Ani-GIFs: A benchmark dataset for domain generalization of action recognition from GIFs

Deep learning models perform remarkably well for the same task under the assumption that data is always coming from the same distribution. However, this is generally violated in practice, mainly due to the differences in data acquisition techniques and the lack of information about the underlying so...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in computer science (Lausanne) Vol. 4
Main Authors: Majumdar, Shoumik Sovan, Jain, Shubhangi, Tourni, Isidora Chara, Mustafin, Arsenii, Lteif, Diala, Sclaroff, Stan, Saenko, Kate, Bargal, Sarah Adel
Format: Journal Article
Language:English
Published: Frontiers Media S.A 26-09-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep learning models perform remarkably well for the same task under the assumption that data is always coming from the same distribution. However, this is generally violated in practice, mainly due to the differences in data acquisition techniques and the lack of information about the underlying source of new data. Domain generalization targets the ability to generalize to test data of an unseen domain; while this problem is well-studied for images, such studies are significantly lacking in spatiotemporal visual content—videos and GIFs. This is due to (1) the challenging nature of misalignment of temporal features and the varying appearance/motion of actors and actions in different domains, and (2) spatiotemporal datasets being laborious to collect and annotate for multiple domains. We collect and present the first synthetic video dataset of Animated GIFs for domain generalization, Ani-GIFs , that is used to study the domain gap of videos vs. GIFs, and animated vs. real GIFs, for the task of action recognition. We provide a training and testing setting for Ani-GIFs , and extend two domain generalization baseline approaches, based on data augmentation and explainability, to the spatiotemporal domain to catalyze research in this direction.
AbstractList Deep learning models perform remarkably well for the same task under the assumption that data is always coming from the same distribution. However, this is generally violated in practice, mainly due to the differences in data acquisition techniques and the lack of information about the underlying source of new data. Domain generalization targets the ability to generalize to test data of an unseen domain; while this problem is well-studied for images, such studies are significantly lacking in spatiotemporal visual content—videos and GIFs. This is due to (1) the challenging nature of misalignment of temporal features and the varying appearance/motion of actors and actions in different domains, and (2) spatiotemporal datasets being laborious to collect and annotate for multiple domains. We collect and present the first synthetic video dataset of Animated GIFs for domain generalization, Ani-GIFs , that is used to study the domain gap of videos vs. GIFs, and animated vs. real GIFs, for the task of action recognition. We provide a training and testing setting for Ani-GIFs , and extend two domain generalization baseline approaches, based on data augmentation and explainability, to the spatiotemporal domain to catalyze research in this direction.
Deep learning models perform remarkably well for the same task under the assumption that data is always coming from the same distribution. However, this is generally violated in practice, mainly due to the differences in data acquisition techniques and the lack of information about the underlying source of new data. Domain generalization targets the ability to generalize to test data of an unseen domain; while this problem is well-studied for images, such studies are significantly lacking in spatiotemporal visual content—videos and GIFs. This is due to (1) the challenging nature of misalignment of temporal features and the varying appearance/motion of actors and actions in different domains, and (2) spatiotemporal datasets being laborious to collect and annotate for multiple domains. We collect and present the first synthetic video dataset of Animated GIFs for domain generalization, Ani-GIFs, that is used to study the domain gap of videos vs. GIFs, and animated vs. real GIFs, for the task of action recognition. We provide a training and testing setting for Ani-GIFs, and extend two domain generalization baseline approaches, based on data augmentation and explainability, to the spatiotemporal domain to catalyze research in this direction.
