Local-scale mapping of tree species in a lower mountain area using Sentinel-1 and -2 multitemporal images, vegetation indices, and topographic information
IntroductionMapping tree species is an important activity that provides the information necessary for sustainable forest management. Remote sensing is a effective tool that offers data at different spatial and spectral resolutions over large areas. Free and open acces Sentinel satellite imagery and...
Saved in:
Published in: | Frontiers in Forests and Global Change Vol. 6 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Frontiers Media S.A
16-10-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | IntroductionMapping tree species is an important activity that provides the information necessary for sustainable forest management. Remote sensing is a effective tool that offers data at different spatial and spectral resolutions over large areas. Free and open acces Sentinel satellite imagery and Google Earth Engine, which is a powerful cloud computing platform, can be used together to map tree species.MethodsIn this study we mapped tree species at a local scale using recent Sentinel-1 (S-1) and Sentinel-2 (S-2) time-series imagery, various vegetation indices (Normalized Difference Vegetation Index - NDVI, Enhanced Vegetation Index - EVI, Green Leaf Index - GLI, and Green Normalized Difference Vegetation Index - GNDVI) and topographic features (elevation, aspect and slope). Five sets of data were used, in different combinations, together with the Random Forest classifier in order to determine seven tree species (spruce, beech, larch, fir, pine, mixed, and other broadleaves [BLs]) in the studied area.Results and discussionDataset 1 was a combination of S-2 images (bands 2, 3, 4, 5, 6, 7, 8, 8a, 11 and 12), for which an overall accuracy of 76.74% was obtained. Dataset 2 comprised S-2 images and vegetation indices, leading to an overall accuracy of 78.24%. Dataset 3 included S-2 images and topographic features, which lead to an overall accuracy of 89.51%. Dataset 4 included S-2 images, vegetation indices, and topographic features, that have determined an overall accuracy of 89.36%. Dataset 5 was composed of S-2 images, S-1 images (VV and VH polarization), vegetation indices, and topographic features that lead to an overall accuracy of 89.68%. Among the five sets of data, Dataset 3 produced the most significant increase in accuracy, of 12.77%, compared to Dataset 1. Including the vegetation indices with the S-2 images (Dataset 2) gave an accuracy increase of only 1.50%. By combining the S-1 and S-2 images, vegetation indices and topographic features (Dataset 5) there was an accuracy increase of only 0.17%, compared with the S-2 images plus topographic features combination (Dataset 3). However, the input brought by the S-1 images was apparent in the increase in classification accuracy for the mixed and other BL species that were mostly found in hilly locations. Our findings confirm the potential of S-2 images, used together with other variables, for classifying tree species at the local scale. |
---|---|
AbstractList | IntroductionMapping tree species is an important activity that provides the information necessary for sustainable forest management. Remote sensing is a effective tool that offers data at different spatial and spectral resolutions over large areas. Free and open acces Sentinel satellite imagery and Google Earth Engine, which is a powerful cloud computing platform, can be used together to map tree species.MethodsIn this study we mapped tree species at a local scale using recent Sentinel-1 (S-1) and Sentinel-2 (S-2) time-series imagery, various vegetation indices (Normalized Difference Vegetation Index - NDVI, Enhanced Vegetation Index - EVI, Green Leaf Index - GLI, and Green Normalized Difference Vegetation Index - GNDVI) and