Local-scale mapping of tree species in a lower mountain area using Sentinel-1 and -2 multitemporal images, vegetation indices, and topographic information

IntroductionMapping tree species is an important activity that provides the information necessary for sustainable forest management. Remote sensing is a effective tool that offers data at different spatial and spectral resolutions over large areas. Free and open acces Sentinel satellite imagery and...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in Forests and Global Change Vol. 6
Main Authors: Vorovencii, Iosif, Dincă, Lucian, Crișan, Vlad, Postolache, Ruxandra-Georgiana, Codrean, Codrin-Leonid, Cătălin, Cristian, Greșiță, Constantin Irinel, Chima, Sanda, Gavrilescu, Ion
Format: Journal Article
Language:English
Published: Frontiers Media S.A 16-10-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract IntroductionMapping tree species is an important activity that provides the information necessary for sustainable forest management. Remote sensing is a effective tool that offers data at different spatial and spectral resolutions over large areas. Free and open acces Sentinel satellite imagery and Google Earth Engine, which is a powerful cloud computing platform, can be used together to map tree species.MethodsIn this study we mapped tree species at a local scale using recent Sentinel-1 (S-1) and Sentinel-2 (S-2) time-series imagery, various vegetation indices (Normalized Difference Vegetation Index - NDVI, Enhanced Vegetation Index - EVI, Green Leaf Index - GLI, and Green Normalized Difference Vegetation Index - GNDVI) and topographic features (elevation, aspect and slope). Five sets of data were used, in different combinations, together with the Random Forest classifier in order to determine seven tree species (spruce, beech, larch, fir, pine, mixed, and other broadleaves [BLs]) in the studied area.Results and discussionDataset 1 was a combination of S-2 images (bands 2, 3, 4, 5, 6, 7, 8, 8a, 11 and 12), for which an overall accuracy of 76.74% was obtained. Dataset 2 comprised S-2 images and vegetation indices, leading to an overall accuracy of 78.24%. Dataset 3 included S-2 images and topographic features, which lead to an overall accuracy of 89.51%. Dataset 4 included S-2 images, vegetation indices, and topographic features, that have determined an overall accuracy of 89.36%. Dataset 5 was composed of S-2 images, S-1 images (VV and VH polarization), vegetation indices, and topographic features that lead to an overall accuracy of 89.68%. Among the five sets of data, Dataset 3 produced the most significant increase in accuracy, of 12.77%, compared to Dataset 1. Including the vegetation indices with the S-2 images (Dataset 2) gave an accuracy increase of only 1.50%. By combining the S-1 and S-2 images, vegetation indices and topographic features (Dataset 5) there was an accuracy increase of only 0.17%, compared with the S-2 images plus topographic features combination (Dataset 3). However, the input brought by the S-1 images was apparent in the increase in classification accuracy for the mixed and other BL species that were mostly found in hilly locations. Our findings confirm the potential of S-2 images, used together with other variables, for classifying tree species at the local scale.
AbstractList IntroductionMapping tree species is an important activity that provides the information necessary for sustainable forest management. Remote sensing is a effective tool that offers data at different spatial and spectral resolutions over large areas. Free and open acces Sentinel satellite imagery and Google Earth Engine, which is a powerful cloud computing platform, can be used together to map tree species.MethodsIn this study we mapped tree species at a local scale using recent Sentinel-1 (S-1) and Sentinel-2 (S-2) time-series imagery, various vegetation indices (Normalized Difference Vegetation Index - NDVI, Enhanced Vegetation Index - EVI, Green Leaf Index - GLI, and Green Normalized Difference Vegetation Index - GNDVI) and topographic features (elevation, aspect and slope). Five sets of data were used, in different combinations, together with the Random Forest classifier in order to determine seven tree species (spruce, beech, larch, fir, pine, mixed, and other broadleaves [BLs]) in the studied area.Results and discussionDataset 1 was a combination of S-2 images (bands 2, 3, 4, 5, 6, 7, 8, 8a, 11 and 12), for which an overall accuracy of 76.74% was obtained. Dataset 2 comprised S-2 images and vegetation indices, leading to an overall accuracy of 78.24%. Dataset 3 included S-2 images and topographic features, which lead to an overall accuracy of 89.51%. Dataset 4 included S-2 images, vegetation indices, and topographic features, that have determined an overall accuracy of 89.36%. Dataset 5 was composed of S-2 images, S-1 images (VV and VH polarization), vegetation indices, and topographic features that lead to an overall accuracy of 89.68%. Among the five sets of data, Dataset 3 produced the most significant increase in accuracy, of 12.77%, compared to Dataset 1. Including the vegetation indices with the S-2 images (Dataset 2) gave an accuracy increase of only 1.50%. By combining the S-1 and S-2 images, vegetation indices and topographic features (Dataset 5) there was an accuracy increase of only 0.17%, compared with the S-2 images plus topographic features combination (Dataset 3). However, the input brought by the S-1 images was apparent in the increase in classification accuracy for the mixed and other BL species that were mostly found in hilly locations. Our findings confirm the potential of S-2 images, used together with other variables, for classifying tree species at the local scale.
