Listeria monocytogenes utilizes the ClpP1/2 proteolytic machinery for fine-tuned substrate degradation at elevated temperatures
Listeria monocytogenes exhibits two ClpP isoforms (ClpP1/ClpP2) which assemble into a heterooligomeric complex with enhanced proteolytic activity. Herein, we demonstrate that the formation of this complex depends on temperature and reaches a maximum ratio of about 1 : 1 at 30 °C, while almost no com...
Saved in:
Published in: | RSC chemical biology Vol. 3; no. 7; pp. 955 - 971 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
RSC
06-07-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Listeria monocytogenes
exhibits two ClpP isoforms (ClpP1/ClpP2) which assemble into a heterooligomeric complex with enhanced proteolytic activity. Herein, we demonstrate that the formation of this complex depends on temperature and reaches a maximum ratio of about 1 : 1 at 30 °C, while almost no complex formation occurred below 4 °C. In order to decipher the role of the two isoforms at elevated temperatures, we constructed
L. monocytogenes
ClpP1, ClpP2 and ClpP1/2 knockout strains and analyzed their protein regulation in comparison to the wild type (WT) strain
via
whole proteome mass-spectrometry (MS) at 37 °C and 42 °C. While the Δ
clpP1
strain only altered the expression of very few proteins, the Δ
clpP2
and Δ
clpP1/2
strains revealed the dysregulation of many proteins at both temperatures. These effects were corroborated by crosslinking co-immunoprecipitation MS analysis. Thus, while ClpP1 serves as a mere enhancer of protein degradation in the heterocomplex, ClpP2 is essential for ClpX binding and functions as a gatekeeper for substrate entry. Applying an integrated proteomic approach combining whole proteome and co-immunoprecipitation datasets, several putative ClpP2 substrates were identified in the context of different temperatures and discussed with regards to their function in cellular pathways such as the SOS response. |
---|---|
AbstractList | Listeria monocytogenes
exhibits two ClpP isoforms (ClpP1/ClpP2) which assemble into a heterooligomeric complex with enhanced proteolytic activity. Herein, we demonstrate that the formation of this complex depends on temperature and reaches a maximum ratio of about 1 : 1 at 30 °C, while almost no complex formation occurred below 4 °C. In order to decipher the role of the two isoforms at elevated temperatures, we constructed
L. monocytogenes
ClpP1, ClpP2 and ClpP1/2 knockout strains and analyzed their protein regulation in comparison to the wild type (WT) strain
via
whole proteome mass-spectrometry (MS) at 37 °C and 42 °C. While the Δ
clpP1
strain only altered the expression of very few proteins, the Δ
clpP2
and Δ
clpP1/2
strains revealed the dysregulation of many proteins at both temperatures. These effects were corroborated by crosslinking co-immunoprecipitation MS analysis. Thus, while ClpP1 serves as a mere enhancer of protein degradation in the heterocomplex, ClpP2 is essential for ClpX binding and functions as a gatekeeper for substrate entry. Applying an integrated proteomic approach combining whole proteome and co-immunoprecipitation datasets, several putative ClpP2 substrates were identified in the context of different temperatures and discussed with regards to their function in cellular pathways such as the SOS response. Listeria monocytogenes exhibits two ClpP isoforms (ClpP1/ClpP2) which assemble into a heterooligomeric complex with enhanced proteolytic activity. Herein, we demonstrate that the formation of this complex depends on