topographic features (elevation, aspect and slope). Five sets of data were used, in different combinations, together with the Random Forest classifier in order to determine seven tree species (spruce, beech, larch, fir, pine, mixed, and other broadleaves [BLs]) in the studied area.Results and discussionDataset 1 was a combination of S-2 images (bands 2, 3, 4, 5, 6, 7, 8, 8a, 11 and 12), for which an overall accuracy of 76.74% was obtained. Dataset 2 comprised S-2 images and vegetation indices, leading to an overall accuracy of 78.24%. Dataset 3 included S-2 images and topographic features, which lead to an overall accuracy of 89.51%. Dataset 4 included S-2 images, vegetation indices, and topographic features, that have determined an overall accuracy of 89.36%. Dataset 5 was composed of S-2 images, S-1 images (VV and VH polarization), vegetation indices, and topographic features that lead to an overall accuracy of 89.68%. Among the five sets of data, Dataset 3 produced the most significant increase in accuracy, of 12.77%, compared to Dataset 1. Including the vegetation indices with the S-2 images (Dataset 2) gave an accuracy increase of only 1.50%. By combining the S-1 and S-2 images, vegetation indices and topographic features (Dataset 5) there was an accuracy increase of only 0.17%, compared with the S-2 images plus topographic features combination (Dataset 3). However, the input brought by the S-1 images was apparent in the increase in classification accuracy for the mixed and other BL species that were mostly found in hilly locations. Our findings confirm the potential of S-2 images, used together with other variables, for classifying tree species at the local scale. |
Author | Dincă, Lucian Vorovencii, Iosif Greșiță, Constantin Irinel Codrean, Codrin-Leonid Chima, Sanda Crișan, Vlad Cătălin, Cristian Gavrilescu, Ion Postolache, Ruxandra-Georgiana |
Author_xml | – sequence: 1 givenname: Iosif surname: Vorovencii fullname: Vorovencii, Iosif – sequence: 2 givenname: Lucian surname: Dincă fullname: Dincă, Lucian – sequence: 3 givenname: Vlad surname: Crișan fullname: Crișan, Vlad – sequence: 4 givenname: Ruxandra-Georgiana surname: Postolache fullname: Postolache, Ruxandra-Georgiana – sequence: 5 givenname: Codrin-Leonid surname: Codrean fullname: Codrean, Codrin-Leonid – sequence: 6 givenname: Cristian surname: Cătălin fullname: Cătălin, Cristian – sequence: 7 givenname: Constantin Irinel surname: Greșiță fullname: Greșiță, Constantin Irinel – sequence: 8 givenname: Sanda surname: Chima fullname: Chima, Sanda – sequence: 9 givenname: Ion surname: Gavrilescu fullname: Gavrilescu, Ion |
BookMark | eNpNkctqHTEMhk1JIWmaB8jOD9A59XWOZ1lCL4EDWSSL7oyOLU8dZuzB9mnpq_RpO5OEkI0kfkkfEv8HcpZyQkKuOdtJaYbPIYxuJ5iQOy7WpOU7ciF6oTozyJ9nb-pzclXrI2NM7M0qsgvy75AdTF1dA9IZliWmkeZAW0GkdUEXsdKYKNAp_8FC53xKDTahINBT3cbvMbWYcOo4heRpJ-h8mlpsOC-5wETjDCPWT_Q3jtigxZxWoo9u07aFlpc8Flh-Rbc2Qi7z09BH8j7AVPHqJV-Sh29fH25-dIe777c3Xw6dk1q1TnINjAXFvBMGezQKOB_YUXAjFULQatA9HteHlTeoeTASpQIverXX_Cgvye0z1md4tEtZry1_bYZon4RcRgulRTehBRh6LWEv0BsVXG96FJoPPQ7MgfdmZfFnliu51oLhlceZ3ayym1V2s8q-WCX_AzoIi4Y |
CitedBy_id | crossref_primary_10_3390_rs16020293 crossref_primary_10_3390_rs16081373 crossref_primary_10_3389_ffgc_2024_1354769 crossref_primary_10_3390_f15060995 |
Cites_doi | 10.1016/j.jag.2017.01.018 10.3390/rs12020302 10.1016/j.isprsjprs.2016.01.011 10.1515/forj-2017-0002 10.3390/rs4092661 10.3390/f10020127 10.3390/rs10091419 10.1016/j.jag.2019.102009 10.1016/j.rse.2021.112456 10.1023/A:1010933404324 10.1016/j.isprsjprs.2021.01.012 10.1073/pnas.1606162113 10.30638/eemj.2016.049 10.1016/S0378-1127(03)00113-0 10.3390/f6061982 10.3390/rs8030166 10.1080/17538947.2012.713190 10.1016/j.isprsjprs.2021.08.017 10.1186/1750-0680-4-2 10.1016/j.rse.2016.08.013 10.3390/rs13030337 10.3390/rs11101197 10.1016/j.rse.2018.02.064 10.3390/rs14112687 