Author Mustafin, Arsenii
Sclaroff, Stan
Majumdar, Shoumik Sovan
Saenko, Kate
Tourni, Isidora Chara
Bargal, Sarah Adel
Jain, Shubhangi
Lteif, Diala
Author_xml – sequence: 1
  givenname: Shoumik Sovan
  surname: Majumdar
  fullname: Majumdar, Shoumik Sovan
– sequence: 2
  givenname: Shubhangi
  surname: Jain
  fullname: Jain, Shubhangi
– sequence: 3
  givenname: Isidora Chara
  surname: Tourni
  fullname: Tourni, Isidora Chara
– sequence: 4
  givenname: Arsenii
  surname: Mustafin
  fullname: Mustafin, Arsenii
– sequence: 5
  givenname: Diala
  surname: Lteif
  fullname: Lteif, Diala
– sequence: 6
  givenname: Stan
  surname: Sclaroff
  fullname: Sclaroff, Stan
– sequence: 7
  givenname: Kate
  surname: Saenko
  fullname: Saenko, Kate
– sequence: 8
  givenname: Sarah Adel
  surname: Bargal
  fullname: Bargal, Sarah Adel
BookMark eNpNkM1OAjEURhuDiYg8gLu-wGB_Zqa37ggRJCFxo3HZdDq3WISWdGajTy8Mxri6J3dx8uXcklFMEQm552wmJegH79LhOBNMiBmoGsr6ioxFLcpCg4bRP74h067bMcZExXkFakze5zEUq_Wye6Rz2mB0HwebP2lre9thT33KtE0HGyLdYsRs9-Hb9iFFmjy1bqCMLm1jGNjndKBn3R259nbf4fT3Tsjb8ul18VxsXlbrxXxTOFmVfYG6qZ1mqvHWCaE1KCErFMJKUC2UVcNY3SiuNICofdO6hiMXvPUaK4lSywlZX7xtsjtzzOE0_8skG8zwSHlrbO6D26OpQIDiuhTS6lIBWndSa8eASYke7MnFLy6XU9dl9H8-zsw5tBlCm3NocwktfwBRgXKx
CitedBy_id crossref_primary_10_1016_j_cviu_2024_103975
Cites_doi 10.1609/aaai.v34i04.5750
10.1109/ICDM.2016.0136
10.1109/ICCV.2017.591
10.1080/08351813.2016.1164391
10.1177/1470412914553365
10.1109/ACII.2017.8273647
10.1109/CVPR.2016.282
10.1007/s11263-015-0816-y
10.1145/3274349
10.1145/3400066
10.1177/2056305117725223
10.1109/CVPR.2012.6248110
10.1007/978-3-030-01267-0_38
10.1609/aaai.v32i1.11596
10.1145/2647868.2656408
10.1109/CVPR.2012.6247924
10.1109/ICCV.2011.6126543
10.1109/TPAMI.2021.3116945
10.1016/j.patcog.2018.03.005
10.1109/JBHI.2017.2769800
10.1109/ICCV48922.2021.01020
10.1109/TNN.2010.2091281
10.1109/TNNLS.2011.2178556
10.1007/978-3-319-58347-1_10
10.5555/2946645.3007061
10.1109/CVPR.2011.5995347
10.1186/s40537-019-0197-0
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fcomp.2022.876846
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2624-9898
ExternalDocumentID oai_doaj_org_article_5828719423a9478eac6b79c08033ef8a
10_3389_fcomp_2022_876846
GroupedDBID 9T4
AAFWJ
AAYXX
ACXDI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c354t-e9b6c907bfac229987235e22a387d845b006b71798826fbdcb1e121df9e53e393
IEDL.DBID DOA
ISSN 2624-9898
IngestDate Tue Oct 22 15:15:16 EDT 2024
Thu Nov 21 21:08:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-e9b6c907bfac229987235e22a387d845b006b71798826fbdcb1e121df9e53e393
OpenAccessLink https://doaj.org/article/5828719423a9478eac6b79c08033ef8a
ParticipantIDs doaj_primary_oai_doaj_org_article_5828719423a9478eac6b79c08033ef8a
crossref_primary_10_3389_fcomp_2022_876846
PublicationCentury 2000
PublicationDate 2022-09-26
PublicationDateYYYYMMDD 2022-09-26
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-26
  day: 26
PublicationDecade 2020
PublicationTitle Frontiers in computer science (Lausanne)
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References B21
Hoffman (B23) 2018
Li (B38); 80
Kuehne (B31) 2011
Ponce (B53) 2006
Carreira (B6) 2018
Long (B44) 2015
Yang (B74) 2014
Torralba (B66) 2011
Tzeng (B67) 2017
Zajac (B78) 2019
Soomro (B63) 2012
Yao (B76) 2019
Motiian (B47) 2017
Jou (B27) 2014
Chen (B8) 2019
Li (B37)
Jamal (B24) 2018
Wilson (B72) 2020; 11
Jhuo (B25) 2012
Selvaraju (B61) 2017
Zunino (B79) 2020
Baktashmotlagh (B1) 2016; 17
Chen (B7) 2020
Bowles (B3) 2018
Recht (B54) 2019
Li (B32) 2021
Moosavi-Dezfooli (B46) 2016
Ros (B55) 2016
Xu (B73) 2018
Kay (B28) 2017
Pan (B51) 2010; 22
Li (B36) 2016
Sun (B64) 2016
Saito (B58) 2018
Beery (B2) 2018
Ciregan (B11) 2012
Miltner (B45) 2017
Sato (B59) 2015
Rössler (B56) 2018
Long (B41) 2018
