Enhancing Software Feature Extraction Results Using Sentiment Analysis to Aid Requirements Reuse
Recently, feature extraction from user reviews has been used for requirements reuse to improve the software development process. However, research has yet to use sentiment analysis in the extraction for it to be well understood. The aim of this study is to improve software feature extraction results...
Saved in:
Published in: | Computers (Basel) Vol. 10; no. 3; p. 36 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
01-03-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Recently, feature extraction from user reviews has been used for requirements reuse to improve the software development process. However, research has yet to use sentiment analysis in the extraction for it to be well understood. The aim of this study is to improve software feature extraction results by using sentiment analysis. Our study’s novelty focuses on the correlation between feature extraction from user reviews and results of sentiment analysis for requirement reuse. This study can inform system analysis in the requirements elicitation process. Our proposal uses user reviews for the software feature extraction and incorporates sentiment analysis and similarity measures in the process. Experimental results show that the extracted features used to expand existing requirements may come from positive and negative sentiments. However, extracted features with positive sentiment overall have better values than negative sentiments, namely 90% compared to 63% for the relevance value, 74–47% for prompting new features, and 55–26% for verbatim reuse as new requirements. |
---|---|
AbstractList | Recently, feature extraction from user reviews has been used for requirements reuse to improve the software development process. However, research has yet to use sentiment analysis in the extraction for it to be well understood. The aim of this study is to improve software feature extraction results by using sentiment analysis. Our study’s novelty focuses on the correlation between feature extraction from user reviews and results of sentiment analysis for requirement reuse. This study can inform system analysis in the requirements elicitation process. Our proposal uses user reviews for the software feature extraction and incorporates sentiment analysis and similarity measures in the process. Experimental results show that the extracted features used to expand existing requirements may come from positive and negative sentiments. However, extracted features with positive sentiment overall have better values than negative sentiments, namely 90% compared to 63% for the relevance value, 74–47% for prompting new features, and 55–26% for verbatim reuse as new requirements. |
Author | Aprillya, Via Raharjana, Indra Kharisma Justitia, Army Zaman, Badrus Fauzi, Shukor Sanim Mohd |
Author_xml | – sequence: 1 givenname: Indra Kharisma orcidid: 0000-0002-0622-3374 surname: Raharjana fullname: Raharjana, Indra Kharisma – sequence: 2 givenname: Via orcidid: 0000-0003-3920-1822 surname: Aprillya fullname: Aprillya, Via – sequence: 3 givenname: Badrus surname: Zaman fullname: Zaman, Badrus – sequence: 4 givenname: Army orcidid: 0000-0002-4306-1634 surname: Justitia fullname: Justitia, Army – sequence: 5 givenname: Shukor Sanim Mohd surname: Fauzi fullname: Fauzi, Shukor Sanim Mohd |
BookMark | eNplUNtKAzEQDaJgrf0A3_YHVnPbSx5LabVQENSCb2uaTGrKdlOTLNq_N21FBIdh5sztMJwrdN65DhC6IfiWMYHvlNvu-gg-EIxZ8vIMDSiuWM4ZeT3_gy_RKIQNTiYIqykZoLdp9y47Zbt19uxM_JQeshnI2Kc8_Ypeqmhdlz1B6NsYsmU4bkIX7TaFbNzJdh9syKLLxlanvY_eejjMQir6ANfowsg2wOgnD9FyNn2ZPOSLx_v5ZLzIFSt4zFfUKKHKUnAgimsOFdC6LjjhRhSVWOESHyCtdHrcGEJLzGqsBKlBl9QYNkTzE692ctPsvN1Kv2-ctM2x4fy6kT5a1UKTjlRRqkIoRXlNiJRAFdZarBjRGiBxkROX8i4ED-aXj-DmoHjzT3H2DSE2eXY |
CitedBy_id | crossref_primary_10_1016_j_infsof_2023_107195 |