10.1016/j.scitotenv.2019.133761 10.3390/rs10060808 10.1016/j.srs.2023.100094 10.1093/jpe/rtm005 10.1016/j.isprsjprs.2013.01.013 10.3390/rs11080929 10.3390/land7040116 10.3390/rs13020185 10.3390/rs14184585 10.3390/rs10111794 10.1134/S0001433814090072 10.3390/f11090941 10.1016/j.rse.2020.111685 10.1186/s40490-018-0123-9 10.3390/rs10050698 10.1080/22797254.2022.2083984 10.1016/j.rse.2023.113576 10.1016/j.rse.2013.04.022 10.1016/j.jag.2020.102235 10.3390/rs10010055 10.3390/rs13163237 10.1016/j.rse.2016.03.021 10.1016/j.isprsjprs.2019.09.016 10.1016/j.rse.2005.10.014 10.1117/1.JRS.12.026019 10.1016/S0303-2434(02)00006-5 10.1016/S0034-4257(96)00072-7 10.1016/j.jag.2016.07.018 10.3390/rs13122321 10.3390/rs10091468 10.17221/51/2008-JFS 10.1016/j.rse.2005.03.009 10.3390/f12050565 10.1111/j.1654-109X.2009.01053.x 10.3390/geosciences9090396 10.3390/rs8060445 10.3390/rs10060946 10.1016/j.gecco.2017.01.007 10.1007/s12524-014-0392-6 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/ffgc.2023.1220253 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2624-893X |
ExternalDocumentID | oai_doaj_org_article_aa9653a72ed84fc686e25196e90cadd8 10_3389_ffgc_2023_1220253 |
GroupedDBID | 9T4 AAFWJ AAYXX ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 |
ID | FETCH-LOGICAL-c354t-315a00f40dc28e6e84a1190b21834eaf54956eb7824d8e51f83e34ad264751b3 |
IEDL.DBID | DOA |
ISSN | 2624-893X |
IngestDate | Tue Oct 22 14:37:57 EDT 2024 Thu Nov 21 23:36:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-315a00f40dc28e6e84a1190b21834eaf54956eb7824d8e51f83e34ad264751b3 |
OpenAccessLink | https://doaj.org/article/aa9653a72ed84fc686e25196e90cadd8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aa9653a72ed84fc686e25196e90cadd8 crossref_primary_10_3389_ffgc_2023_1220253 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-16 |
PublicationDateYYYYMMDD | 2023-10-16 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in Forests and Global Change |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Fassnacht (ref16) 2016; 186 Ballanti (ref2) 2016; 8 Farreira (ref15) 2016; 179 Madonsela (ref40) 2017; 58 Hościło (ref29) 2019; 11 Xie (ref72) 2021; 12 Hill (ref27) 2010; 13 Liu (ref39) 2018; 10 Vihervaara (ref66) 2017; 10 Greșiță (ref24) 2013 Persson (ref45) 2018; 10 Blatchford (ref5) 2021; 94 Dian (ref10) 2014; 43 ref17 Tereşneu (ref60) 2016; 15 ref18 Tudoran (ref64) 2020; 698 Waser (ref68) 2021; 180 Hirschmugl (ref28) 2018; 7 Tian (ref61) 2021; 260 Immitzer (ref33) 2016; 8 Stych (ref58) 2019; 9 Lechner (ref37) 2022; 14 Xie (ref73) 2008; 1 Dorren (ref13) 2003; 183 (ref9) 2014 Abrudan (ref1) 2006 Belgiu (ref3) 2016; 114 Mickelson (ref41) 1998; 64 Sedliak (ref51) 2017; 63 Greșiță (ref23) 2011; 11 Udali (ref65) 2021; 13 Dmitriev (ref11) 2014; 50 Fundisi (ref19) 2022; 55 Jaiswal (ref34) 2002; 4 Liu (ref38) 2023; 292 Griffiths (ref25) 2014; 151 Hycza (ref30) 2018; 48 Karasiak (ref35) 2017 Tereșneu (ref59) 2019 Pasquarella (ref43) 2018; 210 Ienco (ref31) 2019; 158 Rüetschi (ref48) 2017; 10 Dobrinić (ref12) 2021; 13 Gitelson (ref9001) 1996; 58 Xi (ref71) 2023; 8 Dostálová (ref14) 2021; 13 Tudoran (ref63) 2013; 55 Stoffels (ref57) 2015; 6 Mohammadpour (ref42) 2022; 14 Goetz (ref21) 2009; 4 Breiman (ref7) 2001; 45 Grabska (ref22) 2019; 11 Schmitt (ref50) 1996; 31 Sonobe (ref54) 2018; 12 Wessel (ref70) 2018; 10 Immitzer (ref32) 2012; 4 Slagter (ref53) 2020; 86 Spracklen (ref55) 2019; 10 Waśniewski (ref69) 2020; 11 Richter (ref47) 2016; 52 Wang (ref67) 2018; 10 Lawrence (ref36) 2006; 100 Silveira (ref52) 2018; 10 Heckel (ref26) 2020; 12 Spracklen (ref56) 2021; 13 Bhatnagar (ref4) 2021; 174 Peerbhay (ref44) 2013; 79 Gamon (ref20) 2016; 113 Schieber (ref49) 2009; 55 Bolton (ref6) 2020; 240 Clark (ref8) 2005; 96 Townshend (ref62) 2012; 5 Pouteau (ref46) 2018; 10 |
