Low-Rank Matrix Recovery via Rank One Tight Frame Measurements
The task of reconstructing a low rank matrix from incomplete linear measurements arises in areas such as machine learning, quantum state tomography and in the phase retrieval problem. In this note, we study the particular setup that the measurements are taken with respect to rank one matrices constr...
Saved in:
Published in: | The Journal of fourier analysis and applications Vol. 25; no. 2; pp. 588 - 593 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
15-04-2019
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The task of reconstructing a low rank matrix from incomplete linear measurements arises in areas such as machine learning, quantum state tomography and in the phase retrieval problem. In this note, we study the particular setup that the measurements are taken with respect to rank one matrices constructed from the elements of a random tight frame. We consider a convex optimization approach and show both robustness of the reconstruction with respect to noise on the measurements as well as stability with respect to passing to approximately low rank matrices. This is achieved by establishing a version of the null space property of the corresponding measurement map. |
---|---|
AbstractList | The task of reconstructing a low rank matrix from incomplete linear measurements arises in areas such as machine learning, quantum state tomography and in the phase retrieval problem. In this note, we study the particular setup that the measurements are taken with respect to rank one matrices constructed from the elements of a random tight frame. We consider a convex optimization approach and show both robustness of the reconstruction with respect to noise on the measurements as well as stability with respect to passing to approximately low rank matrices. This is achieved by establishing a version of the null space property of the corresponding measurement map. |
Audience | Academic |
Author | Terstiege, Ulrich Rauhut, Holger |
Author_xml | – sequence: 1 givenname: Holger surname: Rauhut fullname: Rauhut, Holger organization: Lehrstuhl C für Mathematik (Analysis), RWTH Aachen University – sequence: 2 givenname: Ulrich surname: Terstiege fullname: Terstiege, Ulrich email: terstiege@mathc.rwth-aachen.de organization: Lehrstuhl C für Mathematik (Analysis), RWTH Aachen University |
BookMark | eNp1kF1PwjAUhhuDiYD-AO-WeD3sWb-2GxNCRE0gJIT7pttOcQgbtgPh31uciVemFz3peZ_Tk2dAenVTIyH3QEdAqXr0lFIOMQUVZ0Jl8emK9EEwiEUqoBdqKrNQy-yGDLzfUJoAU6xPnmbNV7w09Uc0N62rTtESi-aI7hwdKxP9NBY1Rqtq_d5GU2d2GM3R-IPDHdatvyXX1mw93v3eQ7KaPq8mr_Fs8fI2Gc_iggnRxpDn1NgclSxFiQnnZZKojCFXmSwKmXGWlyCFYiVahtYmxlqFHCBHymXKhuShG7t3zecBfas3zcHV4UedQCqVAJmxkBp1qbXZoq5q27TOFOGUuKuK4MtW4X2sIOWcKSoDAB1QuMZ7h1bvXbUz7qyB6otW3WnVQau-aNWnwCQd40O2XqP7W-V_6BuFyHuf |
CitedBy_id | crossref_primary_10_1002_cpa_21957 crossref_primary_10_1109_TIT_2024_3360951 |
Cites_doi | 10.1137/070697835 10.1002/cpa.21432 10.1016/j.acha.2015.07.007 10.1007/s00440-011-0360-9 10.1093/imaiai/iaw014 10.1007/978-3-319-19749-4_2 10.1145/2699439 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2017 COPYRIGHT 2019 Springer Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017 – notice: COPYRIGHT 2019 Springer – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00041-017-9579-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1531-5851 |
