Comparison of several imputation methods for missing baseline data in propensity scores analysis of binary outcome

We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response variable, in which missing baseline data had been imputed using a simple imputation scheme (Treatment Mean Imputation), compared with three ways o...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutical statistics : the journal of the pharmaceutical industry Vol. 9; no. 4; pp. 269 - 279
Main Authors: Crowe, Brenda J., Lipkovich, Ilya A., Wang, Ouhong
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01-10-2010
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response variable, in which missing baseline data had been imputed using a simple imputation scheme (Treatment Mean Imputation), compared with three ways of performing multiple imputation (MI) and with a Complete Case analysis. MI that included treatment (treated/untreated) and outcome (for our analyses, outcome was adverse event [yes/no]) in the imputer's model had the best statistical properties of the imputation schemes we studied. MI is feasible to use in situations where one has just a few outcomes to analyze. We also found that Treatment Mean Imputation performed quite well and is a reasonable alternative to MI in situations where it is not feasible to use MI. Treatment Mean Imputation performed better than MI methods that did not include both the treatment and outcome in the imputer's model. Copyright © 2009 John Wiley & Sons, Ltd.
AbstractList We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response variable, in which missing baseline data had been imputed using a simple imputation scheme (Treatment Mean Imputation), compared with three ways of performing multiple imputation (MI) and with a Complete Case analysis. MI that included treatment (treated/untreated) and outcome (for our analyses, outcome was adverse event [yes/no]) in the imputer's model had the best statistical properties of the imputation schemes we studied. MI is feasible to use in situations where one has just a few outcomes to analyze. We also found that Treatment Mean Imputation performed quite well and is a reasonable alternative to MI in situations where it is not feasible to use MI. Treatment Mean Imputation performed better than MI methods that did not include both the treatment and outcome in the imputer's model. Copyright © 2009 John Wiley & Sons, Ltd.
We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response variable, in which missing baseline data had been imputed using a simple imputation scheme (Treatment Mean Imputation), compared with three ways of performing multiple imputation (MI) and with a Complete Case analysis. MI that included treatment (treated/untreated) and outcome (for our analyses, outcome was adverse event [yes/no]) in the imputer's model had the best statistical properties of the imputation schemes we studied. MI is feasible to use in situations where one has just a few outcomes to analyze. We also found that Treatment Mean Imputation performed quite well and is a reasonable alternative to MI in situations where it is not feasible to use MI. Treatment Mean Imputation performed better than MI methods that did not include both the treatment and outcome in the imputer's model.
Author Wang, Ouhong
Crowe, Brenda J.
Lipkovich, Ilya A.
Author_xml – sequence: 1
  givenname: Brenda J.
  surname: Crowe
  fullname: Crowe, Brenda J.
  email: crowe_brenda_j@lilly.com
  organization: Eli Lilly and Company, Indianapolis, IN, USA
– sequence: 2
  givenname: Ilya A.
  surname: Lipkovich
  fullname: Lipkovich, Ilya A.