temperature and reaches a maximum ratio of about 1 : 1 at 30 °C, while almost no complex formation occurred below 4 °C. In order to decipher the role of the two isoforms at elevated temperatures, we constructed L. monocytogenes ClpP1, ClpP2 and ClpP1/2 knockout strains and analyzed their protein regulation in comparison to the wild type (WT) strain via whole proteome mass-spectrometry (MS) at 37 °C and 42 °C. While the Δ clpP1 strain only altered the expression of very few proteins, the Δ clpP2 and Δ clpP1/2 strains revealed the dysregulation of many proteins at both temperatures. These effects were corroborated by crosslinking co-immunoprecipitation MS analysis. Thus, while ClpP1 serves as a mere enhancer of protein degradation in the heterocomplex, ClpP2 is essential for ClpX binding and functions as a gatekeeper for substrate entry. Applying an integrated proteomic approach combining whole proteome and co-immunoprecipitation datasets, several putative ClpP2 substrates were identified in the context of different temperatures and discussed with regards to their function in cellular pathways such as the SOS response. Unlike most bacteria, L. monocytogenes encodes 2 isoforms of Caseinolytic Protease P. Balogh et al. show that both proteins form a heterocomplex temperature-dependently and find protein substrate candidates with an integrated proteomic approach. |
Author | Eckel, Konstantin Fetzer, Christian Balogh, Dóra Sieber, Stephan A. |
Author_xml | – sequence: 1 givenname: Dóra orcidid: 0000-0003-2071-6498 surname: Balogh fullname: Balogh, Dóra organization: Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technische Universität München, 85748, Garching, Germany – sequence: 2 givenname: Konstantin orcidid: 0000-0002-8371-4353 surname: Eckel fullname: Eckel, Konstantin organization: Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technische Universität München, 85748, Garching, Germany – sequence: 3 givenname: Christian orcidid: 0000-0001-5510-1544 surname: Fetzer fullname: Fetzer, Christian organization: Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technische Universität München, 85748, Garching, Germany – sequence: 4 givenname: Stephan A. orcidid: 0000-0002-9400-906X surname: Sieber fullname: Sieber, Stephan A. organization: Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technische Universität München, 85748, Garching, Germany |
BookMark | eNpVkUtr3TAQhUVJadI0m_4CLUPAjR6WZG0CyW3TFi60i2QtZGt0r4otOZIcuNn0r9cloY_VHGY-zhw4b9FRTBEQek_JB0q4vvzINjeEEKVuX6ETJjlviFT66B99jM5K-bEyTFCqtXqDjrnopKSKnaCf21Aq5GDxlGIaDjXtIELBSw1jeFpF3QPejPN3esnwnFOFNB5qGPBkh32IkA_Yp4z9Kpu6RHC4LH2p2VbADnbZOltDithWDCM8rmuHK0wzrMSSobxDr70dC5y9zFN0f_vpbvOl2X77_HVzvW0GLkRtOqG1cF62oAhlrCPQeekk160g3DrFADyXjvleC90TTZXsBMhO9p62TA38FF09-85LP4EbIK4ZRzPnMNl8MMkG8_8lhr3ZpUejmVBS0NXg_MUgp4cFSjVTKAOMo42QlmKY1FyptpVqRS-e0SGnUjL4P28oMb9LM39L478ABnmMyg |
CitedBy_id | crossref_primary_10_3390_foods12112166 |
Cites_doi | 10.1101/gad.1078003 10.1101/cshperspect.a012591 10.1039/C6SC03438A 10.1016/S1097-2765(03)00060-1 10.1093/femspd/ftv004 10.1074/jbc.M115.700344 10.1128/JB.00568-16 10.1038/nmeth.3621 10.1128/JB.00074-06 10.1073/pnas.1219125110 10.1099/mic.0.043794-0 10.1126/science.1101630 10.1038/nmeth.3901 10.1099/mic.0.2007/006361-0 10.1371/journal.pone.0125345 10.1128/AEM.70.11.6887-6891.2004 10.1111/j.1742-4658.2008.06847.x 10.1021/pr300394r 10.1371/journal.pbio.0030255 10.1016/S0022-2836(83)80111-9 10.1046/j.1365-2958.2000.01752.x 10.1021/jo011148j 10.1038/s41598-019-50505-5 10.1111/mmi.14649 10.1128/jb.178.4.1088-1093.1996 10.3389/fmicb.2018.02700 