Author Dincă, Lucian
Vorovencii, Iosif
Greșiță, Constantin Irinel
Codrean, Codrin-Leonid
Chima, Sanda
Crișan, Vlad
Cătălin, Cristian
Gavrilescu, Ion
Postolache, Ruxandra-Georgiana
Author_xml – sequence: 1
  givenname: Iosif
  surname: Vorovencii
  fullname: Vorovencii, Iosif
– sequence: 2
  givenname: Lucian
  surname: Dincă
  fullname: Dincă, Lucian
– sequence: 3
  givenname: Vlad
  surname: Crișan
  fullname: Crișan, Vlad
– sequence: 4
  givenname: Ruxandra-Georgiana
  surname: Postolache
  fullname: Postolache, Ruxandra-Georgiana
– sequence: 5
  givenname: Codrin-Leonid
  surname: Codrean
  fullname: Codrean, Codrin-Leonid
– sequence: 6
  givenname: Cristian
  surname: Cătălin
  fullname: Cătălin, Cristian
– sequence: 7
  givenname: Constantin Irinel
  surname: Greșiță
  fullname: Greșiță, Constantin Irinel
– sequence: 8
  givenname: Sanda
  surname: Chima
  fullname: Chima, Sanda
– sequence: 9
  givenname: Ion
  surname: Gavrilescu
  fullname: Gavrilescu, Ion
BookMark eNpNkctqHTEMhk1JIWmaB8jOD9A59XWOZ1lCL4EDWSSL7oyOLU8dZuzB9mnpq_RpO5OEkI0kfkkfEv8HcpZyQkKuOdtJaYbPIYxuJ5iQOy7WpOU7ciF6oTozyJ9nb-pzclXrI2NM7M0qsgvy75AdTF1dA9IZliWmkeZAW0GkdUEXsdKYKNAp_8FC53xKDTahINBT3cbvMbWYcOo4heRpJ-h8mlpsOC-5wETjDCPWT_Q3jtigxZxWoo9u07aFlpc8Flh-Rbc2Qi7z09BH8j7AVPHqJV-Sh29fH25-dIe777c3Xw6dk1q1TnINjAXFvBMGezQKOB_YUXAjFULQatA9HteHlTeoeTASpQIverXX_Cgvye0z1md4tEtZry1_bYZon4RcRgulRTehBRh6LWEv0BsVXG96FJoPPQ7MgfdmZfFnliu51oLhlceZ3ayym1V2s8q-WCX_AzoIi4Y
CitedBy_id crossref_primary_10_3390_rs16020293
crossref_primary_10_3390_rs16081373
crossref_primary_10_3389_ffgc_2024_1354769
crossref_primary_10_3390_f15060995
Cites_doi 10.1016/j.jag.2017.01.018
10.3390/rs12020302
10.1016/j.isprsjprs.2016.01.011
10.1515/forj-2017-0002
10.3390/rs4092661
10.3390/f10020127
10.3390/rs10091419
10.1016/j.jag.2019.102009
10.1016/j.rse.2021.112456
10.1023/A:1010933404324
10.1016/j.isprsjprs.2021.01.012
10.1073/pnas.1606162113
10.30638/eemj.2016.049
10.1016/S0378-1127(03)00113-0
10.3390/f6061982
10.3390/rs8030166
10.1080/17538947.2012.713190
10.1016/j.isprsjprs.2021.08.017
10.1186/1750-0680-4-2
10.1016/j.rse.2016.08.013
10.3390/rs13030337
10.3390/rs11101197
10.1016/j.rse.2018.02.064
10.3390/rs14112687
10.1016/j.scitotenv.2019.133761
10.3390/rs10060808
10.1016/j.srs.2023.100094
10.1093/jpe/rtm005
10.1016/j.isprsjprs.2013.01.013
10.3390/rs11080929
10.3390/land7040116
10.3390/rs13020185
10.3390/rs14184585
10.3390/rs10111794
10.1134/S0001433814090072
10.3390/f11090941
10.1016/j.rse.2020.111685
10.1186/s40490-018-0123-9
10.3390/rs10050698
10.1080/22797254.2022.2083984
10.1016/j.rse.2023.113576
10.1016/j.rse.2013.04.022
10.1016/j.jag.2020.102235
10.3390/rs10010055
10.3390/rs13163237
10.1016/j.rse.2016.03.021
10.1016/j.isprsjprs.2019.09.016
10.1016/j.rse.2005.10.014
10.1117/1.JRS.12.026019
10.1016/S0303-2434(02)00006-5
10.1016/S0034-4257(96)00072-7
10.1016/j.jag.2016.07.018
10.3390/rs13122321
10.3390/rs10091468
10.17221/51/2008-JFS
10.1016/j.rse.2005.03.009
10.3390/f12050565
10.1111/j.1654-109X.2009.01053.x
10.3390/geosciences9090396
10.3390/rs8060445
10.3390/rs10060946
10.1016/j.gecco.2017.01.007
10.1007/s12524-014-0392-6