  organization: Eli Lilly and Company, Indianapolis, IN, USA
– sequence: 3
  givenname: Ouhong
  surname: Wang
  fullname: Wang, Ouhong
  organization: Amgen, Thousand Oaks, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19718652$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtv1DAURi1URB8g_gHyjgVK8SNx4iUawfCoAIkRLC0nvgFDYqe-Du38e1zNqF2xsmUfHX065-QkxACEPOfskjMmXi-YL2WnH5Ez3khdccXFyf2d1afkHPE3Y7ztdPOEnHLd8k414oykTZwXmzzGQONIEf5CshP187Jmm315nSH_ig7pGBOdPaIPP2lvESYfgDqbLfWBLikuENDnPcUhJkBqg5326PHO2vtg057GNQ9xhqfk8WgnhGfH84Ls3r3dbd5XV1-2HzZvrqpBNrWunOz5qLXlUvVWda6tG-ecHpnQ_WiZ4J1moJVwGkTNoQcuoPxD54ZBOSEvyMuDtmy7XgGzKesHmCYbIK5oOsFFScfZAzmkiJhgNEvyc1lsODN3eU3Ja0reQr44Otd-BvfAHXsW4NUBuPET7P_nMV-_7Q666kB7zHB7T9v0x6hWto358Xlr6u_q00fVbI2U_wAaipd0
CitedBy_id crossref_primary_10_1093_biomet_asz048
crossref_primary_10_3389_fphar_2019_00973
crossref_primary_10_1080_24709360_2022_2069457
crossref_primary_10_2139_ssrn_4161625
crossref_primary_10_1007_s12402_014_0141_2
crossref_primary_10_1186_1471_2458_13_871
crossref_primary_10_1186_s12874_020_01053_4
crossref_primary_10_1002_cjs_11650
crossref_primary_10_1007_s10742_018_0191_6
crossref_primary_10_1371_journal_pone_0155767
crossref_primary_10_1002_sim_8764
crossref_primary_10_1210_jc_2012_2684
crossref_primary_10_1016_j_jval_2012_10_012
crossref_primary_10_1186_s12874_023_01847_2
Cites_doi 10.2307/2531052
10.2307/2288398
10.1201/9781439821862
10.2307/2669455
10.1002/9780470316696
10.1111/j.1751-5823.2003.tb00214.x
10.1093/biomet/85.4.935
10.1214/ss/1177010269
10.1093/biomet/70.1.41
10.1002/9781119013563
10.2307/2290664
10.1093/biomet/80.2.267
10.1111/1467-9868.00170
10.1093/biomet/87.1.113
10.1023/A:1020375413191
10.1023/A:1020363010465
10.1002/sim.2739
10.1080/01621459.1996.10476908
10.1023/A:1020327530029
ContentType Journal Article
Copyright Copyright © 2009 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2009 John Wiley & Sons, Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/pst.389
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1539-1612
EndPage 279
ExternalDocumentID 10_1002_pst_389
19718652
PST389
ark_67375_WNG_4V6KJ65G_3
Genre article
Journal Article
Comparative Study
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
SV3
UB1
W8V
W99
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c3549-d3b1f99a136ba68d745ddd9f029bfa021890e962d9e241ebe12edd9e8dcc6d23
IEDL.DBID 33P
ISSN 1539-1604
IngestDate Fri Aug 16 01:14:25 EDT 2024
Thu Nov 21 22:26:23 EST 2024
Tue Aug 27 13:46:57 EDT 2024
Sat Aug 24 01:07:07 EDT 2024
Wed Oct 30 09:57:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2009 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3549-d3b1f99a136ba68d745ddd9f029bfa021890e962d9e241ebe12edd9e8dcc6d23
Notes ArticleID:PST389
ark:/67375/WNG-4V6KJ65G-3
istex:0A8ADA29DAC200648D6CF79F56E231BADB4B2B79
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19718652
PQID 821200210
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_821200210
crossref_primary_10_1002_pst_389
pubmed_primary_19718652
wiley_primary_10_1002_pst_389_PST389
istex_primary_ark_67375_WNG_4V6KJ65G_3
PublicationCentury 2000
PublicationDate 2010-10
October/December 2010
2010 Oct-Dec
2010-10-00
20101001
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
PublicationTitle Pharmaceutical statistics : the journal of the pharmaceutical industry
PublicationTitleAlternate Pharmaceut. Statist
PublicationYear 2010
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References D'Agostino Jr RB, Rubin DB. Estimating and using propensity scores with partially missing data. Journal of the American Statistical Association 2000; 95:749-759.
Wang N, Robins JM. Large-sample theory for parametric multiple imputation procedures. Biometrika 1998; 85:935-948.
Nielson SF. Proper and improper multiple imputation. International Statistical Review 2003; 71:593-607.
