Comparison of several imputation methods for missing baseline data in propensity scores analysis of binary outcome
We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response variable, in which missing baseline data had been imputed using a simple imputation scheme (Treatment Mean Imputation), compared with three ways o...
Saved in:
Published in: | Pharmaceutical statistics : the journal of the pharmaceutical industry Vol. 9; no. 4; pp. 269 - 279 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Chichester, UK
John Wiley & Sons, Ltd
01-10-2010
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response variable, in which missing baseline data had been imputed using a simple imputation scheme (Treatment Mean Imputation), compared with three ways of performing multiple imputation (MI) and with a Complete Case analysis. MI that included treatment (treated/untreated) and outcome (for our analyses, outcome was adverse event [yes/no]) in the imputer's model had the best statistical properties of the imputation schemes we studied. MI is feasible to use in situations where one has just a few outcomes to analyze. We also found that Treatment Mean Imputation performed quite well and is a reasonable alternative to MI in situations where it is not feasible to use MI. Treatment Mean Imputation performed better than MI methods that did not include both the treatment and outcome in the imputer's model. Copyright © 2009 John Wiley & Sons, Ltd. |
---|---|
AbstractList | We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response variable, in which missing baseline data had been imputed using a simple imputation scheme (Treatment Mean Imputation), compared with three ways of performing multiple imputation (MI) and with a Complete Case analysis. MI that included treatment (treated/untreated) and outcome (for our analyses, outcome was adverse event [yes/no]) in the imputer's model had the best statistical properties of the imputation schemes we studied. MI is feasible to use in situations where one has just a few outcomes to analyze. We also found that Treatment Mean Imputation performed quite well and is a reasonable alternative to MI in situations where it is not feasible to use MI. Treatment Mean Imputation performed better than MI methods that did not include both the treatment and outcome in the imputer's model. Copyright © 2009 John Wiley & Sons, Ltd. We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response variable, in which missing baseline data had been imputed using a simple imputation scheme (Treatment Mean Imputation), compared with three ways of performing multiple imputation (MI) and with a Complete Case analysis. MI that included treatment (treated/untreated) and outcome (for our analyses, outcome was adverse event [yes/no]) in the imputer's model had the best statistical properties of the imputation schemes we studied. MI is feasible to use in situations where one has just a few outcomes to analyze. We also found that Treatment Mean Imputation performed quite well and is a reasonable alternative to MI in situations where it is not feasible to use MI. Treatment Mean Imputation performed better than MI methods that did not include both the treatment and outcome in the imputer's model. |
Author | Wang, Ouhong Crowe, Brenda J. Lipkovich, Ilya A. |
Author_xml | – sequence: 1 givenname: Brenda J. surname: Crowe fullname: Crowe, Brenda J. email: crowe_brenda_j@lilly.com organization: Eli Lilly and Company, Indianapolis, IN, USA – sequence: 2 givenname: Ilya A. surname: Lipkovich fullname: Lipkovich, Ilya A. organization: Eli Lilly and Company, Indianapolis, IN, USA – sequence: 3 givenname: Ouhong surname: Wang fullname: Wang, Ouhong organization: Amgen, Thousand Oaks, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19718652$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtv1DAURi1URB8g_gHyjgVK8SNx4iUawfCoAIkRLC0nvgFDYqe-Du38e1zNqF2xsmUfHX065-QkxACEPOfskjMmXi-YL2WnH5Ez3khdccXFyf2d1afkHPE3Y7ztdPOEnHLd8k414oykTZwXmzzGQONIEf5CshP187Jmm315nSH_ig7pGBOdPaIPP2lvESYfgDqbLfWBLikuENDnPcUhJkBqg5326PHO2vtg057GNQ9xhqfk8WgnhGfH84Ls3r3dbd5XV1-2HzZvrqpBNrWunOz5qLXlUvVWda6tG-ecHpnQ_WiZ4J1moJVwGkTNoQcuoPxD54ZBOSEvyMuDtmy7XgGzKesHmCYbIK5oOsFFScfZAzmkiJhgNEvyc1lsODN3eU3Ja0reQr44Otd-BvfAHXsW4NUBuPET7P_nMV-_7Q666kB7zHB7T9v0x6hWto358Xlr6u_q00fVbI2U_wAaipd0 |