Yu (B77) 2018
Dou (B15) 2019
Russakovsky (B57) 2015; 115
Nam (B50) 2021
Kong (B30) 2020
Liu (B39) 2016
Chen (B9) 2017
Volpi (B68) 2019
Wang (B71)
Yao (B75) 2021
Ganin (B18) 2014
Budvytis (B4) 2017
Carreira (B5) 2018
Kim (B29) 2021
Long (B42) 2016
Ghifary (B20) 2015
Shorten (B62) 2019; 6
Li (B35)
B52
Volpi (B69) 2018
Gygli (B22) 2016
Ganin (B19) 2016; 17
Liu (B40) 2021
Cruz (B12) 2020
Scheck (B60) 2020
Long (B43) 2017
Wan (B70) 2013
Diederik (B14) 2014
Tolins (B65) 2016; 49
Li (B34) 2017
Li (B33) 2020
DeVries (B13) 2017
Muandet (B48) 2013
Jiang (B26) 2018; 2
Eppink (B17) 2014; 13
Murez (B49) 2018
Cheplygina (B10) 2017; 22
Duan (B16) 2012; 23
References_xml – start-page: 6447
  volume-title: Annual Conference on Neural Information Processing Systems, Vol. 32
  year: 2019
  ident: B15
  article-title: Domain generalization via model-agnostic learning of semantic features,
  contributor:
    fullname: Dou
– volume-title: arXiv preprint arXiv:1705.07750
  year: 2018
  ident: B5
  article-title: Quo vadis, action recognition? A new model and the kinetics dataset
  contributor:
    fullname: Carreira
– volume-title: arXiv preprint arXiv:2004.08058
  year: 2020
  ident: B7
  article-title: Generative adversarial networks for video-to-video domain adaptation
  doi: 10.1609/aaai.v34i04.5750
  contributor:
    fullname: Chen
– start-page: 456
  volume-title: Proceedings of the European Conference on Computer Vision (ECCV)
  year: 2018
  ident: B2
  article-title: Recognition in terra incognita,
  contributor:
    fullname: Beery
– start-page: 10077
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2019
  ident: B78
  article-title: Adversarial framing for image and video classification,
  contributor:
    fullname: Zajac
– start-page: 230
  volume-title: Proceedings of the IEEE International Conference on Computer Vision Workshops
  year: 2017
  ident: B4
  article-title: Large scale labelled video data augmentation for semantic segmentation in driving scenarios,
  contributor:
    fullname: Budvytis
– start-page: 1059
  volume-title: 2016 IEEE 16th International Conference on Data Mining (ICDM)
  year: 2016
  ident: B39
  article-title: Structure-preserved multi-source domain adaptation,
  doi: 10.1109/ICDM.2016.0136
  contributor:
    fullname: Liu
– volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2017
  ident: B34
  article-title: Deeper, broader and artier domain generalization,
  doi: 10.1109/ICCV.2017.591
  contributor:
    fullname: Li
– start-page: 264
  volume-title: BMVC
  year: 2018
  ident: B24
  article-title: Deep domain adaptation in action space,
  contributor:
    fullname: Jamal
– start-page: 618
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2017
  ident: B61
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization,
  contributor:
    fullname: Selvaraju
– ident: B21
– volume-title: A Dataset of 101 Human Action Classes from Videos in the Wild
  year: 2012
  ident: B63
  contributor:
    fullname: Soomro
– volume-title: arXiv preprint arXiv:1705.06950
  year: 2017
  ident: B28
  article-title: The kinetics human action video dataset
  contributor:
    fullname: Kay
– volume: 49
  start-page: 75
  year: 2016
  ident: B65
  article-title: GIFs as embodied enactments in text-mediated conversation
  publication-title: Res. Lang. Soc. Interact
  doi: 10.1080/08351813.2016.1164391
  contributor:
    fullname: Tolins
– start-page: 1058
  volume-title: International Conference on Machine Learning
  year: 2013
  ident: B70
  article-title: Regularization of neural networks using dropconnect,
  contributor:
    fullname: Wan
– volume: 13
  start-page: 298
  year: 2014
  ident: B17
  article-title: A brief history of the gif (so far)
  publication-title: J. Visual Cult
