil may be toxic for plants. This research aims at investigating the possible phytotoxic effects of the presence of nanoparticles of iron in the soil, with emphasis on seedling emergence and initial plant growth of soybean and corn. Nanoiron concentrations of 0, 15, and 30 g/kg of soil were examined. For each concentration, 15 samples each of soybean and corn were studied. The plants were grown in vases with 1 kg of soil in a greenhouse. During the experiment, phytotoxicity symptoms such as inhibition of seedling emergence and initial plant growth and plant color changes were analyzed. Twenty-four days after sowing, the plants were harvested and measurements were taken of the root lengths, the aerial lengths, the total dry mass, and the retention of iron by the plants. While all corn plants emerged at the same time, plants under nanoiron treatments showed several symptoms of phytotoxicity, including necrosis, reddish coloration, and subsequent death. In soybean, the 30 g/kg nanoiron concentration completely inhibited seedling emergence. It was concluded that the addition of nanoiron to the soil causes phytotoxicity in soybean and corn plants, affecting seedling emergence, initial growth, and even causing plant death. The symptom differences observed between corn and soybean in relation to nanoiron exposure have become evident in the experiment and show that the same concentration of nanoiron can affect plant species differently.
ArticleNumber 12
Audience Academic
Author Reginatto, Cleomar
Thomé, Antônio
Thomé, Gladis Cleci Hermes
de Souza, Tayene Oltramari
Author_xml – sequence: 1
  givenname: Antônio
  orcidid: 0000-0002-1247-7434
  surname: Thomé
  fullname: Thomé, Antônio
  email: thome@upf.br
  organization: Graduate Program of Civil and Environmental Engineering, University of Passo Fundo
– sequence: 2
  givenname: Tayene Oltramari
  surname: de Souza
  fullname: de Souza, Tayene Oltramari
  organization: Biology Undergraduate Course, University of Passo Fundo
– sequence: 3
  givenname: Gladis Cleci Hermes
  surname: Thomé
  fullname: Thomé, Gladis Cleci Hermes
  organization: Biology Undergraduate Course, University of Passo Fundo
– sequence: 4
  givenname: Cleomar
  surname: Reginatto
  fullname: Reginatto, Cleomar
  organization: Graduate Program of Civil and Environmental Engineering, University of Passo Fundo
BookMark eNp1kMtOAyEUhompiW31AdyRuKZymYFh2dR6S6Mm6powDLSYCpWhiX17acbElbCAnPN_B_JNwCjEYAG4JHhGMBbXPSFUYISJRBVrKsRPwJjUgiEqGR2BMcaVRFwKeQYmff-By5KNGIPHl80hxxy_vYFL56zJMAa4iClAHTr4Gg-t1QHe7C2cd53PvnSjg086RJ_KPUeYN7bk_PYcnDq97e3F7zkF77fLt8U9Wj3fPSzmK2RYXWdknG6rWvCmNc4SR7XgneauJUbTrm250VZKU5qk0VbYtuKSc9FqXEp1gy2bgqth7i7Fr73ts_qI-xTKk4oyRkTDRC1Lajak1nprlQ8u5qRN2Z399KbIc77U55wwwplsaAHIAJgU-z5Zp3bJf-p0UASro2M1OFbFsTo6VrwwdGD6kg1rm_6-8j_0A6O-gNk
CitedBy_id crossref_primary_10_1016_j_plana_2022_100017
crossref_primary_10_1016_j_envpol_2023_122683
Cites_doi 10.1016/j.scitotenv.2009.05.033
10.1016/j.watres.2009.08.051
10.1007/s11270-014-2243-z
10.1016/j.plaphy.2016.04.024
10.1007/s11356-015-5850-3
10.1021/es101786y
10.1021/es9031198
10.1371/journal.pone.0122884
10.1016/j.jhazmat.2010.11.020
10.1016/j.jhazmat.2010.10.113
10.1016/j.envres.2018.01.030
10.1016/j.scitotenv.2016.04.197
10.1016/j.jhazmat.2013.11.067
10.1016/j.ecoenv.2011.11.030
10.1016/j.desal.2010.09.051
10.1021/es4043462
10.1016/j.ecoenv.2015.07.024
10.1039/b805998e
10.1021/es048038p
10.1007/s11356-017-8597-1
10.1021/es903744f
10.1186/gb-2002-3-8-reviews1024
10.1002/etc.58
10.1016/j.chemosphere.2014.03.109
10.1007/s10646-016-1674-2
10.1264/jsme2.me11126
10.1093/aob/mcl110
10.1007/978-3-319-76708-6_13
10.1128/aem.01009-10
10.1016/j.scitotenv.2008.02.004
10.1016/j.scitotenv.2012.11.073
10.1021/es800408u
10.1016/j.ibiod.2016.09.027
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
COPYRIGHT 2020 Springer
Water, Air, and Soil Pollution is a copyright of Springer, (2020). All Rights Reserved.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: COPYRIGHT 2020 Springer
– notice: Water, Air, and Soil Pollution is a copyright of Springer, (2020). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7QH
7T7
7TV
7U7
7UA
7WY
7WZ
7X2
7X7
7XB
87Z
88E
88I
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
H96
H97
HCIFZ
K60
K6~
K9.