References_xml | – volume: 58 start-page: 65 year: 2017 ident: ref40 article-title: Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2017.01.018 contributor: fullname: Madonsela – volume: 12 start-page: 302 year: 2020 ident: ref26 article-title: Predicting forest cover in distinct ecosystems: the potential of multi-source Sentinel-1 and −2 data fusion publication-title: Remote Sens. doi: 10.3390/rs12020302 contributor: fullname: Heckel – volume: 114 start-page: 24 year: 2016 ident: ref3 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 contributor: fullname: Belgiu – volume: 63 start-page: 1 year: 2017 ident: ref51 article-title: Classification of tree species composition using a combination of multispectral imagery and airborne laser scanning data publication-title: Cent. Eur. For. doi: 10.1515/forj-2017-0002 contributor: fullname: Sedliak – volume: 4 start-page: 2661 year: 2012 ident: ref32 article-title: Tree species classification with random Forest using very high spatial resolution 8-band WorldView-2 satellite data publication-title: Remote Sens. doi: 10.3390/rs4092661 contributor: fullname: Immitzer – volume: 10 start-page: 127 year: 2019 ident: ref55 article-title: Identifying european old-growth forests using remote sensing: a study in the Ukrainian Carpathians publication-title: Forests doi: 10.3390/f10020127 contributor: fullname: Spracklen – volume: 10 start-page: 1419 year: 2018 ident: ref70 article-title: Evaluation of different machine learning algorithms for scalable classification of tree types and tree species based on Sentinel-2 data publication-title: Remote Sens. doi: 10.3390/rs10091419 contributor: fullname: Wessel – start-page: 27 volume-title: In Proceedings of the 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp) year: 2017 ident: ref35 article-title: Mapping tree species of forests in Southwest France using Sentinel-2 image time series contributor: fullname: Karasiak – volume: 86 start-page: 102009 year: 2020 ident: ref53 article-title: Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: a case study in the St. Lucia wetlands, South Africa publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2019.102009 contributor: fullname: Slagter – volume: 260 start-page: 112456 year: 2021 ident: ref61 article-title: Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112456 contributor: fullname: Tian – volume: 45 start-page: 5 year: 2001 ident: ref7 article-title: Random forest publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume-title: Afforestation (in Romanian) year: 2006 ident: ref1 contributor: fullname: Abrudan – volume: 174 start-page: 151 year: 2021 ident: ref4 article-title: A nested drone-satellite approach to monitoring the ecological conditions of wetlands publication-title: ISPRSJ. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.01.012 contributor: fullname: Bhatnagar – volume: 113 start-page: 13087 year: 2016 ident: ref20 article-title: A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1606162113 contributor: fullname: Gamon – volume: 15 start-page: 461 year: 2016 ident: ref60 article-title: Using the GIS tools for a sustainable forest management publication-title: Environ. Eng. Manag. J. doi: 10.30638/eemj.2016.049 contributor: fullname: Tereşneu – volume: 183 start-page: 31 year: 2003 ident: ref13 article-title: Improved landsat-based forest mapping in steep mountainous terrain using object-based classification publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(03)00113-0 contributor: fullname: Dorren – volume: 6 start-page: 1982 year: 2015 ident: ref57 article-title: Satellite-based derivation of high-resolution forest information layers for operational forest management publication-title: Forests doi: 10.3390/f6061982 contributor: fullname: Stoffels – volume: 55 start-page: 35 year: 2013 ident: ref63 article-title: Regulations regarding the management of forests included in natural protected areas. Bulletin