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/ffgc.2023.1220253
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2624-893X
ExternalDocumentID oai_doaj_org_article_aa9653a72ed84fc686e25196e90cadd8
10_3389_ffgc_2023_1220253
GroupedDBID 9T4
AAFWJ
AAYXX
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c354t-315a00f40dc28e6e84a1190b21834eaf54956eb7824d8e51f83e34ad264751b3
IEDL.DBID DOA
ISSN 2624-893X
IngestDate Tue Oct 22 14:37:57 EDT 2024
Thu Nov 21 23:36:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-315a00f40dc28e6e84a1190b21834eaf54956eb7824d8e51f83e34ad264751b3
OpenAccessLink https://doaj.org/article/aa9653a72ed84fc686e25196e90cadd8
ParticipantIDs doaj_primary_oai_doaj_org_article_aa9653a72ed84fc686e25196e90cadd8
crossref_primary_10_3389_ffgc_2023_1220253
PublicationCentury 2000
PublicationDate 2023-10-16
PublicationDateYYYYMMDD 2023-10-16
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-16
  day: 16
PublicationDecade 2020
PublicationTitle Frontiers in Forests and Global Change
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Fassnacht (ref16) 2016; 186
Ballanti (ref2) 2016; 8
Farreira (ref15) 2016; 179
Madonsela (ref40) 2017; 58
Hościło (ref29) 2019; 11
Xie (ref72) 2021; 12
Hill (ref27) 2010; 13
Liu (ref39) 2018; 10
Vihervaara (ref66) 2017; 10
Greșiță (ref24) 2013
Persson (ref45) 2018; 10
Blatchford (ref5) 2021; 94
Dian (ref10) 2014; 43
ref17
Tereşneu (ref60) 2016; 15
ref18
Tudoran (ref64) 2020; 698
Waser (ref68) 2021; 180
Hirschmugl (ref28) 2018; 7
Tian (ref61) 2021; 260
Immitzer (ref33) 2016; 8
Stych (ref58) 2019; 9
Lechner (ref37) 2022; 14
Xie (ref73) 2008; 1
Dorren (ref13) 2003; 183
(ref9) 2014
Abrudan (ref1) 2006
Belgiu (ref3) 2016; 114
Mickelson (ref41) 1998; 64
Sedliak (ref51) 2017; 63
Greșiță (ref23) 2011; 11
Udali (ref65) 2021; 13
Dmitriev (ref11) 2014; 50
Fundisi (ref19) 2022; 55
Jaiswal (ref34) 2002; 4
Liu (ref38) 2023; 292
Griffiths (ref25) 2014; 151
Hycza (ref30) 2018; 48
Karasiak (ref35) 2017
Tereșneu (ref59) 2019
Pasquarella (ref43) 2018; 210
Ienco (ref31) 2019; 158
Rüetschi (ref48) 2017; 10
Dobrinić (ref12) 2021; 13
Gitelson (ref9001) 1996; 58
Xi (ref71) 2023; 8
Dostálová (ref14) 2021; 13
Tudoran (ref63) 2013; 55
Stoffels (ref57) 2015; 6
Mohammadpour (ref42) 2022; 14
Goetz (ref21) 2009; 4
Breiman (ref7) 2001; 45
Grabska (ref22) 2019; 11
Schmitt (ref50) 1996; 31
Sonobe (ref54) 2018; 12
Wessel (ref70) 2018; 10
Immitzer (ref32) 2012; 4
Slagter (ref53) 2020; 86
Spracklen (ref55) 2019; 10
Waśniewski (ref69) 2020; 11
Richter (ref47) 2016; 52
Wang (ref67) 2018; 10
Lawrence (ref36) 2006; 100
Silveira (ref52) 2018; 10
Heckel (ref26) 2020; 12
Spracklen (ref56) 2021; 13
Bhatnagar (ref4) 2021; 174
Peerbhay (ref44) 2013; 79
Gamon (ref20) 2016; 113
Schieber (ref49) 2009; 55
Bolton (ref6) 2020; 240
Clark (ref8) 2005; 96
Townshend (ref62) 2012; 5
Pouteau (ref46) 2018; 10
References_xml – volume: 58
  start-page: 65
  year: 2017
  ident: ref40
  article-title: Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2017.01.018
  contributor:
    fullname: Madonsela
– volume: 12
  start-page: 302
  year: 2020
  ident: ref26
