Visible light photodegradation of 2,4-dichlorophenol using nanostructured NaBiS2: Kinetics, cytotoxicity, antimicrobial and electrochemical studies of the photocatalyst
Removal of the hazardous and endocrine-disrupting 2,4-dichlorophenol (2,4-DCP) from water bodies is crucial to maintain the sanctity of the ecosystem. As a low bandgap material (1.37 eV), NaBiS2 was hydrothermally prepared and used as a potential photocatalyst to degrade 2,4-DCP under visible light...
Saved in:
Published in: | Chemosphere (Oxford) Vol. 287; p. 132174 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-01-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Removal of the hazardous and endocrine-disrupting 2,4-dichlorophenol (2,4-DCP) from water bodies is crucial to maintain the sanctity of the ecosystem. As a low bandgap material (1.37 eV), NaBiS2 was hydrothermally prepared and used as a potential photocatalyst to degrade 2,4-DCP under visible light irradiation. NaBiS2 appeared to be highly stable and remained structurally undeterred despite thermal variations. With a surface area of 6.69 m2/g, NaBiS2 has enough surface-active sites to adsorb the reactive molecules and exhibit a significant photocatalytic activity. In alkaline pH, the adsorption of 2,4-DCP on NaBiS2 appeared to decrease whereas, the acidic and neutral environments favoured the degradation. An increase in the photocatalyst dosage enhanced the degradation efficiency from 81 to 86 %, because of higher vacant adsorbent sites and the electrostatic attraction between NaBiS2 and 2,4-DCP. The dominant scavengers degraded 2,4-DCP by forming a coordination bond between chlorine's lone pair of electrons and the vacant orbitals of bismuth, following the order hole>OH > singlet oxygen. Being non-toxic to both natural and aquatic systems, NaBiS2 exhibits antifungal properties at higher concentrations. Finally, the electron-rich NaBiS2 is an excellent electrocatalyst that effectively degrades organic pollutants and is a promising material for industrial and environmental applications.
[Display omitted]
•Bimetallic sulphide as a new photocatalyst for the removal of 2,4-DCP.•86 % of degradation was achieved using this photocatalyst under visible light irradiation.•Hydroxyl radicals and superoxide radicals are the main radicals involved in the degradation.•Photoluminescence studies were carried out to depict the mechanism. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2021.132174 |