of the Transilvania University of Braşov, series II: forestry publication-title: Wood. Industry. Agric. Food Eng. contributor: fullname: Tudoran – start-page: 156 volume-title: Forest Management Plan of Forest Management Unit I Comarnic (in Romanian) ident: ref17 – start-page: 148 volume-title: Forest Management Plan of Forest Management Unit II Posada (in Romanian) ident: ref18 – volume: 8 start-page: 166 year: 2016 ident: ref33 article-title: First experience with Sentinel-2 data for crop and tree species classifications in Central Europe publication-title: Remote Sens. doi: 10.3390/rs8030166 contributor: fullname: Immitzer – volume: 5 start-page: 373 year: 2012 ident: ref62 article-title: Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2012.713190 contributor: fullname: Townshend – volume: 180 start-page: 209 year: 2021 ident: ref68 article-title: Mapping dominant leaf type based on combined Sentinel-1/−2 data - challenges for mountainous countries publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.08.017 contributor: fullname: Waser – volume: 4 start-page: 1 year: 2009 ident: ref21 article-title: Mapping and monitoring carbon stocks with satellite observations: a comparison of methods publication-title: Carbon Balance Manag. doi: 10.1186/1750-0680-4-2 contributor: fullname: Goetz – volume: 186 start-page: 64 year: 2016 ident: ref16 article-title: Review of studies on tree species classification from remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.013 contributor: fullname: Fassnacht – volume: 13 start-page: 337 year: 2021 ident: ref14 article-title: European wide forest classification based on Sentinel-1 data publication-title: Remote Sens. doi: 10.3390/rs13030337 contributor: fullname: Dostálová – volume: 11 start-page: 1197 year: 2019 ident: ref22 article-title: Forest stand species mapping using the Sentinel-2 time series publication-title: Remote Sens. doi: 10.3390/rs11101197 contributor: fullname: Grabska – volume: 210 start-page: 193 year: 2018 ident: ref43 article-title: Improved mapping of forest type using spectral-temporal Landsat features publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.064 contributor: fullname: Pasquarella – volume: 14 start-page: 2687 year: 2022 ident: ref37 article-title: Combination of Sentinel-1 and Sentinel-2 data for tree species classification in a central European biosphere reserve publication-title: Remote Sens. doi: 10.3390/rs14112687 contributor: fullname: Lechner – volume: 698 start-page: 133761 year: 2020 ident: ref64 article-title: Adapting the planning and management of Norway spruce forests in mountain areas of Romania to environmental conditions including climate change publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133761 contributor: fullname: Tudoran – volume: 64 start-page: 891 year: 1998 ident: ref41 article-title: Delineating forest canopy species in the northeastern United States using multi-temporal TM imagery publication-title: Photogramm. Eng. Remote. Sens. contributor: fullname: Mickelson – volume: 10 start-page: 808 year: 2018 ident: ref52 article-title: Using spatial features to reduce the impact of seasonality for detecting tropical forest changes from Landsat time series publication-title: Remote Sens. doi: 10.3390/rs10060808 contributor: fullname: Silveira – volume: 8 start-page: 100094 year: 2023 ident: ref71 article-title: Mapping tree species diversity of temperate forests using multi-temporal Sentinel-1 and -2 imagery publication-title: Sci. Remote Sens. doi: 10.1016/j.srs.2023.100094 contributor: fullname: Xi – volume: 1 start-page: 9 year: 2008 ident: ref73 article-title: Remote sensing imagery in vegetation mapping: a review publication-title: J. Plant Ecol. doi: 10.1093/jpe/rtm005 contributor: fullname: Xie – volume: 79 start-page: 19 year: 2013 ident: ref44 article-title: Commercial