  article-title: Predicting forest cover in distinct ecosystems: the potential of multi-source Sentinel-1 and −2 data fusion
  publication-title: Remote Sens.
  doi: 10.3390/rs12020302
  contributor:
    fullname: Heckel
– volume: 114
  start-page: 24
  year: 2016
  ident: ref3
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
  contributor:
    fullname: Belgiu
– volume: 63
  start-page: 1
  year: 2017
  ident: ref51
  article-title: Classification of tree species composition using a combination of multispectral imagery and airborne laser scanning data
  publication-title: Cent. Eur. For.
  doi: 10.1515/forj-2017-0002
  contributor:
    fullname: Sedliak
– volume: 4
  start-page: 2661
  year: 2012
  ident: ref32
  article-title: Tree species classification with random Forest using very high spatial resolution 8-band WorldView-2 satellite data
  publication-title: Remote Sens.
  doi: 10.3390/rs4092661
  contributor:
    fullname: Immitzer
– volume: 10
  start-page: 127
  year: 2019
  ident: ref55
  article-title: Identifying european old-growth forests using remote sensing: a study in the Ukrainian Carpathians
  publication-title: Forests
  doi: 10.3390/f10020127
  contributor:
    fullname: Spracklen
– volume: 10
  start-page: 1419
  year: 2018
  ident: ref70
  article-title: Evaluation of different machine learning algorithms for scalable classification of tree types and tree species based on Sentinel-2 data
  publication-title: Remote Sens.
  doi: 10.3390/rs10091419
  contributor:
    fullname: Wessel
– start-page: 27
  volume-title: In Proceedings of the 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)
  year: 2017
  ident: ref35
  article-title: Mapping tree species of forests in Southwest France using Sentinel-2 image time series
  contributor:
    fullname: Karasiak
– volume: 86
  start-page: 102009
  year: 2020
  ident: ref53
  article-title: Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: a case study in the St. Lucia wetlands, South Africa
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2019.102009
  contributor:
    fullname: Slagter
– volume: 260
  start-page: 112456
  year: 2021
  ident: ref61
  article-title: Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112456
  contributor:
    fullname: Tian
– volume: 45
  start-page: 5
  year: 2001
  ident: ref7
  article-title: Random forest
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume-title: Afforestation (in Romanian)
  year: 2006
  ident: ref1
  contributor:
    fullname: Abrudan
– volume: 174
  start-page: 151
  year: 2021
  ident: ref4
  article-title: A nested drone-satellite approach to monitoring the ecological conditions of wetlands
  publication-title: ISPRSJ. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.01.012
  contributor:
    fullname: Bhatnagar
– volume: 113
  start-page: 13087
  year: 2016
  ident: ref20
  article-title: A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1606162113
  contributor:
    fullname: Gamon
– volume: 15
  start-page: 461
  year: 2016
  ident: ref60
  article-title: Using the GIS tools for a sustainable forest management
  publication-title: Environ. Eng. Manag. J.