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 10.1111/j.1574-6968.2009.01586.x 10.1128/JB.188.2.556-568.2006 10.1046/j.1365-2958.2000.01773.x 10.1046/j.1365-2958.2003.03524.x 10.1038/nrmicro.2017.126 10.1016/S1097-2765(00)80243-9 10.1002/anie.201104391 10.1002/anie.201409325 10.1038/s41594-019-0304-0 10.1016/j.bbamcr.2011.06.007 10.1099/mic.0.035196-0 10.1046/j.1365-2958.2003.03360.x 10.1021/acs.jproteome.0c00668 10.1038/nbt.1511 10.1128/JB.188.6.2048-2055.2006 10.1016/j.chembiol.2018.10.007 10.1016/j.cbpb.2010.11.009 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry 2022 RSC |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry 2022 RSC |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1039/D2CB00077F |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2633-0679 |
EndPage | 971 |
ExternalDocumentID | 10_1039_D2CB00077F |
GrantInformation_xml | – fundername: ; grantid: SFB 1035, project number 201302640, project A09 |
GroupedDBID | AAFWJ AARTK AAYXX AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI CITATION EBS GROUPED_DOAJ H13 M~E OK1 PGMZT RPM RSCEA RVUXY 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c355t-85995df64e7012280e8f6d6394503ad72eef36d2fb959b0917685e686bf1427c3 |
IEDL.DBID | RPM |
ISSN | 2633-0679 |
IngestDate | Tue Sep 17 21:27:56 EDT 2024 Fri Oct 25 22:24:21 EDT 2024 Thu Nov 21 21:10:43 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-85995df64e7012280e8f6d6394503ad72eef36d2fb959b0917685e686bf1427c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-5510-1544 0000-0002-9400-906X 0000-0002-8371-4353 0000-0003-2071-6498 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9257651/ |
PMID | 35866172 |
PQID | 2693774467 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9257651 proquest_miscellaneous_2693774467 crossref_primary_10_1039_D2CB00077F |
PublicationCentury | 2000 |
PublicationDate | 2022-07-06 |
PublicationDateYYYYMMDD | 2022-07-06 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | RSC chemical biology |
PublicationYear | 2022 |
Publisher | RSC |
Publisher_xml | – name: RSC |
References | Feng (D2CB00077F/cit37/1) 2013; 12 Joseph (D2CB00077F/cit43/1) 2006; 188 Schulz (D2CB00077F/cit40/1) 1996; 178 Kawai (D2CB00077F/cit9/1) 2003; 47 Hall (D2CB00077F/cit14/1) 2017; 199 Cox (D2CB00077F/cit44/1) 2008; 26 Tornøe (D2CB00077F/cit26/1) 2002; 67 Leodolter (D2CB00077F/cit17/1) 2015; 10 Huisgen (D2CB00077F/cit24/1) 1961 Cohn (D2CB00077F/cit5/1) 2011; 157 Farrand (D2CB00077F/cit33/1) 2015; 73 Speziali (D2CB00077F/cit35/1) 2006; 188 Li (D2CB00077F/cit41/1) 2016; 291 Michel (D2CB00077F/cit3/1) 2005; 3 Baker (D2CB00077F/cit10/1) 2012; 1823 Dahmen (D2CB00077F/cit12/1) 2015; 54 Nair (D2CB00077F/cit39/1) 2000; 35 Guillon (D2CB00077F/cit31/1) 2009; 276 Rostovtsev (D2CB00077F/cit25/1) 2002; 41 Pan (D2CB00077F/cit13/1) 2019; 9 Kirsch (D2CB00077F/cit36/1) 2021; 20 Zeiler (D2CB00077F/cit20/1) 2013; 110 Kisker (D2CB00077F/cit38/1) 2013; 5 Zeiler (D2CB00077F/cit11/1) 2011; 50 Michel (D2CB00077F/cit34/1) 2006; 188 Tyanova (D2CB00077F/cit45/1) 2016; 13 Arnaud (D2CB00077F/cit42/1) 2004; 70 Balogh (D2CB00077F/cit18/1) 2017; 8 van der Veen (D2CB00077F/cit4/1) 2007; 153 Mawla (D2CB00077F/cit15/1) 2021; 115 Wu (D2CB00077F/cit21/1) 2011; 158 Frees (D2CB00077F/cit32/1) 2003; 48 Kim (D2CB00077F/cit19/1) 2000; 5 Van Der Veen (D2CB00077F/cit29/1) 2009; 295 Gatsogiannis (D2CB00077F/cit16/1) 2019; 26 Bucur (D2CB00077F/cit2/1) 2018; 9 van der Veen (D2CB00077F/cit8/1) 2010; 156 Miller (D2CB00077F/cit28/1) 2004; 305 Little (D2CB00077F/cit6/1) 1983; 167 Radoshevich (D2CB00077F/cit1/1) 2018; 16 Neher (D2CB00077F/cit7/1) 2003; 17 Flynn (D2CB00077F/cit30/1) 2003; 11 Schölz (D2CB00077F/cit27/1) 2015; 12 Fux (D2CB00077F/cit22/1) 2019; 26 Gaillot (D2CB00077F/cit23/1) 2000; 35 |