L.-
L.G
M0C
M0K
M0S
M1P
M2P
P64
PATMY
PCBAR
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
DOI 10.1007/s11270-019-4384-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Business Premium Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ABI/INFORM Global
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
One Business (ProQuest)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Aqualine
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
Pollution Abstracts
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Agricultural Science Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1573-2932
ExternalDocumentID A613163982
10_1007_s11270_019_4384_6
GrantInformation_xml – fundername: CNPq
  grantid: 400646/2014-5
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
4P2
53G
5QI
5VS
67M
67Z
6NX
78A
7WY
7X2
7X7
7XC
88E
88I
8C1
8CJ
8FE
8FH
8FI
8FJ
8FL
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDZT
ABECU
ABEOS
ABFGW
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BKSAR
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EPAXT
ESBYG
ESTFP
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IFM
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
K60
K6~
KDC
KOV
KOW
L8X
LAK
LLZTM
M0C
M0K
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PF0
PQBIZ
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XJT
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A~
~EX
~KM
AACDK
AAEOY
AAHBH
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFEUZ
AGQEE
AIGIU
ALIPV
CITATION
H13
PQBZA
7QH
7T7
7TV
7U7
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
H97
K9.
L.-
L.G
P64
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c355t-cfab45768bcfe1f2a76da6fb1ca2dbb6cae99cbcf18ae7eb469667ba0bcf580e3
IEDL.DBID AEJHL
ISSN 0049-6979
IngestDate Fri Oct 18 23:32:17 EDT 2024
Tue Nov 12 23:25:09 EST 2024
Thu Nov 21 21:24:51 EST 2024
Sat Dec 16 12:05:04 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Initial plant growth
Nanoremediation
Toxicity
Contaminant
Iron retention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-cfab45768bcfe1f2a76da6fb1ca2dbb6cae99cbcf18ae7eb469667ba0bcf580e3
ORCID 0000-0002-1247-7434
PQID 2331783759
PQPubID 54157
ParticipantIDs proquest_journals_2331783759
gale_infotracacademiconefile_A613163982
crossref_primary_10_1007_s11270_019_4384_6
springer_journals_10_1007_s11270_019_4384_6
PublicationCentury 2000
PublicationDate 1-2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 1-2020
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal of Environmental Pollution
PublicationTitle Water, air, and soil pollution
PublicationTitleAbbrev Water Air Soil Pollut
PublicationYear 2020
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Nano Iron s.r.o. (2014) Nanoiron, Future technology. http://www.nanoiron.cz/en/nanofer-25s. Accessed 10 May 2019.
Scott, T. B., Popescu, L. C., Crane, R. A., & Noubactep, C. (2011). Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. Journal of Hazardous Materials.https://doi.org/10.1016/j.jhazmat.2010.10.113.
TedescoMJGianelloCBissaniCABohnenHVolkweissSJAnalysis of soil, plants and other materials19952Porto AlegreSoil Department of the Federal University of Rio Grande do Sul(in Portuguese)
Kirschiling, T. L., Gregory, K. B., Minkley, E. G. J. R., Lowry, G. V., & Tilton, R. D. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmental Science & Technology.https://doi.org/10.1021/es903744f.
Connolly, E. L., Guerinot, M. L. (2002) Iron stress in plants. Genome Biol. https://doi.org/10.1186/gb-2002-3-8-reviews1024
Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring.https://doi.org/10.1039/b805998e.