  doi: 10.1177/1470412914553365
  contributor:
    fullname: Eppink
– start-page: 510
  volume-title: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII)
  year: 2017
  ident: B9
  article-title: Gifgif+: Collecting emotional animated gifs with clustered multi-task learning,
  doi: 10.1109/ACII.2017.8273647
  contributor:
    fullname: Chen
– volume-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2016
  ident: B46
  article-title: Deepfool: a simple and accurate method to fool deep neural networks,
  doi: 10.1109/CVPR.2016.282
  contributor:
    fullname: Moosavi-Dezfooli
– volume: 115
  start-page: 211
  year: 2015
  ident: B57
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-015-0816-y
  contributor:
    fullname: Russakovsky
– volume: 2
  start-page: 1
  year: 2018
  ident: B26
  article-title: ‘The perfect one? understanding communication practices and challenges with animated gifs
  publication-title: Proc. ACM Hum. Comput. Interact
  doi: 10.1145/3274349
  contributor:
    fullname: Jiang
– start-page: 973
  volume-title: The IEEE Winter Conference on Applications of Computer Vision
  year: 2020
  ident: B12
  article-title: SVIRO: synthetic vehicle interior rear seat occupancy dataset and benchmark,
  contributor:
    fullname: Cruz
– volume: 11
  start-page: 1
  year: 2020
  ident: B72
  article-title: A survey of unsupervised deep domain adaptation
  publication-title: ACM Trans. Intell. Syst. Technol
  doi: 10.1145/3400066
  contributor:
    fullname: Wilson
– volume-title: Soc. Media Soc
  year: 2017
  ident: B45
  article-title: Never gonna gif you up: analyzing the cultural significance of the animated gif
  doi: 10.1177/2056305117725223
  contributor:
    fullname: Miltner
– start-page: 3642
  volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2012
  ident: B11
  article-title: Multi-column deep neural networks for image classification,
  doi: 10.1109/CVPR.2012.6248110
  contributor:
    fullname: Ciregan
– start-page: 1001
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: B22
  article-title: Video2gif: automatic generation of animated gifs from video,
  contributor:
    fullname: Gygli
– start-page: 2208
  volume-title: Proceedings of the 34th International Conference on Machine Learning
  year: 2017
  ident: B43
  article-title: Deep transfer learning with joint adaptation networks,
  contributor:
    fullname: Long
– volume-title: arXiv preprint arXiv:1702.05538
  year: 2017
  ident: B13
  article-title: Dataset augmentation in feature space
  contributor:
    fullname: DeVries
– start-page: 3964
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2018
  ident: B73
  article-title: Deep cocktail network: multi-source unsupervised domain adaptation with category shift,
  contributor:
    fullname: Xu
– volume-title: Proceedings of the European Conference on Computer Vision (ECCV)
  ident: B37
  article-title: Deep domain generalization via conditional invariant adversarial networks,
  doi: 10.1007/978-3-030-01267-0_38
  contributor:
    fullname: Li
– start-page: 5334
  volume-title: Advances in Neural Information Processing Systems, Vol. 31
  year: 2018
  ident: B69
  article-title: Generalizing to unseen domains via adversarial data augmentation,
  contributor:
    fullname: Volpi
– volume-title: arXiv preprint arXiv:1505.03229
  year: 2015
  ident: B59
  article-title: APAC: augmented pattern classification with neural networks
  contributor:
    fullname: Sato
– start-page: 443
  volume-title: European Conference on Computer Vision
  year: 2016
  ident: B64
  article-title: Deep coral: correlation alignment for deep domain adaptation,
  contributor:
    fullname: Sun
– start-page: 136
  volume-title: Advances in Neural Information Processing System, Vol. 29
  year: 2016
