Influence of sodium concentration on changes of membrane capacitance associated with the electrogenic ion transport by the Na,K-ATPase
Electrogenic ion transport by the Na,K-ATPase was investigated in a model system of protein-containing membrane fragments adsorbed to a lipid bilayer. Transient Na+ currents were induced by photorelease of ATP from inactive caged ATP. This process was accompanied by a capacitance change of the membr...
Saved in:
Published in: | European biophysics journal Vol. 27; no. 6; pp. 605 - 617 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Springer Nature B.V
01-01-1998
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrogenic ion transport by the Na,K-ATPase was investigated in a model system of protein-containing membrane fragments adsorbed to a lipid bilayer. Transient Na+ currents were induced by photorelease of ATP from inactive caged ATP. This process was accompanied by a capacitance change of the membrane system. Two methods were applied to measure capacitances in the frequency range 1 to 6000 Hz. The frequency dependent capacitance increment, delta C, was of sigmoidal shape and decreased at high frequencies. The midpoint frequency, f0, depended on the ionic strength of the buffer. At 150 mM NaCl f0 was about 200 Hz and decreased to 12 Hz at high ionic strength (1 M). At low frequencies (f << f0) the capacitance increment became frequency independent. It was, however, dependent on Na+ concentration and on the membrane potential which was generated by the charge transferred. A simple model is presented to analyze the experimental data quantitatively as a function of two parameters, the capacitance of the adsorbed membrane fragments, Cp, and the potential of maximum capacitance increment, psi 0. Below 5 mM Na+ a negative capacitance change was detected which may be assigned to electrogenic Na+ binding to cytoplasmic sites. It could be shown that the results obtained by experiments with the presented alternating current method contain the information which is determined by current-relaxation experiments with cell membranes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0175-7571 1432-1017 |
DOI: | 10.1007/s002490050172 |