  doi: 10.30638/eemj.2016.049
  contributor:
    fullname: Tereşneu
– volume: 183
  start-page: 31
  year: 2003
  ident: ref13
  article-title: Improved landsat-based forest mapping in steep mountainous terrain using object-based classification
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(03)00113-0
  contributor:
    fullname: Dorren
– volume: 6
  start-page: 1982
  year: 2015
  ident: ref57
  article-title: Satellite-based derivation of high-resolution forest information layers for operational forest management
  publication-title: Forests
  doi: 10.3390/f6061982
  contributor:
    fullname: Stoffels
– volume: 55
  start-page: 35
  year: 2013
  ident: ref63
  article-title: Regulations regarding the management of forests included in natural protected areas. Bulletin of the Transilvania University of Braşov, series II: forestry
  publication-title: Wood. Industry. Agric. Food Eng.
  contributor:
    fullname: Tudoran
– start-page: 156
  volume-title: Forest Management Plan of Forest Management Unit I Comarnic (in Romanian)
  ident: ref17
– start-page: 148
  volume-title: Forest Management Plan of Forest Management Unit II Posada (in Romanian)
  ident: ref18
– volume: 8
  start-page: 166
  year: 2016
  ident: ref33
  article-title: First experience with Sentinel-2 data for crop and tree species classifications in Central Europe
  publication-title: Remote Sens.
  doi: 10.3390/rs8030166
  contributor:
    fullname: Immitzer
– volume: 5
  start-page: 373
  year: 2012
  ident: ref62
  article-title: Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2012.713190
  contributor:
    fullname: Townshend
– volume: 180
  start-page: 209
  year: 2021
  ident: ref68
  article-title: Mapping dominant leaf type based on combined Sentinel-1/−2 data - challenges for mountainous countries
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.08.017
  contributor:
    fullname: Waser
– volume: 4
  start-page: 1
  year: 2009
  ident: ref21
  article-title: Mapping and monitoring carbon stocks with satellite observations: a comparison of methods
  publication-title: Carbon Balance Manag.
  doi: 10.1186/1750-0680-4-2
  contributor:
    fullname: Goetz
– volume: 186
  start-page: 64
  year: 2016
  ident: ref16
  article-title: Review of studies on tree species classification from remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.013
  contributor:
    fullname: Fassnacht
– volume: 13
  start-page: 337
  year: 2021
  ident: ref14
  article-title: European wide forest classification based on Sentinel-1 data
  publication-title: Remote Sens.
  doi: 10.3390/rs13030337
  contributor:
    fullname: Dostálová
– volume: 11
  start-page: 1197
  year: 2019
  ident: ref22
  article-title: Forest stand species mapping using the Sentinel-2 time series
  publication-title: Remote Sens.
  doi: 10.3390/rs11101197
  contributor:
    fullname: Grabska
– volume: 210
  start-page: 193
  year: 2018
  ident: ref43
  article-title: Improved mapping of forest type using spectral-temporal Landsat features
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.064
  contributor:
    fullname: Pasquarella
– volume: 14
  start-page: 2687
  year: 2022
  ident: ref37
  article-title: Combination of Sentinel-1 and Sentinel-2 data for tree species classification in a central European biosphere reserve
  publication-title: Remote Sens.
  doi: 10.3390/rs14112687
  contributor:
    fullname: Lechner
– volume: 698
  start-page: 133761
  year: 2020
  ident: ref64
  article-title: Adapting the planning and management of Norway spruce forests in mountain areas of Romania to environmental conditions including climate change
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.133761
  contributor:
    fullname: Tudoran
– volume: 64
  start-page: 891
  year: 1998
  ident: ref41
  article-title: Delineating forest canopy species in the northeastern United States using multi-temporal TM imagery
  publication-title: Photogramm. Eng. Remote. Sens.
  contributor:
    fullname: Mickelson
– volume: 10
  start-page: 808
  year: 2018
  ident: ref52
  article-title: Using spatial features to reduce the impact of seasonality for detecting tropical forest changes from Landsat time series
  publication-title: Remote Sens.
  doi: 10.3390/rs10060808
  contributor:
    fullname: Silveira
– volume: 8
  start-page: 100094
  year: 2023
  ident: ref71
  article-title: Mapping tree species diversity of temperate forests using multi-temporal Sentinel-1 and -2 imagery
  publication-title: Sci. Remote Sens.
  doi: 10.1016/j.srs.2023.100094
  contributor:
    fullname: Xi
– volume: 1
  start-page: 9
  year: 2008
  ident: ref73
  article-title: Remote sensing imagery in vegetation mapping: a review
  publication-title: J. Plant Ecol.