References_xml | – volume: 17 start-page: 1084 year: 2003 ident: D2CB00077F/cit7/1 publication-title: Genes Dev. doi: 10.1101/gad.1078003 contributor: fullname: Neher – volume: 5 start-page: a012591 year: 2013 ident: D2CB00077F/cit38/1 publication-title: Cold Spring Harbor Perspect. Biol. doi: 10.1101/cshperspect.a012591 contributor: fullname: Kisker – volume: 8 start-page: 1592 year: 2017 ident: D2CB00077F/cit18/1 publication-title: Chem. Sci. doi: 10.1039/C6SC03438A contributor: fullname: Balogh – volume: 11 start-page: 671 year: 2003 ident: D2CB00077F/cit30/1 publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00060-1 contributor: fullname: Flynn – volume: 73 start-page: ftv004 year: 2015 ident: D2CB00077F/cit33/1 publication-title: Pathog. Dis. doi: 10.1093/femspd/ftv004 contributor: fullname: Farrand – volume: 291 start-page: 7465 year: 2016 ident: D2CB00077F/cit41/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.700344 contributor: fullname: Li – volume: 199 start-page: e00568-16 year: 2017 ident: D2CB00077F/cit14/1 publication-title: J. Bacteriol. doi: 10.1128/JB.00568-16 contributor: fullname: Hall – volume: 12 start-page: 1003 year: 2015 ident: D2CB00077F/cit27/1 publication-title: Nat. Methods doi: 10.1038/nmeth.3621 contributor: fullname: Schölz – volume: 188 start-page: 5783 year: 2006 ident: D2CB00077F/cit34/1 publication-title: J. Bacteriol. doi: 10.1128/JB.00074-06 contributor: fullname: Michel – volume: 110 start-page: 11302 year: 2013 ident: D2CB00077F/cit20/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1219125110 contributor: fullname: Zeiler – volume: 157 start-page: 677 year: 2011 ident: D2CB00077F/cit5/1 publication-title: Microbiology doi: 10.1099/mic.0.043794-0 contributor: fullname: Cohn – volume: 305 start-page: 1629 year: 2004 ident: D2CB00077F/cit28/1 publication-title: Science doi: 10.1126/science.1101630 contributor: fullname: Miller – volume: 13 start-page: 731 issue: 9 year: 2016 ident: D2CB00077F/cit45/1 publication-title: Nat. Methods doi: 10.1038/nmeth.3901 contributor: fullname: Tyanova – volume: 153 start-page: 3593 year: 2007 ident: D2CB00077F/cit4/1 publication-title: Microbiology doi: 10.1099/mic.0.2007/006361-0 contributor: fullname: van der Veen – start-page: 357 year: 1961 ident: D2CB00077F/cit24/1 publication-title: Proc. Chem. Soc., London contributor: fullname: Huisgen – volume: 10 start-page: e0131132 year: 2015 ident: D2CB00077F/cit17/1 publication-title: PLoS One doi: 10.1371/journal.pone.0125345 contributor: fullname: Leodolter – volume: 70 start-page: 6887 year: 2004 ident: D2CB00077F/cit42/1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.11.6887-6891.2004 contributor: fullname: Arnaud – volume: 276 start-page: 1036 year: 2009 ident: D2CB00077F/cit31/1 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2008.06847.x contributor: fullname: Guillon – volume: 12 start-page: 547 year: 2013 ident: D2CB00077F/cit37/1 publication-title: J. Proteome Res. doi: 10.1021/pr300394r contributor: fullname: Feng – volume: 3 start-page: e255 year: 2005 ident: D2CB00077F/cit3/1 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030255 contributor: fullname: Michel – volume: 167 start-page: 791 year: 1983 ident: D2CB00077F/cit6/1 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(83)80111-9 contributor: fullname: Little – volume: 35 start-page: 800 year: 