CitedBy_id | crossref_primary_10_1093_biomet_asz048 crossref_primary_10_3389_fphar_2019_00973 crossref_primary_10_1080_24709360_2022_2069457 crossref_primary_10_2139_ssrn_4161625 crossref_primary_10_1007_s12402_014_0141_2 crossref_primary_10_1186_1471_2458_13_871 crossref_primary_10_1186_s12874_020_01053_4 crossref_primary_10_1002_cjs_11650 crossref_primary_10_1007_s10742_018_0191_6 crossref_primary_10_1371_journal_pone_0155767 crossref_primary_10_1002_sim_8764 crossref_primary_10_1210_jc_2012_2684 crossref_primary_10_1016_j_jval_2012_10_012 crossref_primary_10_1186_s12874_023_01847_2 |
Cites_doi | 10.2307/2531052 10.2307/2288398 10.1201/9781439821862 10.2307/2669455 10.1002/9780470316696 10.1111/j.1751-5823.2003.tb00214.x 10.1093/biomet/85.4.935 10.1214/ss/1177010269 10.1093/biomet/70.1.41 10.1002/9781119013563 10.2307/2290664 10.1093/biomet/80.2.267 10.1111/1467-9868.00170 10.1093/biomet/87.1.113 10.1023/A:1020375413191 10.1023/A:1020363010465 10.1002/sim.2739 10.1080/01621459.1996.10476908 10.1023/A:1020327530029 |
ContentType | Journal Article |
Copyright | Copyright © 2009 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2009 John Wiley & Sons, Ltd. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/pst.389 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1539-1612 |
EndPage | 279 |
ExternalDocumentID | 10_1002_pst_389 19718652 PST389 ark_67375_WNG_4V6KJ65G_3 |
Genre | article Journal Article Comparative Study |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ SV3 UB1 W8V W99 WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c3549-d3b1f99a136ba68d745ddd9f029bfa021890e962d9e241ebe12edd9e8dcc6d23 |
IEDL.DBID | 33P |
ISSN | 1539-1604 |
IngestDate | Fri Aug 16 01:14:25 EDT 2024 Thu Nov 21 22:26:23 EST 2024 Tue Aug 27 13:46:57 EDT 2024 Sat Aug 24 01:07:07 EDT 2024 Wed Oct 30 09:57:22 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Copyright © 2009 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3549-d3b1f99a136ba68d745ddd9f029bfa021890e962d9e241ebe12edd9e8dcc6d23 |
Notes | ArticleID:PST389 ark:/67375/WNG-4V6KJ65G-3 istex:0A8ADA29DAC200648D6CF79F56E231BADB4B2B79 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 19718652 |
PQID | 821200210 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_821200210 crossref_primary_10_1002_pst_389 pubmed_primary_19718652 wiley_primary_10_1002_pst_389_PST389 istex_primary_ark_67375_WNG_4V6KJ65G_3 |
PublicationCentury | 2000 |
PublicationDate | 2010-10 October/December 2010 2010 Oct-Dec 2010-10-00 20101001 |
PublicationDateYYYYMMDD | 2010-10-01 |
PublicationDate_xml | – month: 10 year: 2010 text: 2010-10 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England |
PublicationTitle | Pharmaceutical statistics : the journal of the pharmaceutical industry |
PublicationTitleAlternate | Pharmaceut. Statist |