  doi: 10.1093/jpe/rtm005
  contributor:
    fullname: Xie
– volume: 79
  start-page: 19
  year: 2013
  ident: ref44
  article-title: Commercial tree species discrimination using airborne AISA eagle hyperspectral imagery and partial least squared discriminant analysis (PLS-DA) in KwaZulu-Natal - South Africa
  publication-title: Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.01.013
  contributor:
    fullname: Peerbhay
– volume: 11
  start-page: 929
  year: 2019
  ident: ref29
  article-title: Mapping forest type and tree species on a regional scale using multi-temporal Sentinel-2 data
  publication-title: Remote Sens.
  doi: 10.3390/rs11080929
  contributor:
    fullname: Hościło
– volume: 7
  start-page: 116
  year: 2018
  ident: ref28
  article-title: Combined use of optical and synthetic aperture radar data for REDD+ applications in Malawi
  publication-title: Land
  doi: 10.3390/land7040116
  contributor:
    fullname: Hirschmugl
– volume: 13
  start-page: 185
  year: 2021
  ident: ref56
  article-title: Synergistic use of Sentinel-1 and Sentinel-2 to map natural forest and acacia plantation and stand ages in north-Central Vietnam
  publication-title: Remote Sens.
  doi: 10.3390/rs13020185
  contributor:
    fullname: Spracklen
– volume: 14
  start-page: 4585
  year: 2022
  ident: ref42
  article-title: Vegetation mapping with random Forest using sentinel 2 and GLCM texture feature - a case study for Lousã region, Portugal
  publication-title: Remote Sens.
  doi: 10.3390/rs14184585
  contributor:
    fullname: Mohammadpour
– volume: 10
  start-page: 1794
  year: 2018
  ident: ref45
  article-title: Tree species classification with multi-temporal Sentinel-2 data
  publication-title: Remote Sens.
  doi: 10.3390/rs10111794
  contributor:
    fullname: Persson
– volume: 50
  start-page: 929
  year: 2014
  ident: ref11
  article-title: Classification of the forest cover of Tver oblast using hyperspectral airborne images
  publication-title: Izv. Atmos. Ocean. Phys.
  doi: 10.1134/S0001433814090072
  contributor:
    fullname: Dmitriev
– volume: 11
  start-page: 941
  year: 2020
  ident: ref69
  article-title: Assessment of Sentinel-2 satellite images and random Forest classifier for rainforest mapping in Gabon
  publication-title: Forests
  doi: 10.3390/f11090941
  contributor:
    fullname: Waśniewski
– volume: 240
  start-page: 111685
  year: 2020
  ident: ref6
  article-title: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111685
  contributor:
    fullname: Bolton
– volume-title: Computer Aided Graphics (in Romanian)
  year: 2019
  ident: ref59
  contributor:
    fullname: Tereșneu
– volume: 31
  start-page: 602
  year: 1996
  ident: ref50
  article-title: Forest classification of multitemporal mosaicked satellite images
  publication-title: Int. Arch. Photogramm. Remote Sens.
  contributor:
    fullname: Schmitt
– volume: 48
  start-page: 18
  year: 2018
  ident: ref30
  article-title: Potential use of hyperspectral data to classify forest tree species
  publication-title: N. Z. J. For. Sci.
  doi: 10.1186/s40490-018-0123-9
  contributor:
    fullname: Hycza
– volume: 10
  start-page: 698
  year: 2018
  ident: ref46
  article-title: Predicting tropical tree species richness from normalized difference vegetation index time series: the devil is perhaps not in the detail
  publication-title: Remote Sens.