tree species discrimination using airborne AISA eagle hyperspectral imagery and partial least squared discriminant analysis (PLS-DA) in KwaZulu-Natal - South Africa publication-title: Remote Sens. doi: 10.1016/j.isprsjprs.2013.01.013 contributor: fullname: Peerbhay – volume: 11 start-page: 929 year: 2019 ident: ref29 article-title: Mapping forest type and tree species on a regional scale using multi-temporal Sentinel-2 data publication-title: Remote Sens. doi: 10.3390/rs11080929 contributor: fullname: Hościło – volume: 7 start-page: 116 year: 2018 ident: ref28 article-title: Combined use of optical and synthetic aperture radar data for REDD+ applications in Malawi publication-title: Land doi: 10.3390/land7040116 contributor: fullname: Hirschmugl – volume: 13 start-page: 185 year: 2021 ident: ref56 article-title: Synergistic use of Sentinel-1 and Sentinel-2 to map natural forest and acacia plantation and stand ages in north-Central Vietnam publication-title: Remote Sens. doi: 10.3390/rs13020185 contributor: fullname: Spracklen – volume: 14 start-page: 4585 year: 2022 ident: ref42 article-title: Vegetation mapping with random Forest using sentinel 2 and GLCM texture feature - a case study for Lousã region, Portugal publication-title: Remote Sens. doi: 10.3390/rs14184585 contributor: fullname: Mohammadpour – volume: 10 start-page: 1794 year: 2018 ident: ref45 article-title: Tree species classification with multi-temporal Sentinel-2 data publication-title: Remote Sens. doi: 10.3390/rs10111794 contributor: fullname: Persson – volume: 50 start-page: 929 year: 2014 ident: ref11 article-title: Classification of the forest cover of Tver oblast using hyperspectral airborne images publication-title: Izv. Atmos. Ocean. Phys. doi: 10.1134/S0001433814090072 contributor: fullname: Dmitriev – volume: 11 start-page: 941 year: 2020 ident: ref69 article-title: Assessment of Sentinel-2 satellite images and random Forest classifier for rainforest mapping in Gabon publication-title: Forests doi: 10.3390/f11090941 contributor: fullname: Waśniewski – volume: 240 start-page: 111685 year: 2020 ident: ref6 article-title: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111685 contributor: fullname: Bolton – volume-title: Computer Aided Graphics (in Romanian) year: 2019 ident: ref59 contributor: fullname: Tereșneu – volume: 31 start-page: 602 year: 1996 ident: ref50 article-title: Forest classification of multitemporal mosaicked satellite images publication-title: Int. Arch. Photogramm. Remote Sens. contributor: fullname: Schmitt – volume: 48 start-page: 18 year: 2018 ident: ref30 article-title: Potential use of hyperspectral data to classify forest tree species publication-title: N. Z. J. For. Sci. doi: 10.1186/s40490-018-0123-9 contributor: fullname: Hycza – volume: 10 start-page: 698 year: 2018 ident: ref46 article-title: Predicting tropical tree species richness from normalized difference vegetation index time series: the devil is perhaps not in the detail publication-title: Remote Sens. doi: 10.3390/rs10050698 contributor: fullname: Pouteau – volume: 55 start-page: 372 year: 2022 ident: ref19 article-title: A combination of Sentinel-1 RADAR and Sentinel-2 multispectral data improves classification of morphologically similar savanna woody plants publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2022.2083984 contributor: fullname: Fundisi – volume: 292 start-page: 113576 year: 2023 ident: ref38 article-title: Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113576 contributor: fullname: Liu – volume-title: Sentinel-1 Data Access and Products year: 2014 ident: ref9 – volume-title: Surveying Methods to Studying the Behaviour of Dams (in Romanian) year: 2013 ident: ref24 contributor: fullname: Greșiță – volume: 151 start-page: 72 year: 2014 ident: ref25 article-title: Forest disturbances, forest recovery, and