Enhancing Software Feature Extraction Results Using Sentiment Analysis to Aid Requirements Reuse

Recently, feature extraction from user reviews has been used for requirements reuse to improve the software development process. However, research has yet to use sentiment analysis in the extraction for it to be well understood. The aim of this study is to improve software feature extraction results...

Full description

Saved in:
Bibliographic Details
Published in:Computers (Basel) Vol. 10; no. 3; p. 36
Main Authors: Raharjana, Indra Kharisma, Aprillya, Via, Zaman, Badrus, Justitia, Army, Fauzi, Shukor Sanim Mohd
Format: Journal Article
Language:English
Published: MDPI AG 01-03-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, feature extraction from user reviews has been used for requirements reuse to improve the software development process. However, research has yet to use sentiment analysis in the extraction for it to be well understood. The aim of this study is to improve software feature extraction results by using sentiment analysis. Our study’s novelty focuses on the correlation between feature extraction from user reviews and results of sentiment analysis for requirement reuse. This study can inform system analysis in the requirements elicitation process. Our proposal uses user reviews for the software feature extraction and incorporates sentiment analysis and similarity measures in the process. Experimental results show that the extracted features used to expand existing requirements may come from positive and negative sentiments. However, extracted features with positive sentiment overall have better values than negative sentiments, namely 90% compared to 63% for the relevance value, 74–47% for prompting new features, and 55–26% for verbatim reuse as new requirements.
AbstractList Recently, feature extraction from user reviews has been used for requirements reuse to improve the software development process. However, research has yet to use sentiment analysis in the extraction for it to be well understood. The aim of this study is to improve software feature extraction results by using sentiment analysis. Our study’s novelty focuses on the correlation between feature extraction from user reviews and results of sentiment analysis for requirement reuse. This study can inform system analysis in the requirements elicitation process. Our proposal uses user reviews for the software feature extraction and incorporates sentiment analysis and similarity measures in the process. Experimental results show that the extracted features used to expand existing requirements may come from positive and negative sentiments. However, extracted features with positive sentiment overall have better values than negative sentiments, namely 90% compared to 63% for the relevance value, 74–47% for prompting new features, and 55–26% for verbatim reuse as new requirements.
Author Aprillya, Via
Raharjana, Indra Kharisma
Justitia, Army
Zaman, Badrus
Fauzi, Shukor Sanim Mohd
Author_xml – sequence: 1
  givenname: Indra Kharisma
  orcidid: 0000-0002-0622-3374
  surname: Raharjana
  fullname: Raharjana, Indra Kharisma
– sequence: 2
  givenname: Via
  orcidid: 0000-0003-3920-1822
  surname: Aprillya
  fullname: Aprillya, Via
– sequence: 3
  givenname: Badrus
  surname: Zaman
  fullname: Zaman, Badrus
– sequence: 4
  givenname: Army
  orcidid: 0000-0002-4306-1634
  surname: Justitia
  fullname: Justitia, Army
– sequence: 5
  givenname: Shukor Sanim Mohd
  surname: Fauzi
  fullname: Fauzi, Shukor Sanim Mohd
BookMark eNplUNtKAzEQDaJgrf0A3_YHVnPbSx5LabVQENSCb2uaTGrKdlOTLNq_N21FBIdh5sztMJwrdN65DhC6IfiWMYHvlNvu-gg-EIxZ8vIMDSiuWM4ZeT3_gy_RKIQNTiYIqykZoLdp9y47Zbt19uxM_JQeshnI2Kc8_Ypeqmhdlz1B6NsYsmU4bkIX7TaFbNzJdh9syKLLxlanvY_eejjMQir6ANfowsg2wOgnD9FyNn2ZPOSLx_v5ZLzIFSt4zFfUKKHKUnAgimsOFdC6LjjhRhSVWOESHyCtdHrcGEJLzGqsBKlBl9QYNkTzE692ctPsvN1Kv2-ctM2x4fy6kT5a1UKTjlRRqkIoRXlNiJRAFdZarBjRGiBxkROX8i4ED-aXj-DmoHjzT3H2DSE2eXY
CitedBy_id crossref_primary_10_1016_j_infsof_2023_107195
Cites_doi 10.1016/j.infsof.2014.01.009
10.1007/978-94-010-0201-1_1
10.1109/ACCESS.2020.2982837
10.1063/5.0042134
10.1109/INAES.2016.7821927
10.1016/j.procs.2014.07.013
10.1145/2491411.2491455
10.3390/e22091057
10.1109/RE.2016.67
10.3115/1225403.1225421
10.1007/978-3-319-06605-9_48
10.1007/s10664-018-9601-1
10.1007/s00766-016-0249-3
10.3390/computers8030055
10.1109/ACCESS.2021.3070606
10.1016/j.asoc.2016.07.048
10.1145/2568225.2568263
10.3390/mca23010011
10.1109/RE.2017.71
10.1109/RE.2014.6912257
10.1109/ICSM.2015.7332474
10.1109/RE.2013.6636712
10.1016/j.jss.2015.12.030
10.1109/EECSI.2018.8752792
10.5381/jot.2006.5.6.a1
10.1109/ICITEED.2018.8534785
10.1109/JCSSE.2019.8864199
10.1145/2915970.2916003
10.20473/jisebi.6.1.27-36
10.20473/jisebi.6.2.112-122
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/computers10030036
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2073-431X
ExternalDocumentID oai_doaj_org_article_918c56c59cc24811aae2c0dd9b31ddee
10_3390_computers10030036
GroupedDBID 3V.