  ident: B42
  article-title: Unsupervised domain adaptation with residual transfer networks,
  contributor:
    fullname: Long
– start-page: 1640
  volume-title: Advances in Neural Information Processing Systems, Vol. 31
  year: 2018
  ident: B41
  article-title: Conditional adversarial domain adaptation,
  contributor:
    fullname: Long
– volume-title: arXiv preprint arXiv:1902.10811
  year: 2019
  ident: B54
  article-title: Do imagenet classifiers generalize to imagenet?
  contributor:
    fullname: Recht
– volume-title: Thirty-Second AAAI Conference on Artificial Intelligence
  ident: B35
  article-title: Learning to generalize: meta-learning for domain generalization,
  doi: 10.1609/aaai.v32i1.11596
  contributor:
    fullname: Li
– start-page: 4500
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2018
  ident: B49
  article-title: Image to image translation for domain adaptation,
  contributor:
    fullname: Murez
– start-page: 943
  volume-title: The IEEE Winter Conference on Applications of Computer Vision
  year: 2020
  ident: B60
  article-title: Learning from theodore: a synthetic omnidirectional top-view indoor dataset for deep transfer learning,
  contributor:
    fullname: Scheck
– volume-title: arXiv preprint arXiv:1803.09179
  year: 2018
  ident: B56
  article-title: Faceforensics: a large-scale video dataset for forgery detection in human faces
  contributor:
    fullname: Rössler
– start-page: 213
  volume-title: Proceedings of the 22nd ACM International Conference on Multimedia
  year: 2014
  ident: B27
  article-title: Predicting viewer perceived emotions in animated GIFs,
  doi: 10.1145/2647868.2656408
  contributor:
    fullname: Jou
– volume-title: arXiv preprint arXiv:1912.03716
  year: 2019
  ident: B76
  article-title: Adversarial pyramid network for video domain generalization
  contributor:
    fullname: Yao
– start-page: 2551
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2015
  ident: B20
  article-title: Domain generalization for object recognition with multi-task autoencoders,
  contributor:
    fullname: Ghifary
– start-page: 4641
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: B36
  article-title: TGIF: a new dataset and benchmark on animated gif description,
  contributor:
    fullname: Li
– start-page: 1814
  volume-title: The IEEE Winter Conference on Applications of Computer Vision
  year: 2020
  ident: B30
  article-title: The synthinel-1 dataset: a collection of high resolution synthetic overhead imagery for building segmentation,
  contributor:
    fullname: Kong
– start-page: 97
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: B44
  article-title: Learning transferable features with deep adaptation networks,
  contributor:
    fullname: Long
– start-page: 3723
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2018
  ident: B58
  article-title: Maximum classifier discrepancy for unsupervised domain adaptation,
  contributor:
    fullname: Saito
– start-page: 2168
  volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2012
  ident: B25
  article-title: Robust visual domain adaptation with low-rank reconstruction,
  doi: 10.1109/CVPR.2012.6247924
  contributor:
    fullname: Jhuo
– start-page: 7980
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2019
  ident: B68
  article-title: Addressing model vulnerability to distributional shifts over image transformation sets,
  contributor:
    fullname: Volpi
– start-page: 2556
  volume-title: 2011 International Conference on Computer Vision
  year: 2011
  ident: B31
  article-title: HMDB: a large video database for human motion recognition,
  doi: 10.1109/ICCV.2011.6126543
  contributor:
    fullname: Kuehne
– volume-title: IEEE Trans. Pattern Anal. Mach. Intell
  year: 2021
  ident: B75