Gil-DíazMLoboMCFaisalMSaquibQAlatarAAl-KhedhairyAPhytotoxicity of nanoscale zerovalent iron (nZVI) in remediation strategiesPhytotoxicity of nanoparticles2018ChamSpringer10.1007/978-3-319-76708-6_13
PardoFSantosARomeroAFate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: a column studyScience of the Total Environment.2016566–5674804881:CAS:528:DC%2BC28XoslaisbY%3D10.1016/j.scitotenv.2016.04.197
Diao, M., & Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Research. https://doi.org/10.1016/j.watres.2009.08.051.
Reginatto C. (2017) Evaluation of the transport process and remediation with nano iron of zero valence in a residual soil contaminated with hexavalent chromium. . Dissertation, Federal University of Rio Grande do Sul, Brazil http://hdl.handle.net/10183/174434. Accessed 18 June 2018 (in Portuguese).
Thomé, A., Reddy, K. R., Reginatto, C., & Cecchin, I. (2015). Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives. Water Air and Soil Pollution.https://doi.org/10.1007/s11270-014-2243-z.
Kumar, N., Labille, J., Bossa, N., Auffan, M., Doumenq, P., Rose, J., & Bottero, J. Y. (2017). Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances. Environmental Science and Pollution Research.https://doi.org/10.1007/s11356-017-8597-1.
Du, W., Tan, W., Peralta-Videa, J. R., Gardea-Torresdey, J. L., Ji, R., Yin, Y., & Guo, H. (2017). Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiology and Biochemistry.https://doi.org/10.1016/j.plaphy.2016.04.024.
Siqueira-Silva, A. I., Silva, L. C., Azevedo, A. A., & Oliva, M. A. (2012). Iron plaque formation and morphoanatomy of roots from species of resting subjected to excess iron. Ecotoxicology and Environmental Safety.https://doi.org/10.1016/j.ecoenv.2011.11.030.
Fang, Z., Chen, J., Qiu, X., Qiu, X., Cheng, W., & Zhu, L. (2011). Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination.https://doi.org/10.1016/j.desal.2010.09.051.
Li Z, Greden K, Alvarez PJJ, Gregory KB, Lowry GV (2010) Adsorbed polymer and non-limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environmental Science & Technology.https://doi.org/10.1021/es9031198.
Kim, J. H., Lee, Y., Kim, E. J., Gu, S., Sohn, E. J., Seo, Y. S., An, Y. J., & Chang, Y. S. (2014). Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environmental Science & Technology.https://doi.org/10.1021/es4043462.
Libralato, G., Devoti, A. C., Zanella, M., Sabbiini, E., Mičetić, I., Manodori, L., Pigozzo, A., Manenti, S., Groppi, F., & Ghirardini, A. V. (2016). Phytotoxicity of ionic, micro and nano-sized iron in three plant species. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2015.07.024.
Sevcu, A., El-Themsa, Y. S., Joner, E. J., & Cernik, M. (2011). Oxidative stress induced in microorganisms by zero-valent Iron nanoparticles. Microbes and Environments.https://doi.org/10.1264/jsme2.me11126.
Li, X., Yang, Y., Gao, B., & Zhang, M. (2015). Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS One. https://doi.org/10.1371/journal.pone.0122884.
Katsenovich, Y. P., & Miralles-Wilhelm, F. R. (2009). Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils. Science of The Total Environment.https://doi.org/10.1016/j.scitotenv.2009.05.033.
Peralta-Videa, J. R., Zhao, L., Lopez-Moreno, M. L., Rosa, G., Hong, J., & Gardea-Torresdey, J. L. (2011). Nanomaterials and the environment: a review for the biennium 2008–2010. Journal of Hazardous Materials.https://doi.org/10.1016/j.jhazmat.2010.11.020.
Cecchin, I., Reddy, K. R., Thomé, A., Tessaro, E. F., & Schnaid, F. (2017). Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. International Biodeterioration & Biodegradation.https://doi.org/10.1016/j.ibiod.2016.09.027.
FAO – Food and Agriculture Organizations of the United Nations (2018). Production/Yield quantities of Soybean and Maize in World. http//:www.fao.org/faostat. Accessed 24 Feb 2019.
Wang, J., Fang, Z., Cheng, W., Tsang, P. E., & Zhao, D. (2016). Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Ecotoxicology.https://doi.org/10.1007/s10646-016-1674-2.