PublicationYear | 2010 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | D'Agostino Jr RB, Rubin DB. Estimating and using propensity scores with partially missing data. Journal of the American Statistical Association 2000; 95:749-759. Wang N, Robins JM. Large-sample theory for parametric multiple imputation procedures. Biometrika 1998; 85:935-948. Nielson SF. Proper and improper multiple imputation. International Statistical Review 2003; 71:593-607. Rubin DB. Multiple imputation for nonresponse in surveys. Wiley: New York, 1987. Rosenbaum PR, Rubin DB. Reducing bias in observation studies using subclassification on the propensity score. Journal of the American Statistical Association 1984; 79:516-524. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute 1959; 22:719-748. Song J, Belin TR, Lee MB, Gao X, Rotheram-Borus MJ. Handling baseline differences and missing items in a longitudinal study of HIV risk among runaway youths. Health Services & Outcomes Research Methodology 2001; 2:317-329. D'Agostino R, Lang W, Walkup M, Morgon T. Examining the impact of missing data on propensity score estimation in determining the effectiveness of self-monitoring of blood glucose (SMBG) 2001. Health Services & Outcomes Research Methodology 2001; 2:291-315. Meng XL, Rubin DB. Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 1993; 80:267-278. Little RJ, Rubin DB. Statistical analysis with missing data. Wiley: New York, 2002. Meng XL. Multiple imputation with uncongenial sources of input (with discussion). Statistical Science 1994; 9:538-574. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70(1):41-55. SAS Institute Inc. SAS/STAT® User's Guide, Version 9.1. SAS Institute Inc.: Cary, NC; 2003. Robins JM, Wang N. Inference for imputation estimators. Biometrika 2000; 87:113-124. Robins JM, Breslow N, Greenland S. Estimators of the Mantel-Haenszel variance consistent in both sparse data and large-strata limiting models. Biometrics 1986; 42:311-323. Schafer JL. Analysis of incomplete multivariate data. Chapman and Hall: London, 1997. Rubin DB. The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials. Statistics in Medicine 2007; 26:20-36. Ibrahim J, Lipitz S, Chen M. Missing covariates in generalized linear models when the missing data mechanism is nonignorable. Journal of the Royal Statistical Society Series B (Statistical Methodology) 1999; 61:173-190. Little RJA. Regression with missing X's: a review. American Statistical Association 1992; 87:1227-1237. Rubin DB. Using propensity scores to help design observational studies: application to the tobacco litigation. Health Services & Outcomes Research Methodology 2001; 2:169-188. Rubin DB. Multiple imputation after 18+years. JASA 1996; 91:473-489. 1994; 9 1986; 42 2000; 87 1984; 79 1987 2000; 95 1997 1993; 80 2001; 2 2003 1983; 70 1999; 61 2002 1996; 91 2003; 71 1998; 85 1992; 87 1959; 22 2007; 26 Rosenbaum (10.1002/pst.389-BIB1|cit1) 1983; 70 Robins (10.1002/pst.389-BIB5|cit5) 1986; 42 Robins (10.1002/pst.389-BIB19|cit19) 2000; 87 Rubin (10.1002/pst.389-BIB13|cit13) 1987 Song (10.1002/pst.389-BIB21|cit21) 2001; 2 Ibrahim (10.1002/pst.389-BIB10|cit10) 1999; 61 Rubin (10.1002/pst.389-BIB16|cit16) 1996; 91 D'Agostino (10.1002/pst.389-BIB9|cit9) 2001; 2 Little (10.1002/pst.389-BIB22|cit22) 1992; 87 Rosenbaum (10.1002/pst.389-BIB2|cit2) 1984; 79 D'Agostino (10.1002/pst.389-BIB6|cit6) 2000; 95 10.1002/pst.389-BIB12|cit12 SAS Institute Inc (10.1002/pst.389-BIB14|cit14) 2003 Schafer (10.1002/pst.389-BIB8|cit8) 1997 Rubin (10.1002/pst.389-BIB23|cit23) 2001; 2 Little (10.1002/pst.389-BIB11|cit11) 2002 Mantel (10.1002/pst.389-BIB4|cit4) 1959; 22 10.1002/pst.389-BIB17|cit17 Meng (10.1002/pst.389-BIB7|cit7) 1993; 80 Nielson (10.1002/pst.389-BIB18|cit18) 2003; 71 Wang (10.1002/pst.389-BIB20|cit20) 1998; 85 Rubin (10.1002/pst.389-BIB24|cit24) 2007; 26 10.1002/pst.389-BIB3|cit3 Meng (10.1002/pst.389-BIB15|cit15) 1994; 9 |