Cites_doi | 10.1016/j.infsof.2014.01.009 10.1007/978-94-010-0201-1_1 10.1109/ACCESS.2020.2982837 10.1063/5.0042134 10.1109/INAES.2016.7821927 10.1016/j.procs.2014.07.013 10.1145/2491411.2491455 10.3390/e22091057 10.1109/RE.2016.67 10.3115/1225403.1225421 10.1007/978-3-319-06605-9_48 10.1007/s10664-018-9601-1 10.1007/s00766-016-0249-3 10.3390/computers8030055 10.1109/ACCESS.2021.3070606 10.1016/j.asoc.2016.07.048 10.1145/2568225.2568263 10.3390/mca23010011 10.1109/RE.2017.71 10.1109/RE.2014.6912257 10.1109/ICSM.2015.7332474 10.1109/RE.2013.6636712 10.1016/j.jss.2015.12.030 10.1109/EECSI.2018.8752792 10.5381/jot.2006.5.6.a1 10.1109/ICITEED.2018.8534785 10.1109/JCSSE.2019.8864199 10.1145/2915970.2916003 10.20473/jisebi.6.1.27-36 10.20473/jisebi.6.2.112-122 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/computers10030036 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2073-431X |
ExternalDocumentID | oai_doaj_org_article_918c56c59cc24811aae2c0dd9b31ddee 10_3390_computers10030036 |
GroupedDBID | 3V. 5VS 8FE 8FG AADQD AAYXX ABUWG ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 M0N MODMG M~E OK1 P62 PIMPY PQQKQ PROAC RIG |
ID | FETCH-LOGICAL-c354t-b2fc9c6694e1c4d4e7e2885414f9579b06014f927d138ff1260380c918ed62ff3 |
IEDL.DBID | DOA |
ISSN | 2073-431X |
IngestDate | Tue Oct 22 15:13:04 EDT 2024 Thu Sep 26 21:22:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-b2fc9c6694e1c4d4e7e2885414f9579b06014f927d138ff1260380c918ed62ff3 |
ORCID | 0000-0002-0622-3374 0000-0003-3920-1822 0000-0002-4306-1634 |
OpenAccessLink | https://doaj.org/article/918c56c59cc24811aae2c0dd9b31ddee |
ParticipantIDs | doaj_primary_oai_doaj_org_article_918c56c59cc24811aae2c0dd9b31ddee crossref_primary_10_3390_computers10030036 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Computers (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Prastyo (ref_29) 2020; 6 ref_36 Nayebi (ref_22) 2018; 23 ref_35 ref_34 ref_33 Suali (ref_8) 2019; 97 ref_10 ref_32 ref_30 Mirza (ref_2) 2020; 8 ref_19 Raharjana (ref_13) 2020; 6 ref_17 ref_16 ref_38 Sari (ref_12) 2021; 2329 ref_15 ref_37 Carrizo (ref_6) 2014; 56 Liu (ref_9) 2017; 124 ref_25 Khusidman (ref_14) 2006; 5 ref_23 Bakar (ref_18) 2016; 49 ref_21 ref_20 Zhang (ref_31) 2014; 34 ref_1 ref_3 Ferrari (ref_11) 2016; 21 ref_28 ref_27 ref_26 ref_5 Jiang (ref_24) 2014; 8444 LNAI ref_4 ref_7 |
References_xml | – ident: ref_7 – ident: ref_5 – volume: 56 start-page: 644 year: 2014 ident: ref_6 article-title: Systematizing requirements elicitation technique selection publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2014.01.009 contributor: fullname: Carrizo – ident: ref_36 doi: 10.1007/978-94-010-0201-1_1 – volume: 8 start-page: 60801 year: 2020 ident: ref_2 article-title: Extended Rationale-Based Model for Tacit Knowledge Elicitation in Requirements Elicitation Context publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982837 contributor: fullname: Mirza – volume: 2329 start-page: 050001 year: 2021 ident: ref_12 article-title: Crowdsourcing as a tool to elicit software requirements publication-title: AIP Conf. Proc. doi: 10.1063/5.0042134 contributor: fullname: Sari – ident: ref_19 doi: 10.1109/INAES.2016.7821927 – volume: 34 start-page: 458 year: 2014 ident: ref_31 article-title: Sentiment Analysis on Reviews of Mobile Users publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2014.07.013 contributor: fullname: Zhang – ident: ref_16 doi: 10.1145/2491411.2491455 – ident: ref_3 doi: 10.3390/e22091057 – ident: ref_37 – ident: ref_21 doi: 10.1109/RE.2016.67 – ident: ref_1 – ident: ref_34 doi: 10.3115/1225403.1225421 – volume: 8444 LNAI start-page: 584 year: 2014 ident: ref_24 article-title: For User-Driven Software Evolution: Requirements Elicitation Derived from Mining Online Reviews publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-319-06605-9_48 contributor: fullname: Jiang – volume: 23 start-page: 2764 year: 2018 ident: ref_22 article-title: App store mining is not enough for app improvement publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-018-9601-1 contributor: fullname: Nayebi – ident: ref_4 – volume: 21 start-page: 333 year: 2016 ident: ref_11 article-title: Ambiguity and tacit knowledge in requirements