JiangDGuangmingZDanlianHMingCChenZChaoHJiaWRemediation of contaminated soils by enhanced nanoscale zero valent ironEnvironmental Research20181632172271:CAS:528:DC%2BC1cXjtFCnu7w%3D10.1016/j.envres.2018.01.030
Ma, X., Gurung, A., & Deng, Y. (2013). Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Science of the Total Environment.https://doi.org/10.1016/j.scitotenv.2012.11.073.
Liou, Y., Lo, S. L., Lin, C. J., Hu, C. Y., Kuan, W. H., & Weng, S. (2006). Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: effects of H 2 -reducing pretreatment and copper deposition. Environmental Science & Technology.https://doi.org/10.1021/es048038p.
Olson, M. R., Blotevogel, J., Borch, T., Petersen, M. A., Royer, R. A., & Sale, T. C. (2014). Long-term potential of in situ chemical reduction for treatment of polychlorinated biphenyls in soils. Chemosphere.https://doi.org/10.1016/j.chemosphere.2014.03.109.
Kim, J. Y., Park, H. J., Lee, C., Nelson, K. L., Sedlak, D. L., & Yoon, J. (2010). Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous iron. Applied and. Environmental Microbiology.https://doi.org/10.1128/aem.01009-10.
Chen, R. F., Ren, F. S., Gu, P., Dong, X. Y., Du, C. W., & Ma, J. F. (2006). Response of rice (Oryza sativa) with root surface iron plaque under aluminium stress. Annals of Botany.https://doi.org/10.1093/aob/mcl110.
Xiu, Z. M., Gregory, K. B., Lowry, G. V., & Alvarez, P. J. J. (2010). Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environmental Science & Technology. https://doi.org/10.1021/es101786y.
Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y. C., Braam, J., & Alvarez, P. J. J. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry.https://doi.org/10.1002/etc.58.
Han, Y., Shi, N., Wang, H., Pan, X., Fang, H., & Yu, Y. (2015). Nanoscale zerovalent iron-mediated degradation of DDT in soil. Environmental Science and Pollution Research.https://doi.org/10.1007/s11356-015-5850-3.
Trujillo-Reyes, J., Peralta-Videa, J. R., Majumdar, S., Botez, C. E., & Gardea-Torresdey, J. L. (2014). Exposure studies of core–shell Fe/Fe3O4 and cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? Journal of Hazardous Materials.https://doi.org/10.1016/j.jhazmat.2013.11.067.
Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental Science & Technology.https://doi.org/10.1021/es800408u.
Liu, H., Zhang, J., Christie, P., & Zhang, F. (2008). Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2008.02.004.
D Jiang (4384_CR10) 2018; 163
4384_CR24
4384_CR23
4384_CR25
4384_CR20
4384_CR22
4384_CR21
4384_CR28
F Pardo (4384_CR26) 2016; 566–567
4384_CR27
4384_CR29
4384_CR6
4384_CR5
4384_CR4
4384_CR3
4384_CR9
4384_CR7
4384_CR13
4384_CR35
4384_CR12
4384_CR34
4384_CR15
4384_CR37
4384_CR14
4384_CR36
4384_CR31
M Gil-Díaz (4384_CR8) 2018
4384_CR30
4384_CR11
4384_CR33
4384_CR2
4384_CR17
4384_CR1
4384_CR16
4384_CR19
4384_CR18
MJ Tedesco (4384_CR32) 1995
References_xml – ident: 4384_CR11
  doi: 10.1016/j.scitotenv.2009.05.033
– ident: 4384_CR4
  doi: 10.1016/j.watres.2009.08.051
– ident: 4384_CR33
  doi: 10.1007/s11270-014-2243-z
– ident: 4384_CR5
  doi: 10.1016/j.plaphy.2016.04.024
– ident: 4384_CR9
  doi: 10.1007/s11356-015-5850-3
– ident: 4384_CR36
  doi: 10.1021/es101786y
– ident: 4384_CR18
  doi: 10.1021/es9031198
– ident: 4384_CR19
  doi: 10.1371/journal.pone.0122884
– ident: 4384_CR27
  doi: 10.1016/j.jhazmat.2010.11.020
– ident: 4384_CR29
  doi: 10.1016/j.jhazmat.2010.10.113
– volume: 163
  start-page: 217
  year: 2018
  ident: 4384_CR10
  publication-title: Environmental Research
  doi: 10.1016/j.envres.2018.01.030
  contributor:
    fullname: D Jiang
– volume: 566–567
  start-page: 480
  year: 2016
  ident: 4384_CR26
  publication-title: Science of the Total Environment.