References_xml | – volume: 71 start-page: 593 year: 2003 end-page: 607 article-title: Proper and improper multiple imputation publication-title: International Statistical Review – volume: 87 start-page: 1227 year: 1992 end-page: 1237 article-title: Regression with missing X's: a review publication-title: American Statistical Association – volume: 2 start-page: 169 year: 2001 end-page: 188 article-title: Using propensity scores to help design observational studies: application to the tobacco litigation publication-title: Health Services & Outcomes Research Methodology – volume: 61 start-page: 173 year: 1999 end-page: 190 article-title: Missing covariates in generalized linear models when the missing data mechanism is nonignorable publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology) – volume: 42 start-page: 311 year: 1986 end-page: 323 article-title: Estimators of the Mantel–Haenszel variance consistent in both sparse data and large‐strata limiting models publication-title: Biometrics – volume: 95 start-page: 749 year: 2000 end-page: 759 article-title: Estimating and using propensity scores with partially missing data publication-title: Journal of the American Statistical Association – volume: 2 start-page: 291 year: 2001 end-page: 315 article-title: Examining the impact of missing data on propensity score estimation in determining the effectiveness of self‐monitoring of blood glucose (SMBG) 2001 publication-title: Health Services & Outcomes Research Methodology – volume: 2 start-page: 317 year: 2001 end-page: 329 article-title: Handling baseline differences and missing items in a longitudinal study of HIV risk among runaway youths publication-title: Health Services & Outcomes Research Methodology – year: 2002 – volume: 70 start-page: 41 issue: 1 year: 1983 end-page: 55 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika – year: 1987 – year: 2003 – volume: 85 start-page: 935 year: 1998 end-page: 948 article-title: Large‐sample theory for parametric multiple imputation procedures publication-title: Biometrika – year: 1997 – volume: 91 start-page: 473 year: 1996 end-page: 489 article-title: Multiple imputation after 18+years publication-title: JASA – start-page: 145 end-page: 146 – start-page: 20 end-page: 34 – start-page: 227 end-page: 232 – volume: 26 start-page: 20 year: 2007 end-page: 36 article-title: The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials publication-title: Statistics in Medicine – volume: 22 start-page: 719 year: 1959 end-page: 748 article-title: Statistical aspects of the analysis of data from retrospective studies of disease publication-title: Journal of the National Cancer Institute – volume: 9 start-page: 538 year: 1994 end-page: 574 article-title: Multiple imputation with uncongenial sources of input (with discussion) publication-title: Statistical Science – volume: 79 start-page: 516 year: 1984 end-page: 524 article-title: Reducing bias in observation studies using subclassification on the propensity score publication-title: Journal of the American Statistical Association – volume: 87 start-page: 113 year: 2000 end-page: 124 article-title: Inference for imputation estimators publication-title: Biometrika – volume: 80 start-page: 267 year: 1993 end-page: 278 article-title: Maximum likelihood estimation via the ECM algorithm: a general framework publication-title: Biometrika – volume: 42 start-page: 311 year: 1986 ident: 10.1002/pst.389-BIB5|cit5 article-title: Estimators of the Mantel-Haenszel variance consistent in both sparse data and large-strata limiting models publication-title: Biometrics doi: 10.2307/2531052 contributor: fullname: Robins – volume: 79 start-page: 516 year: 1984 ident: 10.1002/pst.389-BIB2|cit2 article-title: Reducing bias in observation studies using subclassification on the propensity score publication-title: Journal of the American Statistical Association doi: 10.2307/2288398 contributor: fullname: Rosenbaum – volume-title: Analysis of incomplete multivariate data year: 1997 ident: 10.1002/pst.389-BIB8|cit8 doi: 10.1201/9781439821862 contributor: fullname: Schafer – volume: 95 start-page: 749 year: 2000 ident: 10.1002/pst.389-BIB6|cit6 article-title: Estimating and using propensity scores with partially missing data publication-title: Journal of the American Statistical Association doi: 10.2307/2669455 contributor: fullname: D'Agostino – volume-title: Multiple imputation for nonresponse in surveys year: 1987 ident: 10.1002/pst.389-BIB13|cit13 doi: 10.1002/9780470316696 contributor: fullname: Rubin – volume: 71 start-page: 593 year: 2003 ident: 10.1002/pst.389-BIB18|cit18 article-title: Proper and improper multiple imputation publication-title: International Statistical Review doi: 10.1111/j.1751-5823.2003.tb00214.x contributor: fullname: Nielson – volume: 85 start-page: 935 year: 1998 ident: 10.1002/pst.389-BIB20|cit20 article-title: Large-sample theory for parametric multiple imputation procedures publication-title: Biometrika doi: 10.1093/biomet/85.4.935 contributor: fullname: Wang – volume: 9 start-page: 538 year: 1994 ident: 10.1002/pst.389-BIB15|cit15 article-title: Multiple imputation with uncongenial sources of input (with discussion) publication-title: Statistical Science doi: 10.1214/ss/1177010269 contributor: fullname: Meng – ident: 10.1002/pst.389-BIB17|cit17 – volume: 70 start-page: 41 issue: 1 year: 1983 ident: 10.1002/pst.389-BIB1|cit1 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika doi: 10.1093/biomet/70.1.41 contributor: fullname: Rosenbaum – volume-title: Statistical analysis with missing data year: 2002 ident: 10.1002/pst.389-BIB11|cit11 doi: 10.1002/9781119013563 contributor: fullname: Little – volume: 87 start-page: 1227 year: 1992 ident: 10.1002/pst.389-BIB22|cit22 article-title: Regression with missing X's: a review publication-title: American Statistical Association doi: 10.2307/2290664 contributor: fullname: Little – volume: 80 start-page: 267 year: 1993 ident: 10.1002/pst.389-BIB7|cit7 article-title: Maximum likelihood estimation via the ECM algorithm: a general framework publication-title: Biometrika doi: 10.1093/biomet/80.2.267 contributor: fullname: Meng – volume: 61 start-page: 173 year: 1999 ident: 10.1002/pst.389-BIB10|cit10 article-title: Missing covariates in generalized linear models when the missing data mechanism is nonignorable publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology) doi: 10.1111/1467-9868.00170 contributor: fullname: Ibrahim – volume: 87 start-page: 113 year: 2000 ident: 10.1002/pst.389-BIB19|cit19 article-title: Inference for imputation estimators publication-title: Biometrika doi: 10.1093/biomet/87.1.113 contributor: fullname: Robins – volume: 2 start-page: 291 year: 2001 ident: 10.1002/pst.389-BIB9|cit9 article-title: Examining the impact of missing data on propensity score estimation in determining the effectiveness of self-monitoring of blood glucose (SMBG) 2001 publication-title: Health Services & Outcomes Research Methodology doi: 10.1023/A:1020375413191 contributor: fullname: D'Agostino – volume: 2 start-page: 169 year: 2001 ident: 10.1002/pst.389-BIB23|cit23 article-title: Using propensity scores to help design observational studies: application to the tobacco litigation publication-title: Health Services & Outcomes Research Methodology doi: 10.1023/A:1020363010465 contributor: fullname: Rubin – volume: 22 start-page: 719 year: 1959 ident: 10.1002/pst.389-BIB4|cit4 article-title: Statistical aspects of the analysis of data from retrospective studies of disease publication-title: Journal of the National Cancer Institute contributor: fullname: Mantel – volume: 26 start-page: 20 year: 2007 ident: 10.1002/pst.389-BIB24|cit24 article-title: The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials publication-title: Statistics in Medicine doi: 10.1002/sim.2739 contributor: fullname: Rubin – volume-title: SAS/STAT® User's Guide, Version 9.1 year: 2003 ident: 10.1002/pst.389-BIB14|cit14 contributor: fullname: SAS Institute Inc – ident: 10.1002/pst.389-BIB3|cit3 – volume: 91 start-page: 473 year: 1996 ident: 10.1002/pst.389-BIB16|cit16 article-title: Multiple imputation after 18+years publication-title: JASA doi: 10.1080/01621459.1996.10476908 contributor: fullname: Rubin – ident: 10.1002/pst.389-BIB12|cit12 – volume: 2 start-page: 317 year: 2001 ident: 10.1002/pst.389-BIB21|cit21 article-title: Handling baseline differences and missing items in a longitudinal study of HIV risk among runaway youths publication-title: Health Services & Outcomes Research Methodology doi: 10.1023/A:1020327530029 contributor: fullname: Song |