  doi: 10.3390/rs10050698
  contributor:
    fullname: Pouteau
– volume: 55
  start-page: 372
  year: 2022
  ident: ref19
  article-title: A combination of Sentinel-1 RADAR and Sentinel-2 multispectral data improves classification of morphologically similar savanna woody plants
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2022.2083984
  contributor:
    fullname: Fundisi
– volume: 292
  start-page: 113576
  year: 2023
  ident: ref38
  article-title: Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113576
  contributor:
    fullname: Liu
– volume-title: Sentinel-1 Data Access and Products
  year: 2014
  ident: ref9
– volume-title: Surveying Methods to Studying the Behaviour of Dams (in Romanian)
  year: 2013
  ident: ref24
  contributor:
    fullname: Greșiță
– volume: 151
  start-page: 72
  year: 2014
  ident: ref25
  article-title: Forest disturbances, forest recovery, and changes in forest types across the carpathian ecoregion from 1985 to 2010 based on Landsat image composites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.04.022
  contributor:
    fullname: Griffiths
– volume: 94
  start-page: 102235
  year: 2021
  ident: ref5
  article-title: Determining representative sample size for validation of continuous, large continental remote sensing data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2020.102235
  contributor:
    fullname: Blatchford
– volume: 10
  start-page: 55
  year: 2017
  ident: ref48
  article-title: Using multitemporal Sentinel-1 C-band backscatter to monitor phenology and classify deciduous and coniferous forests in northern Switzerland
  publication-title: Remote Sens.
  doi: 10.3390/rs10010055
  contributor:
    fullname: Rüetschi
– volume: 13
  start-page: 3237
  year: 2021
  ident: ref65
  article-title: Assessing forest type and tree species classification using Sentinel-1 C-band SAR data in southern Sweden
  publication-title: Remote Sens.
  doi: 10.3390/rs13163237
  contributor:
    fullname: Udali
– volume: 179
  start-page: 66
  year: 2016
  ident: ref15
  article-title: Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.021
  contributor:
    fullname: Farreira
– volume: 158
  start-page: 11
  year: 2019
  ident: ref31
  article-title: Combining Sentinel-1 and Sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.016
  contributor:
    fullname: Ienco
– volume: 100
  start-page: 356
  year: 2006
  ident: ref36
  article-title: Mapping invasive plants using hyperspectral imagery and Breiman cutler classifications (random Forest)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.014
  contributor:
    fullname: Lawrence
– volume: 12
  start-page: 026019
  year: 2018
  ident: ref54
  article-title: Crop classification from Sentinel-2 derived vegetation indices using ensemble learning
  publication-title: J. Appl. Remote. Sens.
  doi: 10.1117/1.JRS.12.026019
  contributor:
    fullname: Sonobe
– volume: 11
  start-page: 75
  year: 2011
  ident: ref23
  article-title: Expert system used for monitoring the behaviour of hydrotechnical constructions
  publication-title: REVCAD J. Geod. Cadastre
  contributor:
    fullname: Greșiță
– volume: 4
  start-page: 1
  year: 2002
  ident: ref34
  article-title: Forest fire risk zone mapping from satellite imagery and GIS
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/S0303-2434(02)00006-5
  contributor:
    fullname: Jaiswal
– volume: 58
  start-page: 289
  year: 1996
  ident: ref9001
  article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sens Environ.
  doi: 10.1016/S0034-4257(96)00072-7
  contributor:
    fullname: Gitelson
– volume: 52
  start-page: 464
  year: 2016
  ident: ref47
  article-title: The use of airborne hyperspectral data for tree species classification in a species-rich central European forest area
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2016.07.018
  contributor:
    fullname: Richter
– volume: 13
  start-page: 2321
  year: 2021
  ident: ref12
  article-title: Sentinel-1 and 2time-series for vegetation mappingusing random forest classification: a case study of northern Croatia
  publication-title: Remote Sens.
  doi: 10.3390/rs13122321
  contributor:
    fullname: Dobrinić
– volume: 10
  start-page: 1468
  year: 2018
  ident: ref67
  article-title: Evaluating the performance of Sentinel-2, Landsat 8 and Pléiades-1 in mapping mangrove extent and species
  publication-title: Remote Sens.
  doi: 10.3390/rs10091468
  contributor:
    fullname: Wang
– volume: 55
  start-page: 15
  year: 2009
  ident: ref49
  article-title: Phenology of four broad-leaved forest trees in a submountain beech forest
  publication-title: J. For. Sci.
  doi: 10.17221/51/2008-JFS
  contributor:
    fullname: Schieber
– volume: 96
  start-page: 375
  year: 2005
  ident: ref8
  article-title: Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.03.009
  contributor:
    fullname: Clark
– volume: 12
  start-page: 565
  year: 2021
  ident: ref72
  article-title: Analysis of regional distribution of tree species using multi-seasonal Sentinel-1 & 2 imagery within Google earth engine
  publication-title: Forests
  doi: 10.3390/f12050565
  contributor:
    fullname: Xie
– volume: 13
  start-page: 86
  year: 2010
  ident: ref27
  article-title: Mapping tree species in temperate deciduous woodland using time-series multi-spectral data
  publication-title: Appl. Veg. Sci.