Rubin DB. Multiple imputation for nonresponse in surveys. Wiley: New York, 1987.
Rosenbaum PR, Rubin DB. Reducing bias in observation studies using subclassification on the propensity score. Journal of the American Statistical Association 1984; 79:516-524.
Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute 1959; 22:719-748.
Song J, Belin TR, Lee MB, Gao X, Rotheram-Borus MJ. Handling baseline differences and missing items in a longitudinal study of HIV risk among runaway youths. Health Services & Outcomes Research Methodology 2001; 2:317-329.
D'Agostino R, Lang W, Walkup M, Morgon T. Examining the impact of missing data on propensity score estimation in determining the effectiveness of self-monitoring of blood glucose (SMBG) 2001. Health Services & Outcomes Research Methodology 2001; 2:291-315.
Meng XL, Rubin DB. Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 1993; 80:267-278.
Little RJ, Rubin DB. Statistical analysis with missing data. Wiley: New York, 2002.
Meng XL. Multiple imputation with uncongenial sources of input (with discussion). Statistical Science 1994; 9:538-574.
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70(1):41-55.
SAS Institute Inc. SAS/STAT® User's Guide, Version 9.1. SAS Institute Inc.: Cary, NC; 2003.
Robins JM, Wang N. Inference for imputation estimators. Biometrika 2000; 87:113-124.
Robins JM, Breslow N, Greenland S. Estimators of the Mantel-Haenszel variance consistent in both sparse data and large-strata limiting models. Biometrics 1986; 42:311-323.
Schafer JL. Analysis of incomplete multivariate data. Chapman and Hall: London, 1997.
Rubin DB. The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials. Statistics in Medicine 2007; 26:20-36.
Ibrahim J, Lipitz S, Chen M. Missing covariates in generalized linear models when the missing data mechanism is nonignorable. Journal of the Royal Statistical Society Series B (Statistical Methodology) 1999; 61:173-190.
Little RJA. Regression with missing X's: a review. American Statistical Association 1992; 87:1227-1237.
Rubin DB. Using propensity scores to help design observational studies: application to the tobacco litigation. Health Services & Outcomes Research Methodology 2001; 2:169-188.
Rubin DB. Multiple imputation after 18+years. JASA 1996; 91:473-489.
1994; 9
1986; 42
2000; 87
1984; 79
1987
2000; 95
1997
1993; 80
2001; 2
2003
1983; 70
1999; 61
2002
1996; 91
2003; 71
1998; 85
1992; 87
1959; 22
2007; 26
Rosenbaum (10.1002/pst.389-BIB1|cit1) 1983; 70
Robins (10.1002/pst.389-BIB5|cit5) 1986; 42
Robins (10.1002/pst.389-BIB19|cit19) 2000; 87
Rubin (10.1002/pst.389-BIB13|cit13) 1987
Song (10.1002/pst.389-BIB21|cit21) 2001; 2
Ibrahim (10.1002/pst.389-BIB10|cit10) 1999; 61
Rubin (10.1002/pst.389-BIB16|cit16) 1996; 91
D'Agostino (10.1002/pst.389-BIB9|cit9) 2001; 2
Little (10.1002/pst.389-BIB22|cit22) 1992; 87
Rosenbaum (10.1002/pst.389-BIB2|cit2) 1984; 79
D'Agostino (10.1002/pst.389-BIB6|cit6) 2000; 95
10.1002/pst.389-BIB12|cit12
SAS Institute Inc (10.1002/pst.389-BIB14|cit14) 2003
Schafer (10.1002/pst.389-BIB8|cit8) 1997
Rubin (10.1002/pst.389-BIB23|cit23) 2001; 2
Little (10.1002/pst.389-BIB11|cit11) 2002
Mantel (10.1002/pst.389-BIB4|cit4) 1959; 22