5VS
8FE
8FG
AADQD
AAYXX
ABUWG
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
M0N
MODMG
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
RIG
ID FETCH-LOGICAL-c354t-b2fc9c6694e1c4d4e7e2885414f9579b06014f927d138ff1260380c918ed62ff3
IEDL.DBID DOA
ISSN 2073-431X
IngestDate Tue Oct 22 15:13:04 EDT 2024
Thu Sep 26 21:22:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-b2fc9c6694e1c4d4e7e2885414f9579b06014f927d138ff1260380c918ed62ff3
ORCID 0000-0002-0622-3374
0000-0003-3920-1822
0000-0002-4306-1634
OpenAccessLink https://doaj.org/article/918c56c59cc24811aae2c0dd9b31ddee
ParticipantIDs doaj_primary_oai_doaj_org_article_918c56c59cc24811aae2c0dd9b31ddee
crossref_primary_10_3390_computers10030036
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Computers (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Prastyo (ref_29) 2020; 6
ref_36
Nayebi (ref_22) 2018; 23
ref_35
ref_34
ref_33
Suali (ref_8) 2019; 97
ref_10
ref_32
ref_30
Mirza (ref_2) 2020; 8
ref_19
Raharjana (ref_13) 2020; 6
ref_17
ref_16
ref_38
Sari (ref_12) 2021; 2329
ref_15
ref_37
Carrizo (ref_6) 2014; 56
Liu (ref_9) 2017; 124
ref_25
Khusidman (ref_14) 2006; 5
ref_23
Bakar (ref_18) 2016; 49
ref_21
ref_20
Zhang (ref_31) 2014; 34
ref_1
ref_3
Ferrari (ref_11) 2016; 21
ref_28
ref_27
ref_26
ref_5
Jiang (ref_24) 2014; 8444 LNAI
ref_4
ref_7
References_xml – ident: ref_7
– ident: ref_5
– volume: 56
  start-page: 644
  year: 2014
  ident: ref_6
  article-title: Systematizing requirements elicitation technique selection
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2014.01.009
  contributor:
    fullname: Carrizo
– ident: ref_36
  doi: 10.1007/978-94-010-0201-1_1
– volume: 8
  start-page: 60801
  year: 2020
  ident: ref_2
  article-title: Extended Rationale-Based Model for Tacit Knowledge Elicitation in Requirements Elicitation Context
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982837
  contributor:
    fullname: Mirza
– volume: 2329
  start-page: 050001
  year: 2021
  ident: ref_12
  article-title: Crowdsourcing as a tool to elicit software requirements
  publication-title: AIP Conf. Proc.
  doi: 10.1063/5.0042134
  contributor:
    fullname: Sari
– ident: ref_19
  doi: 10.1109/INAES.2016.7821927
– volume: 34
  start-page: 458
  year: 2014
  ident: ref_31
  article-title: Sentiment Analysis on Reviews of Mobile Users
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2014.07.013
  contributor:
    fullname: Zhang
– ident: ref_16
  doi: 10.1145/2491411.2491455
– ident: ref_3
  doi: 10.3390/e22091057
– ident: ref_37
– ident: ref_21
  doi: 10.1109/RE.2016.67
– ident: ref_1
– ident: ref_34
  doi: 10.3115/1225403.1225421
– volume: 8444 LNAI
  start-page: 584
  year: 2014
  ident: ref_24
  article-title: For User-Driven Software Evolution: Requirements Elicitation Derived from Mining Online Reviews
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-319-06605-9_48
  contributor:
    fullname: Jiang
– volume: 23
  start-page: 2764
  year: 2018
  ident: ref_22
  article-title: App store mining is not enough for app improvement
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-018-9601-1
  contributor:
    fullname: Nayebi
– ident: ref_4
– volume: 21
  start-page: 333
  year: 2016
  ident: ref_11
  article-title: Ambiguity and tacit knowledge in requirements elicitation interviews
  publication-title: Requir. Eng.