EndPage | 593 |
ExternalDocumentID | A718443706 10_1007_s00041_017_9579_x |
GroupedDBID | -52 -5D -5G -BR -EM -~C .86 06D 0R~ 0VY 199 1N0 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAGAY AAHNG AAIAL AAJKR AANZL AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEFTE AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF IAO IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MQGED NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XSW YLTOR Z45 Z7U ZMTXR ~EX -Y2 1SB 2P1 2VQ 2WC 5QI 692 6TJ AACDK AAEOY AAJBT AARHV AASML AAYTO AAYXX AAYZH ABAKF ABTAH ABULA ACAOD ACBXY ACDTI ACZOJ AEARS AEBTG AEFIE AEFQL AEKMD AEMSY AFBBN AFEXP AFGCZ AGGDS AGQEE AGRTI AI. AIGIU AJBLW BBWZM CAG CITATION COF H13 HZ~ IHE KOW N2Q NDZJH O9- OK1 R4E REI RNI RYB RZK RZZ S1Z S26 S28 SCLPG T16 VH1 VOH ZWQNP ZY4 |
ID | FETCH-LOGICAL-c355t-1bb0afbe76d5de244d22793e4796cc6943bd16573def3eff2aff7e411be04683 |
IEDL.DBID | AEJHL |
ISSN | 1069-5869 |
IngestDate | Tue Nov 19 06:31:25 EST 2024 Tue Nov 12 23:09:24 EST 2024 Thu Nov 21 22:19:07 EST 2024 Sat Dec 16 12:03:46 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Nuclear norm minimization Convex optimization 90C25 Phase retrieval Positive semidefinite least squares problem Random measurements 60B20 94A12 Quantum state tomography Low rank matrix recovery 94A20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-1bb0afbe76d5de244d22793e4796cc6943bd16573def3eff2aff7e411be04683 |
PQID | 2186751693 |
PQPubID | 2044008 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2186751693 gale_infotracacademiconefile_A718443706 crossref_primary_10_1007_s00041_017_9579_x springer_journals_10_1007_s00041_017_9579_x |
PublicationCentury | 2000 |
PublicationDate | 4-15-2019 |
PublicationDateYYYYMMDD | 2019-04-15 |
PublicationDate_xml | – month: 04 year: 2019 text: 4-15-2019 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Heidelberg |
PublicationTitle | The Journal of fourier analysis and applications |
PublicationTitleAbbrev | J Fourier Anal Appl |
PublicationYear | 2019 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Mendelson (CR8) 2015; 62 Candès, Strohmer, Voroninski (CR1) 2013; 66 Tropp, Pfander (CR9) 2015 Kabanava, Kueng, Rauhut, Terstiege (CR5) 2016; 5 Tropp (CR6) 2012; 153 Foucart, Rauhut (CR3) 2013 Kueng, Rauhut, Terstiege (CR4) 2017; 42 Koltchinskii, Mendelson (CR7) 2015; 23 Recht, Fazel, Parrilo (CR2) 2010; 52 E Candès (9579_CR1) 2013; 66 M Kabanava (9579_CR5) 2016; 5 S Mendelson (9579_CR8) 2015; 62 B Recht (9579_CR2) 2010; 52 JA Tropp (9579_CR9) 2015 S Foucart (9579_CR3) 2013 V Koltchinskii (9579_CR7) 2015; 23 R Kueng (9579_CR4) 2017; 42 J Tropp (9579_CR6) 2012; 153 |