10.1002/pst.389-BIB17|cit17
Meng (10.1002/pst.389-BIB7|cit7) 1993; 80
Nielson (10.1002/pst.389-BIB18|cit18) 2003; 71
Wang (10.1002/pst.389-BIB20|cit20) 1998; 85
Rubin (10.1002/pst.389-BIB24|cit24) 2007; 26
10.1002/pst.389-BIB3|cit3
Meng (10.1002/pst.389-BIB15|cit15) 1994; 9
References_xml – volume: 71
  start-page: 593
  year: 2003
  end-page: 607
  article-title: Proper and improper multiple imputation
  publication-title: International Statistical Review
– volume: 87
  start-page: 1227
  year: 1992
  end-page: 1237
  article-title: Regression with missing X's: a review
  publication-title: American Statistical Association
– volume: 2
  start-page: 169
  year: 2001
  end-page: 188
  article-title: Using propensity scores to help design observational studies: application to the tobacco litigation
  publication-title: Health Services & Outcomes Research Methodology
– volume: 61
  start-page: 173
  year: 1999
  end-page: 190
  article-title: Missing covariates in generalized linear models when the missing data mechanism is nonignorable
  publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology)
– volume: 42
  start-page: 311
  year: 1986
  end-page: 323
  article-title: Estimators of the Mantel–Haenszel variance consistent in both sparse data and large‐strata limiting models
  publication-title: Biometrics
– volume: 95
  start-page: 749
  year: 2000
  end-page: 759
  article-title: Estimating and using propensity scores with partially missing data
  publication-title: Journal of the American Statistical Association
– volume: 2
  start-page: 291
  year: 2001
  end-page: 315
  article-title: Examining the impact of missing data on propensity score estimation in determining the effectiveness of self‐monitoring of blood glucose (SMBG) 2001
  publication-title: Health Services & Outcomes Research Methodology
– volume: 2
  start-page: 317
  year: 2001
  end-page: 329
  article-title: Handling baseline differences and missing items in a longitudinal study of HIV risk among runaway youths
  publication-title: Health Services & Outcomes Research Methodology
– year: 2002
– volume: 70
  start-page: 41
  issue: 1
  year: 1983
  end-page: 55
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– year: 1987
– year: 2003
– volume: 85
  start-page: 935
  year: 1998
  end-page: 948
  article-title: Large‐sample theory for parametric multiple imputation procedures
  publication-title: Biometrika
– year: 1997
– volume: 91
  start-page: 473
  year: 1996
  end-page: 489
  article-title: Multiple imputation after 18+years
  publication-title: JASA
– start-page: 145
  end-page: 146
– start-page: 20
  end-page: 34
– start-page: 227
  end-page: 232
– volume: 26
  start-page: 20
  year: 2007
  end-page: 36
  article-title: The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials
  publication-title: Statistics in Medicine
– volume: 22
  start-page: 719
  year: 1959
  end-page: 748
  article-title: Statistical aspects of the analysis of data from retrospective studies of disease
  publication-title: Journal of the National Cancer Institute
– volume: 9
  start-page: 538
  year: 1994
  end-page: 574