2000 ident: D2CB00077F/cit39/1 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2000.01752.x contributor: fullname: Nair – volume: 67 start-page: 3057 year: 2002 ident: D2CB00077F/cit26/1 publication-title: J. Org. Chem. doi: 10.1021/jo011148j contributor: fullname: Tornøe – volume: 9 start-page: 14129 year: 2019 ident: D2CB00077F/cit13/1 publication-title: Sci. Rep. doi: 10.1038/s41598-019-50505-5 contributor: fullname: Pan – volume: 115 start-page: 1094 year: 2021 ident: D2CB00077F/cit15/1 publication-title: Mol. Microbiol. doi: 10.1111/mmi.14649 contributor: fullname: Mawla – volume: 178 start-page: 1088 year: 1996 ident: D2CB00077F/cit40/1 publication-title: J. Bacteriol. doi: 10.1128/jb.178.4.1088-1093.1996 contributor: fullname: Schulz – volume: 9 start-page: 2700 year: 2018 ident: D2CB00077F/cit2/1 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02700 contributor: fullname: Bucur – volume: 41 start-page: 2596 year: 2002 ident: D2CB00077F/cit25/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 contributor: fullname: Rostovtsev – volume: 295 start-page: 195 year: 2009 ident: D2CB00077F/cit29/1 publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2009.01586.x contributor: fullname: Van Der Veen – volume: 188 start-page: 556 year: 2006 ident: D2CB00077F/cit43/1 publication-title: J. Bacteriol. doi: 10.1128/JB.188.2.556-568.2006 contributor: fullname: Joseph – volume: 35 start-page: 1286 year: 2000 ident: D2CB00077F/cit23/1 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2000.01773.x contributor: fullname: Gaillot – volume: 48 start-page: 1565 year: 2003 ident: D2CB00077F/cit32/1 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2003.03524.x contributor: fullname: Frees – volume: 16 start-page: 32 year: 2018 ident: D2CB00077F/cit1/1 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2017.126 contributor: fullname: Radoshevich – volume: 5 start-page: 639 year: 2000 ident: D2CB00077F/cit19/1 publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80243-9 contributor: fullname: Kim – volume: 50 start-page: 11001 year: 2011 ident: D2CB00077F/cit11/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201104391 contributor: fullname: Zeiler – volume: 54 start-page: 3598 year: 2015 ident: D2CB00077F/cit12/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409325 contributor: fullname: Dahmen – volume: 26 start-page: 946 year: 2019 ident: D2CB00077F/cit16/1 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0304-0 contributor: fullname: Gatsogiannis – volume: 1823 start-page: 15 year: 2012 ident: D2CB00077F/cit10/1 publication-title: Biochim. Biophys. Acta, Mol. Cell Res. doi: 10.1016/j.bbamcr.2011.06.007 contributor: fullname: Baker – volume: 156 start-page: 374 year: 2010 ident: D2CB00077F/cit8/1 publication-title: Microbiology doi: 10.1099/mic.0.035196-0 contributor: fullname: van der Veen – volume: 47 start-page: 1113 year: 2003 ident: D2CB00077F/cit9/1 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2003.03360.x contributor: fullname: Kawai – volume: 20 start-page: 867 year: 2021 ident: D2CB00077F/cit36/1 publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.0c00668 contributor: fullname: Kirsch – volume: 26 start-page: 1367 year: 2008 ident: D2CB00077F/cit44/1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1511 contributor: fullname: Cox – volume: 188 start-page: 2048 year: 2006 ident: D2CB00077F/cit35/1 publication-title: J. Bacteriol. doi: 10.1128/JB.188.6.2048-2055.2006 contributor: fullname: Speziali – volume: 26 start-page: 48 year: 2019 ident: D2CB00077F/cit22/1 publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.10.007 contributor: fullname: Fux – volume: 158 start-page: 189 year: 2011 ident: D2CB00077F/cit21/1 publication-title: Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. doi: 10.1016/j.cbpb.2010.11.009 contributor: fullname: Wu |