  doi: 10.1016/j.scitotenv.2016.04.197
  contributor:
    fullname: F Pardo
– ident: 4384_CR34
  doi: 10.1016/j.jhazmat.2013.11.067
– ident: 4384_CR24
– ident: 4384_CR31
  doi: 10.1016/j.ecoenv.2011.11.030
– ident: 4384_CR6
  doi: 10.1016/j.desal.2010.09.051
– ident: 4384_CR13
  doi: 10.1021/es4043462
– ident: 4384_CR20
  doi: 10.1016/j.ecoenv.2015.07.024
– ident: 4384_CR37
  doi: 10.1039/b805998e
– ident: 4384_CR21
  doi: 10.1021/es048038p
– ident: 4384_CR15
  doi: 10.1007/s11356-017-8597-1
– ident: 4384_CR14
  doi: 10.1021/es903744f
– ident: 4384_CR3
  doi: 10.1186/gb-2002-3-8-reviews1024
– ident: 4384_CR17
  doi: 10.1002/etc.58
– ident: 4384_CR28
– ident: 4384_CR25
  doi: 10.1016/j.chemosphere.2014.03.109
– volume-title: Analysis of soil, plants and other materials
  year: 1995
  ident: 4384_CR32
  contributor:
    fullname: MJ Tedesco
– ident: 4384_CR35
  doi: 10.1007/s10646-016-1674-2
– ident: 4384_CR30
  doi: 10.1264/jsme2.me11126
– ident: 4384_CR2
  doi: 10.1093/aob/mcl110
– volume-title: Phytotoxicity of nanoparticles
  year: 2018
  ident: 4384_CR8
  doi: 10.1007/978-3-319-76708-6_13
  contributor:
    fullname: M Gil-Díaz
– ident: 4384_CR12
  doi: 10.1128/aem.01009-10
– ident: 4384_CR22
  doi: 10.1016/j.scitotenv.2008.02.004
– ident: 4384_CR23
  doi: 10.1016/j.scitotenv.2012.11.073
– ident: 4384_CR16
  doi: 10.1021/es800408u
– ident: 4384_CR1
  doi: 10.1016/j.ibiod.2016.09.027
– ident: 4384_CR7
SSID ssj0000987
Score 2.3271792
Snippet Due to its low cost and high reactivity, nanoiron has been widely used for remediating contaminated soils. However, accumulation of large amounts of iron in...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
SubjectTerms Atmospheric Protection/Air Quality Control/Air Pollution
Climate Change/Climate Change Impacts
Coloration
Colour
Corn
Earth and Environmental Science
Emergence
Environment
Environmental monitoring
Hydrogeology
Iron
Nanoparticles
Necrosis
Phytotoxicity
Plant growth
Plant species
Planting
Seedlings
Soil
Soil contamination
Soil investigations
Soil pollution
Soil remediation
Soil Science & Conservation
Soils
Soybean
Soybeans
Symptoms
Vegetables
Water Quality/Water Pollution
Title Phytotoxic Effect on Corn and Soybean Due Addition of Nanoiron to the Soil
URI https://link.springer.com/article/10.1007/s11270-019-4384-6
https://www.proquest.com/docview/2331783759