  article-title: VideoDG: generalizing temporal relations in videos to novel domains
  doi: 10.1109/TPAMI.2021.3116945
  contributor:
    fullname: Yao
– volume: 80
  start-page: 109
  ident: B38
  article-title: Adaptive batch normalization for practical domain adaptation
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.03.005
  contributor:
    fullname: Li
– volume: 22
  start-page: 1486
  year: 2017
  ident: B10
  article-title: Transfer learning for multicenter classification of chronic obstructive pulmonary disease
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1109/JBHI.2017.2769800
  contributor:
    fullname: Cheplygina
– volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
  year: 2021
  ident: B40
  article-title: Adversarial unsupervised domain adaptation with conditional and label shift: infer, align and iterate,
  doi: 10.1109/ICCV48922.2021.01020
  contributor:
    fullname: Liu
– volume: 22
  start-page: 199
  year: 2010
  ident: B51
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw
  doi: 10.1109/TNN.2010.2091281
  contributor:
    fullname: Pan
– start-page: 29
  volume-title: Toward Category-Level Object Recognition. Lecture Notes in Computer Science, Vol 4170
  year: 2006
  ident: B53
  article-title: Dataset issues in object recognition,'
  contributor:
    fullname: Ponce
– volume-title: arXiv preprint arXiv:2005.00214
  year: 2020
  ident: B33
  article-title: The AVA-kinetics localized human actions video dataset
  contributor:
    fullname: Li
– start-page: 8690
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2021
  ident: B50
  article-title: Reducing domain gap by reducing style bias,
  contributor:
    fullname: Nam
– volume: 23
  start-page: 504
  year: 2012
  ident: B16
  article-title: Domain adaptation from multiple sources: a domain-dependent regularization approach
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2011.2178556
  contributor:
    fullname: Duan
– volume: 17
  start-page: 2096
  year: 2016
  ident: B19
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res
  doi: 10.1007/978-3-319-58347-1_10
  contributor:
    fullname: Ganin
– volume-title: arXiv preprint arXiv:1805.04687
  year: 2018
  ident: B77
  article-title: BDD100K: a diverse driving video database with scalable annotation tooling
  contributor:
    fullname: Yu
– ident: B52
– start-page: 8886
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
  year: 2021
  ident: B32
  article-title: A simple feature augmentation for domain generalization,
  contributor:
    fullname: Li
– volume-title: arXiv preprint arXiv:1412.7489
  year: 2014
  ident: B74
  article-title: A unified perspective on multi-domain and multi-task learning
  contributor:
    fullname: Yang
– volume: 17
  start-page: 3760
  year: 2016
  ident: B1
  article-title: Distribution-matching embedding for visual domain adaptation
  publication-title: J. Mach. Learn. Res
  doi: 10.5555/2946645.3007061
  contributor:
    fullname: Baktashmotlagh
– volume-title: arXiv preprint arXiv
  year: 2014
  ident: B14
  article-title: ADAM: a method for stochastic optimization
  contributor:
    fullname: Diederik
– start-page: 1521
  volume-title: CVPR 2011
  year: 2011
  ident: B66
  article-title: Unbiased look at dataset bias,
  doi: 10.1109/CVPR.2011.5995347
  contributor:
    fullname: Torralba
– volume-title: arXiv preprint arXiv:1810.10863
  year: 2018
  ident: B3
  article-title: Gan augmentation: Augmenting training data using generative adversarial networks
  contributor:
    fullname: Bowles
– volume-title: arXiv preprint arXiv:1905.10861
  year: 2019
  ident: B8
  article-title: Temporal attentive alignment for video domain adaptation
  contributor:
    fullname: Chen
– volume-title: Gif super-resolution.