SSID | ssj0002511997 |
Score | 2.2545602 |
Snippet | Listeria monocytogenes
exhibits two ClpP isoforms (ClpP1/ClpP2) which assemble into a heterooligomeric complex with enhanced proteolytic activity. Herein, we... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database |
StartPage | 955 |
SubjectTerms | Chemistry |
Title | Listeria monocytogenes utilizes the ClpP1/2 proteolytic machinery for fine-tuned substrate degradation at elevated temperatures |
URI | https://search.proquest.com/docview/2693774467 https://pubmed.ncbi.nlm.nih.gov/PMC9257651 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB01HAqXCloqAhRt1V4dJ7veDx_BScQBKqQWiZtl70eJlNhR4hzCpX-d2U1Mkyu3lb1eWTujmfe0M28BfiphnEs4iwa6QILiyjRSiXIRZU5xI5020jcn3_6Wv57UcORlcnjbCxOK9nU56VXTWa-aPIfayvlMx22dWPxwn6UeJfNB3IEOYsMdiu7Dr8fMaSpbKVKWxobqkAulO4KPjCvhs_Z-HvoPLvdLI3dyzfgYPm1BIrne_MwJfLDVZzjM2rvZvsC_O28d9B2CXlTrdVP_9TGLoBdNJy84QFhHsun8YRBTEqQY6ukaFyOzUDtpF2uCYJU4HEbNCiMtWWIACUK1xHj5iM1NS6RoiO8_x8eGeBGrrQLz8hQex6M_2W20vUoh0ggomkh5XTHjRGKlP0tTfaucMIhOEt5nhZHUWseEoWgrnpaIIZCFcCuUKN0goVKzr3BQ1ZU9A6KpcLZISorcMdFI15DjWJxaUFv0GeVd-NFubD7fKGbk4aSbpfmQZjfBEuMufG_3PMe986cURWXr1TKnAhGTRJYquyD3jPG2nJfE3n-DnhKksbeecf7uLy_giPoGh1AUeAkHzWJlv0FnaVZXga5fBWd7BV4q3o0 |
link.rule.ids | 230,315,729,782,786,866,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4VkAqXQh-oaYFu1V6NnV3vw8diiFI1IKRSqTfL3gdESuyIOIf0wl9ndhMXcuW28tory9945hvtzLcA35UwzqWcRX1dYoLiqixSqXIRZU5xI5020jcnD3_Lq7_q_MLL5PCuFyYU7etqfFpPpqf1-C7UVs6mOu7qxOLryzzzLJn34y3Ywf81SZ4l6d4Be9acZbITI2VZbKgO0VC6PXjNuBI-bm9Goid6uVkc-SzaDPZf-J4H8GZNL8mP1fRbeGXrd7Cbd6e6vYeHkccVrY6g_TV62Ta33tsRtL_J-B8OkBCSfDK77seUBBGHZrLExcg0VF3a-yVBmkscDqN2gT6azNH1BIlbYrzwxOqMJlK2xHeu42VDvPzVWrt5_gH-DC5u8mG0PoQh0khF2kh5RTLjRGql34VTiVVOGOQ1KU9YaSS11jFhKKLMswrZB-Yv3AolKtdPqdTsELbrprYfgWgqnC3TimLWmWpM9DA7snhrSW2ZMMp78K0DpJittDaKsEfOsuKc5mcBwUEPvnZYFfjt_P5GWdtmMS-oQK4lMb-VPZAbIP5fzotpb84gdkFUe43Vpxc_-QV2hzeXo2L08-rXZ9ijvk0ilBYewXZ7v7DHsDU3i5Ngqo_mBvMj |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xkFguPJZdbZfHGu1eQ1o7sZ0jpFSgBVQJkPYWJX5ApTapaHroXvjrjN0G6BVuVuJYUb7JzDfy-BuAP5Jra6OYBR2VY4JiiySQkbQBZVbGWlilhTucfHErbv7J7rmTyXlt9eWL9lUxOCmHo5Ny8OhrK8cjFTZ1YmH_Ok0cS4474VjbcBXW8Z9t03eJunPCjjkniWgESVkSaqp8RBR2EzZYLLmL3cvR6I1iLhdIvos4ve1PvOsObC1oJjmdT9mFFVN-hS9p091tD56vHL5ofQTtsFKzunpwXo-gHQ4H_3GAxJCkw3G_E1LixRyq4QwXIyNffWmeZgTpLrE4DOop-moyQRfkpW6JdgIU815NJK-JO8GOlzVxMlgLDefJN7jvnd-lF8GiGUOgkJLUgXTKZNryyAi3GyfbRlqukd9EcZvlWlBjLOOaItpxUiALwTwmNlzywnYiKhT7DmtlVZofQBTl1uRRQTH7jBQmfJglGZyaU5O3GY1b8LsBJRvPNTcyv1fOkqxL0zOPYq8Fxw1eGX47t8-Rl6aaTjLKkXMJzHNFC8QSkK_LOVHt5TuInxfXXuD188NP_oKNfreXXV3e_N2HTepOS_gKwwNYq5-m5hBWJ3p65K31BXhr9aM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Listeria+monocytogenes+utilizes+the+ClpP1%2F2+proteolytic+machinery+for+fine-tuned+substrate+degradation+at+elevated+temperatures&rft.jtitle=RSC+chemical+biology&rft.au=Balogh%2C+D%C3%B3ra&rft.au=Eckel%2C+Konstantin&rft.au=Fetzer%2C+Christian&rft.au=Sieber%2C+Stephan+A&rft.date=2022-07-06&rft.eissn=2633-0679&rft.volume=3&rft.issue=7&rft.spage=955&rft.epage=971&rft_id=info:doi/10.1039%2Fd2cb00077f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-0679&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-0679&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-0679&client=summon |