  article-title: Multiple imputation with uncongenial sources of input (with discussion)
  publication-title: Statistical Science
– volume: 79
  start-page: 516
  year: 1984
  end-page: 524
  article-title: Reducing bias in observation studies using subclassification on the propensity score
  publication-title: Journal of the American Statistical Association
– volume: 87
  start-page: 113
  year: 2000
  end-page: 124
  article-title: Inference for imputation estimators
  publication-title: Biometrika
– volume: 80
  start-page: 267
  year: 1993
  end-page: 278
  article-title: Maximum likelihood estimation via the ECM algorithm: a general framework
  publication-title: Biometrika
– volume: 42
  start-page: 311
  year: 1986
  ident: 10.1002/pst.389-BIB5|cit5
  article-title: Estimators of the Mantel-Haenszel variance consistent in both sparse data and large-strata limiting models
  publication-title: Biometrics
  doi: 10.2307/2531052
  contributor:
    fullname: Robins
– volume: 79
  start-page: 516
  year: 1984
  ident: 10.1002/pst.389-BIB2|cit2
  article-title: Reducing bias in observation studies using subclassification on the propensity score
  publication-title: Journal of the American Statistical Association
  doi: 10.2307/2288398
  contributor:
    fullname: Rosenbaum
– volume-title: Analysis of incomplete multivariate data
  year: 1997
  ident: 10.1002/pst.389-BIB8|cit8
  doi: 10.1201/9781439821862
  contributor:
    fullname: Schafer
– volume: 95
  start-page: 749
  year: 2000
  ident: 10.1002/pst.389-BIB6|cit6
  article-title: Estimating and using propensity scores with partially missing data
  publication-title: Journal of the American Statistical Association
  doi: 10.2307/2669455
  contributor:
    fullname: D'Agostino
– volume-title: Multiple imputation for nonresponse in surveys
  year: 1987
  ident: 10.1002/pst.389-BIB13|cit13
  doi: 10.1002/9780470316696
  contributor:
    fullname: Rubin
– volume: 71
  start-page: 593
  year: 2003
  ident: 10.1002/pst.389-BIB18|cit18
  article-title: Proper and improper multiple imputation
  publication-title: International Statistical Review
  doi: 10.1111/j.1751-5823.2003.tb00214.x
  contributor:
    fullname: Nielson
– volume: 85
  start-page: 935
  year: 1998
  ident: 10.1002/pst.389-BIB20|cit20
  article-title: Large-sample theory for parametric multiple imputation procedures
  publication-title: Biometrika
  doi: 10.1093/biomet/85.4.935
  contributor:
    fullname: Wang
– volume: 9
  start-page: 538
  year: 1994
  ident: 10.1002/pst.389-BIB15|cit15
  article-title: Multiple imputation with uncongenial sources of input (with discussion)
  publication-title: Statistical Science
  doi: 10.1214/ss/1177010269
  contributor:
    fullname: Meng
– ident: 10.1002/pst.389-BIB17|cit17
– volume: 70
  start-page: 41
  issue: 1
  year: 1983
  ident: 10.1002/pst.389-BIB1|cit1
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
  contributor:
    fullname: Rosenbaum
– volume-title: Statistical analysis with missing data
  year: 2002
  ident: 10.1002/pst.389-BIB11|cit11
  doi: 10.1002/9781119013563
  contributor:
    fullname: Little
– volume: 87
  start-page: 1227
  year: 1992
  ident: 10.1002/pst.389-BIB22|cit22