elicitation interviews publication-title: Requir. Eng. doi: 10.1007/s00766-016-0249-3 contributor: fullname: Ferrari – ident: ref_30 doi: 10.3390/computers8030055 – ident: ref_28 doi: 10.1109/ACCESS.2021.3070606 – volume: 49 start-page: 1297 year: 2016 ident: ref_18 article-title: Extracting features from online software reviews to aid requirements reuse publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.07.048 contributor: fullname: Bakar – ident: ref_33 doi: 10.1145/2568225.2568263 – ident: ref_35 doi: 10.3390/mca23010011 – ident: ref_17 doi: 10.1109/RE.2017.71 – ident: ref_26 doi: 10.1109/RE.2014.6912257 – ident: ref_32 doi: 10.1109/ICSM.2015.7332474 – ident: ref_27 doi: 10.1109/RE.2013.6636712 – volume: 124 start-page: 187 year: 2017 ident: ref_9 article-title: Requirements cybernetics: Elicitation based on user behavioral data publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2015.12.030 contributor: fullname: Liu – ident: ref_10 doi: 10.1109/EECSI.2018.8752792 – ident: ref_15 – volume: 97 start-page: 918 year: 2019 ident: ref_8 article-title: Software quality measurement in software engineering project: A systematic literature review publication-title: J. Theor. Appl. Inf. Technol. contributor: fullname: Suali – volume: 5 start-page: 43 year: 2006 ident: ref_14 article-title: A Classification Framework for Software Reuse publication-title: J. Object Technol. doi: 10.5381/jot.2006.5.6.a1 contributor: fullname: Khusidman – ident: ref_20 doi: 10.1109/ICITEED.2018.8534785 – ident: ref_38 – ident: ref_23 doi: 10.1109/JCSSE.2019.8864199 – ident: ref_25 doi: 10.1145/2915970.2916003 – volume: 6 start-page: 27 year: 2020 ident: ref_13 article-title: Tool for Generating Behavior-Driven Development Test-Cases publication-title: J. Inf. Syst. Eng. Bus. Intell. doi: 10.20473/jisebi.6.1.27-36 contributor: fullname: Raharjana – volume: 6 start-page: 112 year: 2020 ident: ref_29 article-title: Tweets Responding to the Indonesian Government’s Handling of COVID-19: Sentiment Analysis Using SVM with Normalized Poly Kernel publication-title: J. Inf. Syst. Eng. Bus. Intell. doi: 10.20473/jisebi.6.2.112-122 contributor: fullname: Prastyo |
SSID | ssj0000913821 |
Score | 2.2321794 |
Snippet | Recently, feature extraction from user reviews has been used for requirements reuse to improve the software development process. However, research has yet to... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 36 |
SubjectTerms | requirements elicitation requirements reuse sentiment analysis software feature extraction user reviews |
Title | Enhancing Software Feature Extraction Results Using Sentiment Analysis to Aid Requirements Reuse |
URI | https://doaj.org/article/918c56c59cc24811aae2c0dd9b31ddee |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwtvRHnJAxNS1DiJE3sskKoTAwWJLSTOGZBQippE8PO5c9JSiYGFKQ9ZUfSdfb7PPn_H2KXUOZQkPojE2niRNLlXWAg8jLyR4foaQqfENJ0ld0_qNiWZnFWpL8oJ6-SBO-BGWigjYyO1MUGkhMhzCIxflroIBQ5NcN7XV2tkyvlgTdp6otvGDJHXj0xfJKEW1K99J8n8MxGt6fW7iWWyy7b7iJCPuz_ZYxtQ7bOdZbUF3g--A_acVq8kjlG98Bn6zs98AZwCuBav6Vez6E4o8Huo2_em5i4XgM8oGYgWAPlSfYQ3cz5-K7Ed5QC7xcEaH9oaDtnjJH24mXp9fQTPhDJqvCKwRps41hEIE5URJBAoRXW9LW2-FSS1grdBUiIY1gqkLqHyDSIKZRxYGx6xQTWv4JhxXxYK-akpZBJiSCFVLm2eSw2RBhMXZsiulmBlH50MRob0gZDNfiE7ZNcE56ohKVi7F2jXrLdr9pddT_7jI6dsK6AcFJczdsYGzaKFc7ZZl-2F6y_fdO3IGw |
link.rule.ids | 315,782,786,866,2108,27935,27936 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Software+Feature+Extraction+Results+Using+Sentiment+Analysis+to+Aid+Requirements+Reuse&rft.jtitle=Computers+%28Basel%29&rft.au=Indra+Kharisma+Raharjana&rft.au=Via+Aprillya&rft.au=Badrus+Zaman&rft.au=Army+Justitia&rft.date=2021-03-01&rft.pub=MDPI+AG&rft.eissn=2073-431X&rft.volume=10&rft.issue=3&rft.spage=36&rft_id=info:doi/10.3390%2Fcomputers10030036&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_918c56c59cc24811aae2c0dd9b31ddee |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-431X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-431X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-431X&client=summon |