Volume 231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED7W5GV7aLtsYdnaoofBYEMjkW3ZegxNQghlDLJB8iQkWWKhwyqJA81_35Nj1_v5sD0ZrEMyd9LddzrrE8Bbo6MsT6KYikQnNDbMUOHSEU0txhZuTWKH1SW2y_TTKptMA00Oe9y6KG4_NhXJylG3Z91CjRQzX0HjKIspP4Euhp4E53Z3PF3Mb1r_K7IjU2YsKBepaGqZf-rkp2j0q0_-rThaxZzZ2f987Tmc1giTjI9T4jk8sUUPnv3AO9iD_rQ93oai9frevYDF52-H0pf-fmPIkdeY-IJc-21BVJGTpT9oqwoy2VsyzvPqby_iHUEX7UN_pPQEASXKbb6_hK-z6ZfrOa1vW6AGMUdJjVM6DtmHNs6OHFMpzxV3emQUy7XmRlkhDDaOMmVTqzGv5jzVaoivkmxooz50Cl_YV0AwxRoyrW2OHiI2KlYI2xwCSZa41KEbGcD7Ruvy7kiqIVv65KA5iZqTQXOSD-BdsIsMC67cKqPqcwM4VKCukmMEJAgqRcYGcNGYTtYrcSdZhAgJs_BEDOBDY6u2-a_Dvv4n6TfwlIVEvNqbuYBOud3bSzjZ5furenqG52q9njwAIeLgAg
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC58HFYP6vrA8bU5CIJLYKY7ne4cB53xsa4IzsLeQpJOWGHpyEwP6L-30tNN-zzotROSUElVfdWV-gJwaHSc5UnMqEh0QpmJDBUu7dHUom_h1iS2Wz1ie5te_81OB4EmJ25qYarb7k1KsrLUbbFbSJJi6CsoizNG-TwsMsEZHuXF_sXobNgaYJHNqDKZoFykoklmvjfIC3f02ii_yY5WTme4-qXlrsFKjTFJf3YovsOcLdZh-Rnz4DpsDdoCN-xaa_hkAy5v_j2WvvQPd4bMmI2JL8iJHxdEFTm59Y_aqoKcTi3p53l134t4R9BI-zAeKT1BSIn97v5vwp_hYHRyTuv3FqhB1FFS45RmIf7Qxtmei1TKc8Wd7hkV5Vpzo6wQBht7mbKp1RhZc55q1cVPSda18RYsFL6w20AwyOpGWtscbQQziikEbg6hZJS41KEh6cBxI3Z5P6PVkC2BcpCcRMnJIDnJO3AUNkYGlSvHyqi6cgCnCuRVso-QBGGlyKIO7DV7J2tdnMgoRoyEcXgiOvCz2au2-cNpdz7V-wd8Ox_9vpJXF9e_dmEpCmF59admDxbK8dTuw_wknx7UZ_UJjzviQA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD5UhaIP2nrB9dLmoVCoBHdnMpnJkyzuLtaKCLbQt5ArFcpEdmdB_70nc2HaWh9KXychCTnJyffNyfkC8MHotLBZyqjIdEaZSQwVPh_R3OHZwp3J3LB-xPY2v_5eTKZRJuesy4Wpb7t3IckmpyGqNJXV6b31p33iWwyYIg0WlKUFo3wF1hgSGVzoa-Pp5cVV74xF0chmMkG5yEUX2PxbI78dTX866GeR0voAmm3999DfwGaLPcm4WSxv4ZUrt2HjF0XCbdib9olvWLXd-YsduLz58ViFKjzcGdIoHpNQkvMwL4kqLbkNj9qpkkyWjoytre-BkeAJOu8Q2yNVIAg1sd7dz134Npt-Pb-g7TsM1CAaqajxSrPIS7TxbuQTlXOruNcjoxKrNTfKCWGwcFQolzuNjJvzXKshfsqKoUv3YLUMpdsHguRrmGjtLPoOZhRTCOg8Qswk87lHBzOAT50J5H0jtyF7YeU4cxJnTsaZk3wAH6ORZNyK1VwZ1WYUYFdR1EqOEaog3BRFMoCjzo6y3aMLmaSInZCfZ2IAJ53d-uIXuz34p9rv4fXNZCavPl9_OYT1JLL1-gfOEaxW86U7hpWFXb5rl-0T2OXrAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytotoxic+Effect+on+Corn+and+Soybean+Due+Addition+of+Nanoiron+to+the+Soil&rft.jtitle=Water%2C+air%2C+and+soil+pollution&rft.au=Thom%C3%A9%2C+Ant%C3%B4nio&rft.au=de+Souza%2C+Tayene+Oltramari&rft.au=Thom%C3%A9%2C+Gladis+Cleci+Hermes&rft.au=Reginatto%2C+Cleomar&rft.date=2020-01-01&rft.pub=Springer+International+Publishing&rft.issn=0049-6979&rft.eissn=1573-2932&rft.volume=231&rft.issue=1&rft_id=info:doi/10.1007%2Fs11270-019-4384-6&rft.externalDocID=10_1007_s11270_019_4384_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-6979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-6979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-6979&client=summon