SSID | ssj0017895 |
Score | 1.9655945 |
Snippet | We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 269 |
SubjectTerms | Cohort Studies Data Interpretation, Statistical Dwarfism, Pituitary - epidemiology Dwarfism, Pituitary - therapy Humans imputation multiple imputation observational study Propensity Score propensity scores Random Allocation Research Design - statistics & numerical data Treatment Outcome |
Title | Comparison of several imputation methods for missing baseline data in propensity scores analysis of binary outcome |
URI | https://api.istex.fr/ark:/67375/WNG-4V6KJ65G-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.389 https://www.ncbi.nlm.nih.gov/pubmed/19718652 https://search.proquest.com/docview/821200210 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-Ll58P9YXc5A9Wd02bdocRd0VBVlwUW8haVIQobtsd8H9986kaxdBQfDUQ5o0nZlkHpl8w9iZSKI4T9E7ETqXQWxEEmQ2ynDhcZm7XMjUhwbuntLH1-zmlmBymlJfNT5EE3CjleH3a1rg2lSXC9DQUTW5QG2Luy_6CP7yBu835wdp5uut4HKWQSg6cX1dlnpezvt900OrRNKPn4zM7zarVzrdjX9Md5Otzy1NuKpFY4stuXKbtfs1VPXsHAaLm1fVObShvwCxnu2w8XVToBCGBaD-pOAVvFENCM9MqGtPV4BWL6CwUMwBSCfSVIEST-GthBHF-kvK-4CKADMr0HMUFBrV-MvAMJxO8G_cLht0bwfXd8G8PkOQc3QrA8tNWEipQy6MFplN48RaK4tOJE2hyXiQHSdFZKVDOwGlJYwctrvM5rmwEd9jK-WwdAcMeKKzFLflWKJFYbg1xtk4LUIZ2wT91U6LwRez1KhG4VA13nKkkLAKCdtibc_Epl2P3ylpLU3Uy2NPxc_i4V4kPcVxrC8uK6QOnY_o0g2nlcpQjXsfuMX2a-4vPiZRh6Nct9iZZ_Jvs1D9pwE-Dv_22hFb88kIPjfwmK1MxlN3wpYrOz314vwJ6VX54Q |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCbW9LBeuu7RNuu68VDkVK-xJctWb0P6yNYuCFBj202wLRkoCjhBnADrvx8p54ECG1BgJx9kybJIiQ-RHwFOVBzJMiHrROWlDmSh4iC1UUobT-jSlUon3jUwvEtGv9KLS4bJOV_lwrT4EGuHG-8Mf17zBmeH9NkGNXTazD-TuN2CbamIDTl9Q4zXNwhJ6iuu0IbWQaj6sk2Y5a5ny45PJNE2L-rvv6mZT7VWL3auXv3PhPdgd6ls4peWO17DC1e_gd64Rat-PMVsk3zVnGIPxxsc68e3MBusaxTipEISoey_wnsuA-HpiW356QZJ8UXiF3Y7IItFnity7Cne1zhld3_NoR_YMGZmg_kSCIVHLXw-ME4Wc_od9w6yq8tsMAyWJRqCUpBlGVhRhJXWeShUkavUJjK21uqqH-miyll_0H2nVWS1I1WBGCaMHLW71JalspHYh049qd0hoIjzNKGTWWpSKgphi8JZmVShljYmk7XfBVxRy0xbIA7TQi5HhhbW0MJ2oeepuG7PZw8ct5bE5ufo2sgf6uabiq-NoLFWZDa0OnxFktdusmhMSpLcm8FdOGjJv_mYJjFOrN2FE0_lf83CjO8yerx_3muf4OUw-35rbr-Obo5gx8cm-FDBD9CZzxbuGLYau_joefsPnvH-CQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7ygJJLm2e7bdrMIewpTtaWLFvHkmTzZDFkaXMTtiVDKHiX9S40_74z8sZLoIVATz7IkuWZkeah0TcAxyqOZJmQd6LyUgeyUHGQ2iilhSd06UqlEx8auH5IRo_pxSXD5HSlvlp8iC7gxivD79e8wKe2OluBhk6b-Slp23XYlGSEM2y-EFl3gJCkvuAKrWcdhGog2_uy3PVs2fGVItpkmv7-m5X52mj1Wmf44T_muw3vl6Ymfm9lYwfWXL0L_azFqn4-wfHq6lVzgn3MVijWz3swO-8qFOKkQlKgHL3CJy4C4bmJbfHpBsnsRZIWDjogK0WeKnLmKT7VOOVgf82JH9gwYmaD-RIGhUct_G1gnCzm9DduH8bDy_H5dbAs0BCUgvzKwIoirLTOQ6GKXKU2kbG1VleDSBdVztaDHjitIqsdGQokLmHkqN2ltiyVjcQBbNST2n0CFHGeJrQvS00mRSFsUTgrkyrU0sbksA56gC_MMtMWhsO0gMuRIcIaImwP-p6JXXs--8VZa0lsfo6ujPyh7m5VfGUEjfXCZUPU4QOSvHaTRWNS0uPeCe7Bx5b7q49pUuIk2D049kz-1yxM9jCmx-e3vXYE77KLobm_Gd19gS2fmODzBA9hYz5buK-w3tjFNy_ZfwCXv_yv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+several+imputation+methods+for+missing+baseline+data+in+propensity+scores+analysis+of+binary+outcome&rft.jtitle=Pharmaceutical+statistics+%3A+the+journal+of+the+pharmaceutical+industry&rft.au=Crowe%2C+Brenda+J.&rft.au=Lipkovich%2C+Ilya+A.&rft.au=Wang%2C+Ouhong&rft.date=2010-10-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1539-1604&rft.eissn=1539-1612&rft.volume=9&rft.issue=4&rft.spage=269&rft.epage=279&rft_id=info:doi/10.1002%2Fpst.389&rft.externalDBID=10.1002%252Fpst.389&rft.externalDocID=PST389 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1604&client=summon |