  article-title: Regression with missing X's: a review
  publication-title: American Statistical Association
  doi: 10.2307/2290664
  contributor:
    fullname: Little
– volume: 80
  start-page: 267
  year: 1993
  ident: 10.1002/pst.389-BIB7|cit7
  article-title: Maximum likelihood estimation via the ECM algorithm: a general framework
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
  contributor:
    fullname: Meng
– volume: 61
  start-page: 173
  year: 1999
  ident: 10.1002/pst.389-BIB10|cit10
  article-title: Missing covariates in generalized linear models when the missing data mechanism is nonignorable
  publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00170
  contributor:
    fullname: Ibrahim
– volume: 87
  start-page: 113
  year: 2000
  ident: 10.1002/pst.389-BIB19|cit19
  article-title: Inference for imputation estimators
  publication-title: Biometrika
  doi: 10.1093/biomet/87.1.113
  contributor:
    fullname: Robins
– volume: 2
  start-page: 291
  year: 2001
  ident: 10.1002/pst.389-BIB9|cit9
  article-title: Examining the impact of missing data on propensity score estimation in determining the effectiveness of self-monitoring of blood glucose (SMBG) 2001
  publication-title: Health Services & Outcomes Research Methodology
  doi: 10.1023/A:1020375413191
  contributor:
    fullname: D'Agostino
– volume: 2
  start-page: 169
  year: 2001
  ident: 10.1002/pst.389-BIB23|cit23
  article-title: Using propensity scores to help design observational studies: application to the tobacco litigation
  publication-title: Health Services & Outcomes Research Methodology
  doi: 10.1023/A:1020363010465
  contributor:
    fullname: Rubin
– volume: 22
  start-page: 719
  year: 1959
  ident: 10.1002/pst.389-BIB4|cit4
  article-title: Statistical aspects of the analysis of data from retrospective studies of disease
  publication-title: Journal of the National Cancer Institute
  contributor:
    fullname: Mantel
– volume: 26
  start-page: 20
  year: 2007
  ident: 10.1002/pst.389-BIB24|cit24
  article-title: The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.2739
  contributor:
    fullname: Rubin
– volume-title: SAS/STAT® User's Guide, Version 9.1
  year: 2003
  ident: 10.1002/pst.389-BIB14|cit14
  contributor:
    fullname: SAS Institute Inc
– ident: 10.1002/pst.389-BIB3|cit3
– volume: 91
  start-page: 473
  year: 1996
  ident: 10.1002/pst.389-BIB16|cit16
  article-title: Multiple imputation after 18+years
  publication-title: JASA
  doi: 10.1080/01621459.1996.10476908
  contributor:
    fullname: Rubin
– ident: 10.1002/pst.389-BIB12|cit12
– volume: 2
  start-page: 317
  year: 2001
  ident: 10.1002/pst.389-BIB21|cit21
  article-title: Handling baseline differences and missing items in a longitudinal study of HIV risk among runaway youths
  publication-title: Health Services & Outcomes Research Methodology
  doi: 10.1023/A:1020327530029
  contributor:
    fullname: Song
SSID ssj0017895
Score 1.9655945
Snippet We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 269
SubjectTerms Cohort Studies
Data Interpretation, Statistical
Dwarfism, Pituitary - epidemiology
Dwarfism, Pituitary - therapy
Humans
imputation
multiple imputation