  doi: 10.1111/j.1654-109X.2009.01053.x
  contributor:
    fullname: Hill
– volume: 9
  start-page: 396
  year: 2019
  ident: ref58
  article-title: A comparison of WorldView-2 and Landsat 8 images for the classification of forests affected by bark beetle outbreaks using a support vector machine and a neural network: a case study in the Sumava mountains
  publication-title: Geosciences
  doi: 10.3390/geosciences9090396
  contributor:
    fullname: Stych
– volume: 8
  start-page: 445
  year: 2016
  ident: ref2
  article-title: Tree species classification using hyperspectral imagery: a comparison of two classifiers
  publication-title: Remote Sens.
  doi: 10.3390/rs8060445
  contributor:
    fullname: Ballanti
– volume: 10
  start-page: 946
  year: 2018
  ident: ref39
  article-title: Forest type identification with random Forest using sentinel-1A, sentinel-2A, multi-temporal Landsat-8 and DEM data
  publication-title: Remote Sens.
  doi: 10.3390/rs10060946
  contributor:
    fullname: Liu
– volume: 10
  start-page: 43
  year: 2017
  ident: ref66
  article-title: How essential biodiversity variables and remote sensing can help national biodiversity monitoring
  publication-title: Glob. Ecol. Conserv.
  doi: 10.1016/j.gecco.2017.01.007
  contributor:
    fullname: Vihervaara
– volume: 43
  start-page: 101
  year: 2014
  ident: ref10
  article-title: Spectral and texture features combined for forest tree species classification with airborne hyperspectral imagery
  publication-title: Indian Soc Remote Sens
  doi: 10.1007/s12524-014-0392-6
  contributor:
    fullname: Dian
SSID ssj0002782620
Score 2.3267837
Snippet IntroductionMapping tree species is an important activity that provides the information necessary for sustainable forest management. Remote sensing is a...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
SubjectTerms datasets
random forest
Sentinel-2
topographic features
tree species
vegetation indices
Title Local-scale mapping of tree species in a lower mountain area using Sentinel-1 and -2 multitemporal images, vegetation indices, and topographic information
URI https://doaj.org/article/aa9653a72ed84fc686e25196e90cadd8
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwsCAaJ86QYmhGkSO6kz8lV1QCztwBY58TkqatOKtvwYfi13SajKxMKSSJYTWe8S3z3d-Z0Q1w7RRIU30hPnkVqnKFPlUIbeG0s2z1WtWzAc9V_fzNMzy-RsWn1xTVgjD9wA17M2TWJl-xE6o32RmAT5sGWCaVDQv9kc8w2SLTL13qTTWGm9SWMSC0t73pesWBipuzCiW6x-OaItvf7asQwOxH4bEcJ9s5JDsYPVkfh6YR8jl3RBmFkWUShh7oFzyMCnI4ngwqQCC1NucwYzbvlgeYCCQOBi9hJGXAhU4VSGYCsHMoK6erAVo5rCZEZ7yfIWPrFsaw6BE9gFj_EDq_mi0bOeFNDqq_KkYzEePI8fh7JtoyALFesV7bKxDQKvA1dEBhM02oYUBuQcHGm0PmaOhDkhpp3BOPRGodLWUajUj8lYJ6JTzSs8FeAi5l8q1Ky6ZxOTR4Ux3pqctiquUu2Kmx9Is0UjlpERyWD8M8Y_Y_yzFv-ueGDQNxNZ57oeIOtnrfWzv6x_9h8vORd7vDD2SGFyITqrjzVeit2lW1_VX9U3wsHS1w
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local-scale+mapping+of+tree+species+in+a+lower+mountain+area+using+Sentinel-1+and+-2+multitemporal+images%2C+vegetation+indices%2C+and+topographic+information&rft.jtitle=Frontiers+in+Forests+and+Global+Change&rft.au=Vorovencii%2C+Iosif&rft.au=Dinc%C4%83%2C+Lucian&rft.au=Cri%C8%99an%2C+Vlad&rft.au=Postolache%2C+Ruxandra-Georgiana&rft.date=2023-10-16&rft.issn=2624-893X&rft.eissn=2624-893X&rft.volume=6&rft_id=info:doi/10.3389%2Fffgc.2023.1220253&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_ffgc_2023_1220253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-893X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-893X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-893X&client=summon