References_xml | – volume: 52 start-page: 471 issue: 3 year: 2010 end-page: 501 ident: CR2 article-title: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization publication-title: SIAM Rev. doi: 10.1137/070697835 contributor: fullname: Parrilo – volume: 66 start-page: 1241 year: 2013 end-page: 1274 ident: CR1 article-title: PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.21432 contributor: fullname: Voroninski – volume: 23 start-page: 12991 year: 2015 end-page: 13008 ident: CR7 article-title: Bounding the smallest singular value of a random matrix without concentration publication-title: Int. Math. Res. Not. contributor: fullname: Mendelson – volume: 42 start-page: 88 issue: 1 year: 2017 end-page: 116 ident: CR4 article-title: Low rank matrix recovery from rank on measurements publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2015.07.007 contributor: fullname: Terstiege – volume: 153 start-page: 759 year: 2012 end-page: 769 ident: CR6 article-title: A comparison principle for functions of a uniformly random subspace publication-title: Probab. Theory Relat. Fields doi: 10.1007/s00440-011-0360-9 contributor: fullname: Tropp – year: 2013 ident: CR3 publication-title: A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis contributor: fullname: Rauhut – volume: 5 start-page: 405 issue: 4 year: 2016 end-page: 441 ident: CR5 article-title: Stable low-rank matrix recovery via null space properties publication-title: Inf. Inference doi: 10.1093/imaiai/iaw014 contributor: fullname: Terstiege – start-page: 67 year: 2015 end-page: 101 ident: CR9 article-title: Convex recovery of a structured signal from independent random linear measurements publication-title: Sampling Theory, a Renaissance doi: 10.1007/978-3-319-19749-4_2 contributor: fullname: Pfander – volume: 62 start-page: 1 issue: 3 year: 2015 end-page: 25 ident: CR8 article-title: Learning without concentration publication-title: J. ACM doi: 10.1145/2699439 contributor: fullname: Mendelson – volume: 62 start-page: 1 issue: 3 year: 2015 ident: 9579_CR8 publication-title: J. ACM doi: 10.1145/2699439 contributor: fullname: S Mendelson – volume: 23 start-page: 12991 year: 2015 ident: 9579_CR7 publication-title: Int. Math. Res. Not. contributor: fullname: V Koltchinskii – volume: 153 start-page: 759 year: 2012 ident: 9579_CR6 publication-title: Probab. Theory Relat. Fields doi: 10.1007/s00440-011-0360-9 contributor: fullname: J Tropp – volume-title: A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis year: 2013 ident: 9579_CR3 contributor: fullname: S Foucart – volume: 66 start-page: 1241 year: 2013 ident: 9579_CR1 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.21432 contributor: fullname: E Candès – volume: 42 start-page: 88 issue: 1 year: 2017 ident: 9579_CR4 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2015.07.007 contributor: fullname: R Kueng – volume: 52 start-page: 471 issue: 3 year: 2010 ident: 9579_CR2 publication-title: SIAM Rev. doi: 10.1137/070697835 contributor: fullname: B Recht – volume: 5 start-page: 405 issue: 4 year: 2016 ident: 9579_CR5 publication-title: Inf. Inference doi: 10.1093/imaiai/iaw014 contributor: fullname: M Kabanava – start-page: 67 volume-title: Sampling Theory, a Renaissance year: 2015 ident: 9579_CR9 doi: 10.1007/978-3-319-19749-4_2 contributor: fullname: JA Tropp |
SSID | ssj0021373 |
Score | 2.251121 |