observational study
Propensity Score
propensity scores
Random Allocation
Research Design - statistics & numerical data
Treatment Outcome
Title Comparison of several imputation methods for missing baseline data in propensity scores analysis of binary outcome
URI https://api.istex.fr/ark:/67375/WNG-4V6KJ65G-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.389
https://www.ncbi.nlm.nih.gov/pubmed/19718652
https://search.proquest.com/docview/821200210
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-Ll58P9YXc5A9Wd02bdocRd0VBVlwUW8haVIQobtsd8H9986kaxdBQfDUQ5o0nZlkHpl8w9iZSKI4T9E7ETqXQWxEEmQ2ynDhcZm7XMjUhwbuntLH1-zmlmBymlJfNT5EE3CjleH3a1rg2lSXC9DQUTW5QG2Luy_6CP7yBu835wdp5uut4HKWQSg6cX1dlnpezvt900OrRNKPn4zM7zarVzrdjX9Md5Otzy1NuKpFY4stuXKbtfs1VPXsHAaLm1fVObShvwCxnu2w8XVToBCGBaD-pOAVvFENCM9MqGtPV4BWL6CwUMwBSCfSVIEST-GthBHF-kvK-4CKADMr0HMUFBrV-MvAMJxO8G_cLht0bwfXd8G8PkOQc3QrA8tNWEipQy6MFplN48RaK4tOJE2hyXiQHSdFZKVDOwGlJYwctrvM5rmwEd9jK-WwdAcMeKKzFLflWKJFYbg1xtk4LUIZ2wT91U6LwRez1KhG4VA13nKkkLAKCdtibc_Epl2P3ylpLU3Uy2NPxc_i4V4kPcVxrC8uK6QOnY_o0g2nlcpQjXsfuMX2a-4vPiZRh6Nct9iZZ_Jvs1D9pwE-Dv_22hFb88kIPjfwmK1MxlN3wpYrOz314vwJ6VX54Q
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCbW9LBeuu7RNuu68VDkVK-xJctWb0P6yNYuCFBj202wLRkoCjhBnADrvx8p54ECG1BgJx9kybJIiQ-RHwFOVBzJMiHrROWlDmSh4iC1UUobT-jSlUon3jUwvEtGv9KLS4bJOV_lwrT4EGuHG-8Mf17zBmeH9NkGNXTazD-TuN2CbamIDTl9Q4zXNwhJ6iuu0IbWQaj6sk2Y5a5ny45PJNE2L-rvv6mZT7VWL3auXv3PhPdgd6ls4peWO17DC1e_gd64Rat-PMVsk3zVnGIPxxsc68e3MBusaxTipEISoey_wnsuA-HpiW356QZJ8UXiF3Y7IItFnity7Cne1zhld3_NoR_YMGZmg_kSCIVHLXw-ME4Wc_od9w6yq8tsMAyWJRqCUpBlGVhRhJXWeShUkavUJjK21uqqH-miyll_0H2nVWS1I1WBGCaMHLW71JalspHYh049qd0hoIjzNKGTWWpSKgphi8JZmVShljYmk7XfBVxRy0xbIA7TQi5HhhbW0MJ2oeepuG7PZw8ct5bE5ufo2sgf6uabiq-NoLFWZDa0OnxFktdusmhMSpLcm8FdOGjJv_mYJjFOrN2FE0_lf83CjO8yerx_3muf4OUw-35rbr-Obo5gx8cm-FDBD9CZzxbuGLYau_joefsPnvH-CQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7ygJJLm2e7bdrMIewpTtaWLFvHkmTzZDFkaXMTtiVDKHiX9S40_74z8sZLoIVATz7IkuWZkeah0TcAxyqOZJmQd6LyUgeyUHGQ2iilhSd06UqlEx8auH5IRo_pxSXD5HSlvlp8iC7gxivD79e8wKe2OluBhk6b-Slp23XYlGSEM2y-EFl3gJCkvuAKrWcdhGog2_uy3PVs2fGVItpkmv7-m5X52mj1Wmf44T_muw3vl6Ymfm9lYwfWXL0L_azFqn4-wfHq6lVzgn3MVijWz3swO-8qFOKkQlKgHL3CJy4C4bmJbfHpBsnsRZIWDjogK0WeKnLmKT7VOOVgf82JH9gwYmaD-RIGhUct_G1gnCzm9DduH8bDy_H5dbAs0BCUgvzKwIoirLTOQ6GKXKU2kbG1VleDSBdVztaDHjitIqsdGQokLmHkqN2ltiyVjcQBbNST2n0CFHGeJrQvS00mRSFsUTgrkyrU0sbksA56gC_MMtMWhsO0gMuRIcIaImwP-p6JXXs--8VZa0lsfo6ujPyh7m5VfGUEjfXCZUPU4QOSvHaTRWNS0uPeCe7Bx5b7q49pUuIk2D049kz-1yxM9jCmx-e3vXYE77KLobm_Gd19gS2fmODzBA9hYz5buK-w3tjFNy_ZfwCXv_yv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+several+imputation+methods+for+missing+baseline+data+in+propensity+scores+analysis+of+binary+outcome&rft.jtitle=Pharmaceutical+statistics+%3A+the+journal+of+the+pharmaceutical+industry&rft.au=Crowe%2C+Brenda+J.&rft.au=Lipkovich%2C+Ilya+A.&rft.au=Wang%2C+Ouhong&rft.date=2010-10-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1539-1604&rft.eissn=1539-1612&rft.volume=9&rft.issue=4&rft.spage=269&rft.epage=279&rft_id=info:doi/10.1002%2Fpst.389&rft.externalDBID=10.1002%252Fpst.389&rft.externalDocID=PST389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1604&client=summon