changes in forest types across the carpathian ecoregion from 1985 to 2010 based on Landsat image composites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.04.022 contributor: fullname: Griffiths – volume: 94 start-page: 102235 year: 2021 ident: ref5 article-title: Determining representative sample size for validation of continuous, large continental remote sensing data publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2020.102235 contributor: fullname: Blatchford – volume: 10 start-page: 55 year: 2017 ident: ref48 article-title: Using multitemporal Sentinel-1 C-band backscatter to monitor phenology and classify deciduous and coniferous forests in northern Switzerland publication-title: Remote Sens. doi: 10.3390/rs10010055 contributor: fullname: Rüetschi – volume: 13 start-page: 3237 year: 2021 ident: ref65 article-title: Assessing forest type and tree species classification using Sentinel-1 C-band SAR data in southern Sweden publication-title: Remote Sens. doi: 10.3390/rs13163237 contributor: fullname: Udali – volume: 179 start-page: 66 year: 2016 ident: ref15 article-title: Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.021 contributor: fullname: Farreira – volume: 158 start-page: 11 year: 2019 ident: ref31 article-title: Combining Sentinel-1 and Sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.09.016 contributor: fullname: Ienco – volume: 100 start-page: 356 year: 2006 ident: ref36 article-title: Mapping invasive plants using hyperspectral imagery and Breiman cutler classifications (random Forest) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.014 contributor: fullname: Lawrence – volume: 12 start-page: 026019 year: 2018 ident: ref54 article-title: Crop classification from Sentinel-2 derived vegetation indices using ensemble learning publication-title: J. Appl. Remote. Sens. doi: 10.1117/1.JRS.12.026019 contributor: fullname: Sonobe – volume: 11 start-page: 75 year: 2011 ident: ref23 article-title: Expert system used for monitoring the behaviour of hydrotechnical constructions publication-title: REVCAD J. Geod. Cadastre contributor: fullname: Greșiță – volume: 4 start-page: 1 year: 2002 ident: ref34 article-title: Forest fire risk zone mapping from satellite imagery and GIS publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/S0303-2434(02)00006-5 contributor: fullname: Jaiswal – volume: 58 start-page: 289 year: 1996 ident: ref9001 article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS publication-title: Remote Sens Environ. doi: 10.1016/S0034-4257(96)00072-7 contributor: fullname: Gitelson – volume: 52 start-page: 464 year: 2016 ident: ref47 article-title: The use of airborne hyperspectral data for tree species classification in a species-rich central European forest area publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2016.07.018 contributor: fullname: Richter – volume: 13 start-page: 2321 year: 2021 ident: ref12 article-title: Sentinel-1 and 2time-series for vegetation mappingusing random forest classification: a case study of northern Croatia publication-title: Remote Sens. doi: 10.3390/rs13122321 contributor: fullname: Dobrinić – volume: 10 start-page: 1468 year: 2018 ident: ref67 article-title: Evaluating the performance of Sentinel-2, Landsat 8 and Pléiades-1 in mapping mangrove extent and species publication-title: Remote Sens. doi: 10.3390/rs10091468 contributor: fullname: Wang – volume: 55 start-page: 15 year: 2009 ident: ref49 article-title: Phenology of four broad-leaved forest trees in a submountain beech forest publication-title: J. For. Sci. doi: 10.17221/51/2008-JFS contributor: fullname: Schieber – volume: 96 start-page: 375 year: 2005 ident: ref8 article-title: Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.03.009 contributor: fullname: Clark – volume: 12 start-page: 565 year: 2021 ident: ref72 article-title: