Irradiation as an alternative route for protein crosslinking: Cosolvent free BSA nanoparticles
Recent studies reported the development of protein-based nanoparticles by the use of ɣ-irradiation for the production of advanced drug carriers and biomaterials at nanolevel. Basically, the technique combines protein aggregation by means of protein desolvation using a cosolvent, followed by crosslin...
Saved in:
Published in: | Radiation physics and chemistry (Oxford, England : 1993) Vol. 124; pp. 111 - 115 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-07-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent studies reported the development of protein-based nanoparticles by the use of ɣ-irradiation for the production of advanced drug carriers and biomaterials at nanolevel. Basically, the technique combines protein aggregation by means of protein desolvation using a cosolvent, followed by crosslinking using irradiation. We hereby report the effect irradiation dose over the development of protein-based nanoparticles combined or not with cosolvents. BSA was used as a model protein and the samples were irradiated in phosphate buffer (pH=7.2) using a gammacell in absence or presence of ethanol or methanol at 30% and 40% (v/v) respectively. The irradiation dose effect was evaluated following the exposition of BSA to 2.5, 5, 7.5 and 10kGy over particle size and protein crosslinking, as determined by photon correlation microscopy and fluorescence measurements. Optimized effects were achieved at 10kGy, under the assayed dose range, with regard to higher particle size and protein crosslinking levels. The use of irradiation was suitable for the synthesis of BSA nanoparticles and tuning of particle size was achieved by controlling the absorbed dose. While the use of ethanol provided an additional control over BSA particle size if compared to the use of methanol at the concentrations assayed, the possibility to perform BSA crosslinking in absence of cosolvents unraveled a novel one-step procedure for the synthesis of protein nanoparticles with no toxicity generated by the use of cosolvents or monomers.
•Synthesis of BSA nanoparticles by irradiation.•Tunable particle size by control of the absorbed dose.•Overview of the effect of cosolvents over nanoparticle formation.•Engineered BSA nanoparticles for biomedical applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0969-806X 1879-0895 |
DOI: | 10.1016/j.radphyschem.2016.01.021 |