Snippet | The task of reconstructing a low rank matrix from incomplete linear measurements arises in areas such as machine learning, quantum state tomography and in the... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 588 |
SubjectTerms | Abstract Harmonic Analysis Approximations and Expansions Convexity Fourier Analysis Machine learning Mathematical analysis Mathematical Methods in Physics Mathematics Mathematics and Statistics Matrix methods Optimization Partial Differential Equations Phase retrieval Signal,Image and Speech Processing |
Title | Low-Rank Matrix Recovery via Rank One Tight Frame Measurements |
URI | https://link.springer.com/article/10.1007/s00041-017-9579-x https://www.proquest.com/docview/2186751693 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-LnrwLa4vchAEJdI2r_YiLLrLIq6C7sE9hbRJQIQq-_Dx7810267Pg55KSWjKzCQzky_zBaEDHsUh40FGTBpQwoRhJBGpXwyzMDDCcsMTqB3u3Mqru_i8BTQ5Ub11kT-cVIhksVDXtW4QfUDmC4ijTIiPG-e96-HetuebrYvOZZ1mhVROjtWLhPBYJBWW-dNHPnmjr2vyN3C08Dnt5f_87QpaKiNM3JyYxCqasfkaWvzAO-jfujVZ63AdnV4-vpAbnT_gLvD1v2JISb2Fv-Hne42Lhuvc4h6k8bgNh7lwd7qzONxAvXard9Yh5bUKJPPBxYiEaRpol1opDDfWu3cDLILUMpmILBMJo6kJBZfUWEetc5F2TloWhqn1yXRMN9Fc_pjbLYQd9clexDjXoPCUaZNkWrrIUSZdzKMGOqqkq54m5BmqpkkuJKS8hBRISL020CHIX8HEGg10psv6AD8UUFSppveijFEZiAbarVSkyhk3VHC3lgTQjzbQcaWTafOvw27_qfcOWvARUwEnhXwXzY0GY7uHZodmvF-aITzv-v3zd6Uy1yI |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5S59Dm0KRNStym6R4KhZYFSfuSLgVT2zjEdqH1wT4tK-0uhIIc_Mjj33dHluymj0NzFCt2xczsznyamW8B3oskjbmICmrziFEuLaeZzMNhWMSRlU5YkWHv8OC7Gk_Tbg9pcljTC1NVuzcpyeqk3ja7YfiB0BdTjiqjIXDcR7LzpAX7nels1t3irJipTV29zKhIZdYkM_82yQN39Puh_Ed2tHI6_cNHfe4RPK9jTNLZGMUL2HPlSzj4hXkwPI22dK3LY_g8nN_Sb6b8QUbI2H9HEJQGG78nN1eGVANfS0cmCORJH8u5yGj3b3F5ApN-b_JlQOuLFWgRwosVjfM8Mj53SlphXXDwFnkEmeMqk0UhM85yG0uhmHWeOe8T471yPI5zF-B0yl5Bq5yX7hSIZwHuJVwIgyrPubFZYZRPPOPKpyJpw8dGvPp6Q5-ht0TJlYR0kJBGCem7NnxABWjcWquFKUzdIRCWQpIq3Ql-lHOmItmGs0ZHut5zS423aylM-7E2fGp0shv-57Kv_-vtd_B0MBkN9fBifPkGnoX4qUouxeIMWqvF2r2FJ0u7Pq9t8ickFdmi |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BJk3wMNgGoqyAH5CQQNaS-Ct5AVWsVWHtNkEfeLOc2JYQUlY1HXT__Xz56Da2PSAeI0d2dHf23S939zPAW5GkMRdRQW0eMcql5TSTeTgMiziy0gkrMuwdHn9Xxz_SwyHS5HzqemHqavcuJdn0NCBLU7k8mFt_sG58w1AEYTCmH1VGQxC5yQOQCYa-ORh-HU_WmCtmqqmxlxkVqcy6xOZdk9xwTX8f0LcypbUDGj35709_Cttt7EkGjbHswANX7sLja4yE4Wm6pnGt9uDj5OwP_WbKX2SKTP4rgmA12P4F-f3TkHrgpHRkhgCfjLDMi0yv_jlWz2A2Gs4-j2l74QItQtixpHGeR8bnTkkrrAuO3yK_IHNcZbIoZMZZbmMpFLPOM-d9YrxXjsdx7gLMTtlz2CjPSvcCiGcBBiZcCIOmkHNjs8Ion3jGlU9F0oP3naj1vKHV0GsC5VpCOkhIo4T0qgfvUBkat9xyYQrTdg6EpZC8Sg-Cf-WcqUj2oN_pS7d7sdJ465bCdCDrwYdOP1fD9y778p_efgNbp4cjPflyfLQPj0JYVeecYtGHjeXi3L2Ch5U9f92a5yVI2-Ij |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Rank+Matrix+Recovery+via+Rank+One+Tight+Frame+Measurements&rft.jtitle=The+Journal+of+fourier+analysis+and+applications&rft.au=Rauhut%2C+Holger&rft.au=Terstiege%2C+Ulrich&rft.date=2019-04-15&rft.pub=Springer+US&rft.issn=1069-5869&rft.eissn=1531-5851&rft.volume=25&rft.issue=2&rft.spage=588&rft.epage=593&rft_id=info:doi/10.1007%2Fs00041-017-9579-x&rft.externalDocID=10_1007_s00041_017_9579_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-5869&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-5869&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-5869&client=summon |