Analysis of regional distribution of tree species using multi-seasonal Sentinel-1 & 2 imagery within Google earth engine publication-title: Forests doi: 10.3390/f12050565 contributor: fullname: Xie – volume: 13 start-page: 86 year: 2010 ident: ref27 article-title: Mapping tree species in temperate deciduous woodland using time-series multi-spectral data publication-title: Appl. Veg. Sci. doi: 10.1111/j.1654-109X.2009.01053.x contributor: fullname: Hill – volume: 9 start-page: 396 year: 2019 ident: ref58 article-title: A comparison of WorldView-2 and Landsat 8 images for the classification of forests affected by bark beetle outbreaks using a support vector machine and a neural network: a case study in the Sumava mountains publication-title: Geosciences doi: 10.3390/geosciences9090396 contributor: fullname: Stych – volume: 8 start-page: 445 year: 2016 ident: ref2 article-title: Tree species classification using hyperspectral imagery: a comparison of two classifiers publication-title: Remote Sens. doi: 10.3390/rs8060445 contributor: fullname: Ballanti – volume: 10 start-page: 946 year: 2018 ident: ref39 article-title: Forest type identification with random Forest using sentinel-1A, sentinel-2A, multi-temporal Landsat-8 and DEM data publication-title: Remote Sens. doi: 10.3390/rs10060946 contributor: fullname: Liu – volume: 10 start-page: 43 year: 2017 ident: ref66 article-title: How essential biodiversity variables and remote sensing can help national biodiversity monitoring publication-title: Glob. Ecol. Conserv. doi: 10.1016/j.gecco.2017.01.007 contributor: fullname: Vihervaara – volume: 43 start-page: 101 year: 2014 ident: ref10 article-title: Spectral and texture features combined for forest tree species classification with airborne hyperspectral imagery publication-title: Indian Soc Remote Sens doi: 10.1007/s12524-014-0392-6 contributor: fullname: Dian |
SSID | ssj0002782620 |
Score | 2.3267837 |
Snippet | IntroductionMapping tree species is an important activity that provides the information necessary for sustainable forest management. Remote sensing is a... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
SubjectTerms | datasets random forest Sentinel-2 topographic features tree species vegetation indices |
Title | Local-scale mapping of tree species in a lower mountain area using Sentinel-1 and -2 multitemporal images, vegetation indices, and topographic information |
URI | https://doaj.org/article/aa9653a72ed84fc686e25196e90cadd8 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwsCAaJ86QYmhGkSO6kz8lV1QCztwBY58TkqatOKtvwYfi13SajKxMKSSJYTWe8S3z3d-Z0Q1w7RRIU30hPnkVqnKFPlUIbeG0s2z1WtWzAc9V_fzNMzy-RsWn1xTVgjD9wA17M2TWJl-xE6o32RmAT5sGWCaVDQv9kc8w2SLTL13qTTWGm9SWMSC0t73pesWBipuzCiW6x-OaItvf7asQwOxH4bEcJ9s5JDsYPVkfh6YR8jl3RBmFkWUShh7oFzyMCnI4ngwqQCC1NucwYzbvlgeYCCQOBi9hJGXAhU4VSGYCsHMoK6erAVo5rCZEZ7yfIWPrFsaw6BE9gFj_EDq_mi0bOeFNDqq_KkYzEePI8fh7JtoyALFesV7bKxDQKvA1dEBhM02oYUBuQcHGm0PmaOhDkhpp3BOPRGodLWUajUj8lYJ6JTzSs8FeAi5l8q1Ky6ZxOTR4Ux3pqctiquUu2Kmx9Is0UjlpERyWD8M8Y_Y_yzFv-ueGDQNxNZ57oeIOtnrfWzv6x_9h8vORd7vDD2SGFyITqrjzVeit2lW1_VX9U3wsHS1w |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local-scale+mapping+of+tree+species+in+a+lower+mountain+area+using+Sentinel-1+and+-2+multitemporal+images%2C+vegetation+indices%2C+and+topographic+information&rft.jtitle=Frontiers+in+Forests+and+Global+Change&rft.au=Vorovencii%2C+Iosif&rft.au=Dinc%C4%83%2C+Lucian&rft.au=Cri%C8%99an%2C+Vlad&rft.au=Postolache%2C+Ruxandra-Georgiana&rft.date=2023-10-16&rft.issn=2624-893X&rft.eissn=2624-893X&rft.volume=6&rft_id=info:doi/10.3389%2Fffgc.2023.1220253&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_ffgc_2023_1220253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-893X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-893X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-893X&client=summon |