Data retention reliability model of NROM nonvolatile memory products

Post cycling data retention reliability model of NROM devices is presented. The degradation rate of the threshold voltage of cycled cells is shown to be a multiplication of three functions: 1) bit density; 2) endurance; and 3) storage time and temperature. The functions are fitted to experimental re...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on device and materials reliability Vol. 4; no. 3; pp. 404 - 415
Main Authors: Janai, M., Eitan, B., Shappir, A., Lusky, E., Bloom, I., Cohen, G.
Format: Magazine Article
Language:English
Published: New York IEEE 01-09-2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Post cycling data retention reliability model of NROM devices is presented. The degradation rate of the threshold voltage of cycled cells is shown to be a multiplication of three functions: 1) bit density; 2) endurance; and 3) storage time and temperature. The functions are fitted to experimental results of products of three technology nodes. The retention loss is interpreted in terms of thermally activated lateral migration of trapped holes in the ONO layer. The holes' migration quenches the electrons' field over the channel of the device, degrading its threshold voltage. The migration process is presented as a dispersive transport process. Saturation of the retention loss is demonstrated at threshold voltage levels well above the neutral state of the device. From the retention loss function we derive a time-to-failure formula and an expression for the thermal acceleration factor of NROM products useful for determining stress conditions for accelerated reliability tests.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1530-4388
1558-2574
DOI:10.1109/TDMR.2004.834098