  ident: B71
  contributor:
    fullname: Wang
– volume: 6
  start-page: 60
  year: 2019
  ident: B62
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
  contributor:
    fullname: Shorten
– start-page: 10
  volume-title: International Conference on Machine Learning
  year: 2013
  ident: B48
  article-title: Domain generalization via invariant feature representation,”
  contributor:
    fullname: Muandet
– start-page: 3234
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: B55
  article-title: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes,
  contributor:
    fullname: Ros
– start-page: 7167
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017
  ident: B67
  article-title: Adversarial discriminative domain adaptation,
  contributor:
    fullname: Tzeng
– volume-title: arXiv preprint arXiv:1409.7495
  year: 2014
  ident: B18
  article-title: Unsupervised domain adaptation by backpropagation
  contributor:
    fullname: Ganin
– volume-title: arXiv preprint arXiv:1808.01340
  year: 2018
  ident: B6
  article-title: A short note about kinetics-600
  contributor:
    fullname: Carreira
– start-page: 1989
  volume-title: International Conference on Machine Learning
  year: 2018
  ident: B23
  article-title: CyCADA: cycle-consistent adversarial domain adaptation,
  contributor:
    fullname: Hoffman
– start-page: 9619
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
  year: 2021
  ident: B29
  article-title: Selfreg: self-supervised contrastive regularization for domain generalization,
  contributor:
    fullname: Kim
– volume-title: arXiv preprint arXiv:2003.06498
  year: 2020
  ident: B79
  article-title: Explainable deep classification models for domain generalization
  contributor:
    fullname: Zunino
– start-page: 5715
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2017
  ident: B47
  article-title: Unified deep supervised domain adaptation and generalization,
  contributor:
    fullname: Motiian
SSID ssj0002511587
Score 2.2553177
Snippet Deep learning models perform remarkably well for the same task under the assumption that data is always coming from the same distribution. However, this is...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
SubjectTerms domain adaptation
domain generalization
explainability
GIFs
transfer learning
video action recognition
Title Ani-GIFs: A benchmark dataset for domain generalization of action recognition from GIFs
URI https://doaj.org/article/5828719423a9478eac6b79c08033ef8a
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TgMxELUgFQ03IlxyQYVkkrXXF12AhNDQAIJuZa9tQCibKMf_41lvolDR0K2slWU9HzNPM_MGoUthhNTBd0lmBCd5yC0x3AVihHHKRh-B1_1Ths_y6V3d90EmZ9XqC3LCkjxwAq4DYR0ZmTZlRudSxXdCWKlBH5sxH1RyjbpijUzBGwyOM1cyhTEjC9OdACnakQ9Seq0g-CR-GaI1vf7asAx20XbjEeJeWske2vDVPtpZdlvAzeU7QG-96os8PA5mN7iHbRz7HJnpN4YUz5mf4-h8YjceRaKPP5KUdFNhiccBp-oFvMoWit9QV4JhukP0Oui_3A1J0xaBlIznc-K1FWXktDaYkkZroiRl3FNqmJJO5RwukpW1EBkVwbrSZj6jmQvac-aZZkeoVY0rf4ywdRDPLT10Ds2t99aqSDiC064MtOvLNrpaYlRMkvpFEVkDAFrUgBYAaJEAbaNbQHH1IwhX1wNxO4tmO4u_tvPkPyY5RVuwLkjroOIMtebThT9HmzO3uKiPyQ_M9cCp
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ani-GIFs%3A+A+benchmark+dataset+for+domain+generalization+of+action+recognition+from+GIFs&rft.jtitle=Frontiers+in+computer+science+%28Lausanne%29&rft.au=Majumdar%2C+Shoumik+Sovan&rft.au=Jain%2C+Shubhangi&rft.au=Tourni%2C+Isidora+Chara&rft.au=Mustafin%2C+Arsenii&rft.date=2022-09-26&rft.issn=2624-9898&rft.eissn=2624-9898&rft.volume=4&rft_id=info:doi/10.3389%2Ffcomp.2022.876846&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fcomp_2022_876846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-9898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-9898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-9898&client=summon