  doi: 10.1007/s00766-016-0249-3
  contributor:
    fullname: Ferrari
– ident: ref_30
  doi: 10.3390/computers8030055
– ident: ref_28
  doi: 10.1109/ACCESS.2021.3070606
– volume: 49
  start-page: 1297
  year: 2016
  ident: ref_18
  article-title: Extracting features from online software reviews to aid requirements reuse
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.07.048
  contributor:
    fullname: Bakar
– ident: ref_33
  doi: 10.1145/2568225.2568263
– ident: ref_35
  doi: 10.3390/mca23010011
– ident: ref_17
  doi: 10.1109/RE.2017.71
– ident: ref_26
  doi: 10.1109/RE.2014.6912257
– ident: ref_32
  doi: 10.1109/ICSM.2015.7332474
– ident: ref_27
  doi: 10.1109/RE.2013.6636712
– volume: 124
  start-page: 187
  year: 2017
  ident: ref_9
  article-title: Requirements cybernetics: Elicitation based on user behavioral data
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2015.12.030
  contributor:
    fullname: Liu
– ident: ref_10
  doi: 10.1109/EECSI.2018.8752792
– ident: ref_15
– volume: 97
  start-page: 918
  year: 2019
  ident: ref_8
  article-title: Software quality measurement in software engineering project: A systematic literature review
  publication-title: J. Theor. Appl. Inf. Technol.
  contributor:
    fullname: Suali
– volume: 5
  start-page: 43
  year: 2006
  ident: ref_14
  article-title: A Classification Framework for Software Reuse
  publication-title: J. Object Technol.
  doi: 10.5381/jot.2006.5.6.a1
  contributor:
    fullname: Khusidman
– ident: ref_20
  doi: 10.1109/ICITEED.2018.8534785
– ident: ref_38
– ident: ref_23
  doi: 10.1109/JCSSE.2019.8864199
– ident: ref_25
  doi: 10.1145/2915970.2916003
– volume: 6
  start-page: 27
  year: 2020
  ident: ref_13
  article-title: Tool for Generating Behavior-Driven Development Test-Cases
  publication-title: J. Inf. Syst. Eng. Bus. Intell.
  doi: 10.20473/jisebi.6.1.27-36
  contributor:
    fullname: Raharjana
– volume: 6
  start-page: 112
  year: 2020
  ident: ref_29
  article-title: Tweets Responding to the Indonesian Government’s Handling of COVID-19: Sentiment Analysis Using SVM with Normalized Poly Kernel
  publication-title: J. Inf. Syst. Eng. Bus. Intell.
  doi: 10.20473/jisebi.6.2.112-122
  contributor:
    fullname: Prastyo
SSID ssj0000913821
Score 2.2321794
Snippet Recently, feature extraction from user reviews has been used for requirements reuse to improve the software development process. However, research has yet to...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 36
SubjectTerms requirements elicitation
requirements reuse
sentiment analysis
software feature extraction
user reviews
Title Enhancing Software Feature Extraction Results Using Sentiment Analysis to Aid Requirements Reuse
URI https://doaj.org/article/918c56c59cc24811aae2c0dd9b31ddee
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwtvRHnJAxNS1DiJE3sskKoTAwWJLSTOGZBQippE8PO5c9JSiYGFKQ9ZUfSdfb7PPn_H2KXUOZQkPojE2niRNLlXWAg8jLyR4foaQqfENJ0ld0_qNiWZnFWpL8oJ6-SBO-BGWigjYyO1MUGkhMhzCIxflroIBQ5NcN7XV2tkyvlgTdp6otvGDJHXj0xfJKEW1K99J8n8MxGt6fW7iWWyy7b7iJCPuz_ZYxtQ7bOdZbUF3g--A_acVq8kjlG98Bn6zs98AZwCuBav6Vez6E4o8Huo2_em5i4XgM8oGYgWAPlSfYQ3cz5-K7Ed5QC7xcEaH9oaDtnjJH24mXp9fQTPhDJqvCKwRps41hEIE5URJBAoRXW9LW2-FSS1grdBUiIY1gqkLqHyDSIKZRxYGx6xQTWv4JhxXxYK-akpZBJiSCFVLm2eSw2RBhMXZsiulmBlH50MRob0gZDNfiE7ZNcE56ohKVi7F2jXrLdr9pddT_7jI6dsK6AcFJczdsYGzaKFc7ZZl-2F6y_fdO3IGw
link.rule.ids 315,782,786,866,2108,27935,27936
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Software+Feature+Extraction+Results+Using+Sentiment+Analysis+to+Aid+Requirements+Reuse&rft.jtitle=Computers+%28Basel%29&rft.au=Indra+Kharisma+Raharjana&rft.au=Via+Aprillya&rft.au=Badrus+Zaman&rft.au=Army+Justitia&rft.date=2021-03-01&rft.pub=MDPI+AG&rft.eissn=2073-431X&rft.volume=10&rft.issue=3&rft.spage=36&rft_id=info:doi/10.3390%2Fcomputers10030036&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_918c56c59cc24811aae2c0dd9b31ddee
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-431X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-431X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-431X&client=summon